Off-Axis Fatigue Behavior of a Plain Weave Carbon/Epoxy Fabric Laminate at Room and High Temperatures and Its Mechanical Modeling

M. Kawai and T. Taniguchi

Division of Engineering Mechanics and Energy Graduate School of Systems and Information Engineering University of Tsukuba, Japan

Outline

- 1. Background
- 2. Objectives
- **3.** Experimental results
- 4. Modeling and predictions
- 5. Summary

Woven Fabric Composites

- Attractive Features (e.g. Kelly, 1989):
 - Lower fabrication cost
 - Better drapeability/shapeability
 - Ease of handling
 - Better damage tolerance, esp. against impact
 - Improved intra- and inter-lamina strengths (Multidirectional reinforcement in a single layer)

Fatigue of WFC U: unnotched; N: notched; P: plain; S: satin; K: knitted;			
	$1 \lor \theta$	Woven GFRP	Woven CFRP
	On-axis	Boller (1957) U+N+P Xiao-Bathias (1994) U+N+P Yamamoto-Hyakutake (1999) U+N+P Paepegem-Degrieck (2001) U+P + much more	Shimokawa-Hamaguchi (1983) N+S Hamaguchi-Shimokawa (1987) N+S Schulte et al. (1987) U+S Miyano et al. (1994) U+S Kawai et al. (1996) U+N+P Khan et al. (2002) U+P
	Off-axis	Owen-Bishop (1972,1973) U+N+P Owen-Griffiths (1978) U+N+P Wang et al. (1982) U+P Smith-Pascoe (1989) U+P Amijima et al. (1991) U+P Fujii et al. (1993-1996) U+N+P Hansen (1999) U+N+P Pandita-Verpoest (2001,2004) U+P+K	Very few !

Predictions

Material System

T300/Epoxy#2500 Plain woven roving cloth prepreg (12-ply laminates)

Off-axis fiber orientations: $\theta = 0, 15, 30, 45, 90^{\circ}$

Tension Test 1.0 mm/minStroke control: RT (~25°C) and 100°C Temperature: **Fatigue Test** Load control : Sinusoidal Wave shape: Frequency: f = 10 Hz (+ 2 Hz)Stress ratio: $R = \sigma_{\min} / \sigma_{\max} = 0.1$ RT (~25°C) and 100°C Temperature:

Off-Axis Stress-Strain Curves

 $\theta = 0 \sim 90^\circ; \mathbf{RT}$

$\theta = 0, 15, 45^{\circ}; RT, 100^{\circ}C$

Off-Axis Tensile Strength

Off-Axis S-N Relationships

based on a maximum fatigue stress (σ_{max})

Off-Axis S-N Curves for Woven CFRP Laminates

What is an appropriate measure for modeling?

In this case, orientation dependence has not been removed completely using the experimental strength ratio !

The fiber orientation dependence has been removed substantially by mean of S_{15} -based theoretical strength ratio.

Effects of End Constraint on the UTS for $\theta = 15^{\circ}$ **Rectangular tabs** (L/w = 5)**Oblique tabs** (L/w = 5)(L/w = 10)400 T300/Epoxy#2500 WOVEN Fracture stress σ_x^f , MPa 350 Experimental (R.T.) No significant difference 300 250 200 150 100 Not ascribed to $\theta = 15^{\circ}$ 50 0

Rectangular

L/w = 5

Oblique

L/w = 5

Oblique

L/w = 10

Master S-N relationships for the on-axis and off-axis fatigue behavior

Damage Mechanics Modeling of Composite Fatigue

Fatigue Damage Growth Law:

$$\frac{d\omega}{dN} = K\sigma_{\max}^{*} \left(\frac{1}{1-\omega}\right)^{k} \frac{\left\langle \sigma_{\max}^{*} - \sigma_{L}^{*} \right\rangle^{b}}{\left\langle 1 - \chi\sigma_{\max}^{*} \right\rangle^{a}}$$

Fatigue Life Equation:

$$N_{f} = \frac{1}{(1+k)K\sigma_{\max}^{*}} \frac{\langle 1-\chi\sigma_{\max}^{*}\rangle^{a}}{\langle \sigma_{\max}^{*}-\sigma_{L}^{*}\rangle^{b}}$$

where

$$\sigma^* = \sqrt{\left(\frac{\sigma_{11}}{X}\right)^2 - \frac{\sigma_{11}\sigma_{22}}{X^2} + \left(\frac{\sigma_{22}}{Y}\right)^2 + \left(\frac{\tau_{12}}{S}\right)^2}$$

(Non-Dimensional Effective Stress)

On-Axis and Off-Axis Master Curves (RT) Master S-N equation *n*: slope of $\sigma_{\max}^* - 2N_f$ $\frac{2}{(1+k)K\sigma_{\max}^{*^{n}}} \cdot \frac{\langle 1-\chi\sigma_{\max}^{*}\rangle^{a}}{\langle \sigma_{\max}^{*}-\sigma_{L}^{*}\rangle^{b}} = \frac{n}{\sigma_{L}^{*}} \text{ slope of } \sigma_{\max}^{*}$ $2N_{f} =$ a,b,(1+k)K : constants 10^{1} **On-axis constants** $n = 46.12, \sigma_{I} = 0$ a = 0, b = 090° max (1+k)K = 2 10^{0} *ъ **Off-axis constants** 15 30° $n = 6.31, \sigma_{I}^{*} = 0.54$ Experimental (RT) -T-T Fatigue T300/Epoxy#2500 WOVEN f = 10 Hz, R = 0.1 10^{-1} a = 0.6, b = 0.7 10^{2} 10^{3} 10^{0} 10^{6} 10^{1} 10^4 10^5 10^{7} (1+k)K = 0.015 $2N_{i}$

Predictions of S-N curves (RT)

Predictions of S-N curves (RT)

Predictions of S-N curves (100°C)

Self-Generated Heating During Fatigue Loading

(with an infrared radiation thermometer)

RT

Frequency Dependence of Specimen Heating

RT 🗖

Off-Axis S-N Relationships at 2 and 10 Hz

RT

Intrinsic Frequency Dependence of Off-Axis Fatigue Behavior

What we have seen

The S₁₅-based theoretical strength which takes a lower value for the fiber orientations $\theta = 30$ and 45° has worked to compensate for the effect of strength reduction due to self-generated heating during fatigue loading.

Appropriate determination of the principal shear strength is crucial to a successful application of a strength-based fatigue failure criterion.

Conclusions

The off-axis tensile fatigue behavior of plain weave carbon fabric laminates at room temperature and 100°C were examined.

Applicability of a phenomenological fatigue model was evaluated by comparing with the experimental results at a fixed frequency of 10 Hz.

Fatigue behavior

- The off-axis S-N relationship is characterized by its S-shape, regardless of the fiber orientations and test temperatures.
- The off-axis fatigue strength is much lower than the on-axis fatigue strength and it becomes smaller with increasing off-axis angle from 15 to 45°, regardless of the test temperatures.

Conclusions

Continued

- The theoretical strength ratio defined appropriately becomes a useful parameter to cope with the fiber orientation dependence of the off-axis fatigue behavior of the woven carbon fabric laminate.
- The S-N data normalized using the S₁₅-based theoretical strength separate well into two groups associated with the on-axis and off-axis directions, regardless of the test temperatures.
 The normalized off-axis S-N data eventually fall on a single S-N relationship for each of the test temperatures.
- The S-shape of the off-axis S-N relationships at 10 Hz is caused mainly by the reduction in strength due to temperature rise of specimen during fatigue loading and partly by a rate-dependent property of the material.

Conclusions

<u>Continued</u>

Fatigue model

- The potential usefulness of a phenomenological fatigue model has been demonstrated.
- The fatigue model that assumes two master S-N curves for on-axis and off-axis fatigue loading succeeds in adequately describing the fatigue behavior of the plain weave carbon/epoxy composite laminate with a frequency of 10 Hz at room temperature and 100°C.
- A single master S-N curve version of the fatigue model is likely to be successfully applied to the room-temperature fatigue behavior at a lower frequency (≤ 2 Hz) of fatigue loading.

Thank you for your kind attention !