CompTest 2004

Bristol, 21-23 September 2004

Mechanical properties balance in novel Z-pinned sandwich panels: out-of-plane shear

<u>Andrea I Marasco</u>, Denis D R Cartié and Ivana K Partridge, *Advanced Materials Department, Cranfield University, Bedford, UK* Amir Rezai, *BAE SYSTEMS ATC Sowerby, Bristol, UK*

Contents

► Introduction Materials: K-CorTM, X-CorTM, Nomex[®] honeycomb

 Out-of-plane shear Test method

Experimental results

► Failure modes

X/K-CorTM Modelling Overview

► X-CorTM Analytical modelling

Design issues

X/K-CORTM

Foam based lightweight structural cores reinforced with Z-Fiber[®] rods oriented in a truss pattern

Mechanical properties match and/or exceed high performance honeycombs

Cranfield UNIVERSITY

Test Materials

CORE TYPE	CORE ATTRIBUTES					
	thickness [mm]	density [kgm ⁻³]	cell face side [mm] 3.18		stabiliser Redux 322	
Nomex	12.7	64				
	thickness [mm]	density [kgm ⁻³]	pin Ø / fibre	pin angle θ	foam type	foam density [kgm ⁻³]
X-Cor type 1	12.7	~64	0.51 / T300	22°	Rohacell	32
X-Cor type 1 hollow	12.7	~32	0.51 / T300	22°		0
X-Cor type 2	12.7	~64	0.51 / T300	30°	Rohacell	32
K-Cor	12.7	~64	0.51 / T300	30°	Rohacell	32

hollow X-Cor sandwich

SKIN ATTRIBUTES					
resin type/fibre type	plies per skin	skin thickness [mm]			
QI 8552/IM7	6	0.75			

Nomex honeycomb sandwich

Cranfield UNIVERSITY

Test method: out-of-plane shear

ASTM C273 Cross head speed 0.5mm/min Specimen dimensions: 50mm x 188mm Longitudinal + transversal LVDT transducers

Experimental results

	K-Cor (θ=30°)	X-Cor (θ=22°)	Hollow X-Cor (θ=22°)	X-Cor (θ=30°)	Nomex
strength [MPa]	1.4±0.1	0.8±0.1	0.7±0.1	1.0±0.1	2.3±0.1
modulus [MPa]	193±12	204±34	204±16	372±34	81±4

Cranfield UNIVERSITY

Experimental results

	K-Cor (θ=30°)	X-Cor (θ=22°)	Hollow X-Cor (θ=22°)	X-Cor (θ=30°)	Nomex
strength [MPa]	1.4±0.1	0.8±0.1	0.7±0.1	1.0±0.1	2.3±0.1
modulus [MPa]	193±12	204±34	204±16	372±34	81±4

Cranfield UNIVERSITY

Cranfield

X/K-CorTM Modelling

X/K-CorTM Analytical modelling

Cranfield

11

Analytical model development: X-CorTM

Cranfield UNIVERSITY

Analytical model development: X-CorTM

Linear elastic phase is determined by matrix shear strength

Critical stress condition at pin tips

At peak load:
$$T_{SPECIMEN,ave} = 7000N$$

$$T_{PIN}\cong 9N$$

$$\tau_{PIN} \cong 90MPa \gg \tau_{RESIN}$$

$$\begin{cases} Qualitative Analysis (vertical pin) \\ M_{EXT,O} = T \frac{h}{2} \\ M_{INT,O} = \tau \pi dD^2 \\ \tau = T \frac{h}{2\pi dD^2} \\ \text{intensification factor} \end{cases}$$

Model considers only pins inserted "against the nap". The component of the force along the pin axis keeps the pin in place, causing the opening of the skins

Cranf

Analytical model development: X-CorTM

Pins and skins considered as rigid bodies pinned together

Relative rigid motion (rotation)

Analytical model: X-CorTM

Pin geometry and kinematics considerations

Cranfie

Analytical model: X-CorTM

Analytical model: X-CorTM

Evaluation of pin constant of rigidity k for torsional spring in the elastic phase

	nominal insertion angle θ _i	modulus G _{exp} [MPa]	model pin-end k [Nm]
X-Cor type 1	22°	200±34	~43
X-Cor type 2	30°	370 ±34	~83

Pin insertion angle influence on outof-plane shear elastic behaviour

$$G \cong \frac{2K(\theta_i)}{Ah} \cos^2 \theta_i$$

$$\Longrightarrow K = K(\theta_i, \phi_{PIN}, MAT)$$

Design Issues

Nomex specimen proved higher shear strength but lower shear stiffness than pinned cores

Pin: column with torsional spring at ends

► found suitable for determining model parameters as input into FEA

Thank you for your attention

