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Woven Fabric Composites

Attractive Features  (e.g. Kelly, 1989):

Lower fabrication cost

Better drapeability/shapeability

Ease of handling

Better damage tolerance,  esp. against impact

Improved intra- and inter-lamina strengths
(Multidirectional reinforcement in a single layer)



Woven Carbon Fabric Composites

Suitability for Near Net Shape Manufacturing:

Plates and shell structures

Large-scale structures

Woven CFRP Woven GFRP

Primary aerospace structures

(From J. Hinrichsen, Japan SAMPE, 2001)

Durability prediction



Off-axis

On-axis

Woven GFRP

Very few !

Boller (1957) U+N+P

Xiao-Bathias (1994) U+N+P

Yamamoto-Hyakutake (1999) U+N+P

Paepegem-Degrieck (2001) U+P

     + much more

U: unnotched; N: notched; P: plain; S: satin; K: knitted;2

1

3

Owen-Bishop (1972,1973) U+N+P

Owen-Griffiths (1978) U+N+P

Wang et al. (1982) U+P

Smith-Pascoe (1989) U+P

Amijima et al. (1991) U+P

Fujii et al. (1993-1996) U+N+P

Hansen (1999) U+N+P

Pandita-Verpoest (2001,2004) U+P+K

Fatigue of WFC

Shimokawa-Hamaguchi (1983) N+S

Hamaguchi-Shimokawa (1987) N+S

Schulte et al. (1987) U+S

Miyano et al. (1994) U+S

Kawai et al. (1996) U+N+P

Khan et al. (2002) U+P

Woven CFRP



· Off-axis tensile behavior

For a plain woven CFRP laminate,

1. Experimental

· Off-axis fatigue behavior

2. Theoretical

· Phenomenological modeling

· Predictions

· Temperature dependence

Objectives



Standard specimens:

�Unit: mm�

Off-axis fiber orientations:  = 0, 15, 30, 45, 90˚

50 50100

3

20

1

T300/Epoxy#2500
Plain woven roving cloth prepreg
(12-ply laminates)

1

2

3
Material System



Tension Test 

Stroke control:        1.0 mm/min
Temperature:          RT (~25°C) and 100°C

Fatigue Test

Load control :
Wave shape:          Sinusoidal
Frequency:            f = 10 Hz  (+ 2 Hz)
Stress ratio:           R = min/ max = 0.1
Temperature:        RT (~25°C) and 100°C
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Off-Axis Tensile Strength
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What is an appropriate measure for modeling ?

Experimental strength ratio

max/ B(exp)

Orientation dependence
of fatigue strength 

Orientation dependence
of tensile strength 

Assumption:
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In this case, orientation dependence has not been removed 
completely using the experimental strength ratio !

Why?
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Divided by 
the predicted 

strength

Theoretical Strength Ratio    v.s. 2Nf
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The fiber orientation dependence has been removed substantially
by mean of S15-based theoretical strength ratio.
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Rectangular tabs
  (L/w = 5)
Oblique tabs
  (L/w = 5)

  (L/w = 10)

Effects of End Constraint on the UTS for  = 15°
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Theoretical Strength Ratio    v.s. 2Nfmax
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Damage Mechanics Modeling of Composite Fatigue

Fatigue Damage Growth Law:

Fatigue Life Equation:
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Predictions of S-N curves  (RT)
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On- and Off-Axis Master Curves (100°C)
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Self-Generated Heating During Fatigue Loading

(with an infrared radiation thermometer)
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The S15-based theoretical strength which takes a lower
value for the fiber orientations  = 30 and 45° has worked
to compensate for the effect of strength reduction due to
self-generated heating during fatigue loading.

Appropriate determination of the principal shear strength is
crucial to a successful application of a strength-based
fatigue failure criterion.

What we have seen



Conclusions

The off-axis tensile fatigue behavior of plain weave carbon fabric
laminates at room temperature and 100°C were examined.

Applicability of a phenomenological fatigue model was evaluated
by comparing with the experimental results at a fixed frequency of
10 Hz.

The off-axis S-N relationship is characterized by its S-shape,
regardless of the fiber orientations and test temperatures.

The off-axis fatigue strength is much lower than the on-axis
fatigue strength and it becomes smaller with increasing off-axis
angle from 15 to 45°, regardless of the test temperatures.

Fatigue behavior



Conclusions
Continued

The theoretical strength ratio defined appropriately becomes a
useful parameter to cope with the fiber orientation dependence of
the off-axis fatigue behavior of the woven carbon fabric laminate.

The S-N data normalized using the S15-based theoretical strength
separate well into two groups associated with the on-axis and
off-axis directions, regardless of the test temperatures.
The normalized off-axis S-N data eventually fall on a single S-N
 relationship for each of the test temperatures.

The S-shape of the off-axis S-N relationships at 10 Hz is caused
mainly by the reduction in strength due to temperature rise
of specimen during fatigue loading and partly by a rate-dependent
property of the material.



Fatigue model

The potential usefulness of a phenomenological fatigue model has
been demonstrated.

The fatigue model that assumes two master S-N curves for on-axis
and off-axis fatigue loading succeeds in adequately describing the
fatigue behavior of the plain weave carbon/epoxy composite
laminate with a frequency of 10 Hz at room temperature and 100°C.

A single master S-N curve version of the fatigue model is likely to
be successfully applied to the room-temperature fatigue behavior
at a lower frequency (  2 Hz) of fatigue loading.

Conclusions
Continued



Thank you for your kind attention !


