Size effects in Unidirectional and Quasi-Isotropic Composites Loaded in Tension

Bijoysri Khan, K Potter, S R Hallett, M R Wisnom

Strength of a material is dependent on the probability of finding a defect

• With increase in size the number of defects increase

 Usually material property measurements are done on specific specimen dimensions

• What material strength data should we use for design of large structures?

- Factors which influence size effects are:
 - -Material microstructure flaws in fibre/matrix
 - -Free edge effects off axis ply at free edges causes high interlaminar stresses
 - -Stress gradients redistribution of stress with progressive failure
 - -Testing consideration gripping stress/ stress concentrations

In the present work -Waisted UD scaled specimens

•Dropped plies were interleaved between continuous plies

•Chamfering the dropped plies suppresses delamination

-Uniform section scaled QI specimens Bonded end tabs

Material:

- E-Glass/913 pre-preg
- Ply thickness: 0.125 mm

Specimens:

Specimen ID	No: - Continuous Plies	No:- dropped Plies	Gauge length (mm)	Width (mm)	Number of samples
G-4	4	3	30	10	11
G-8	8	6	60	20	12
G-16	16	12	120	40	11

Size effects in UD Carbon

Material:

IM7/8552 pre-preg

Ply thickness: 0.125 mm

Specimens:

Specimen ID	No: - Continuous Plies	No:- dropped Plies	Gauge length (mm)	Width (mm)	Number of samples
C-4	4	3	30	5	12
C-8	8	6	60	10	12
C-16	16	12	120	20	9
C-32	32	24	240	40	11

Size effects in UD Composites

Size effects in UD Composites

Specimen edge with chamfered dropped plies

Chamfered Pre-preg (Top view)

A typical stress-strain plot for the 4 ply specimen

"Bursting" failure observed for Glass specimens Transverse and longitudinal cracks across the width in Carbon

Test Results:

Specimen ID	Mean Failure Stress (MPa)	CV	Mean Failure Strain (μ strain)	CV
S-4	1512	3.4	35220	2.4
S-8	1516	2.7	34690	3.0
S-16	1471	3.0	34490	2.2

Size effects in UD Carbon

Test Results:

Specimen ID	Mean Failure Stress (MPa)	CV	Mean Failure Strain (μ strain)	CV
S-4	2806	4.2	15440	5.4
S-8	2687	2.5	14720	1.9
S-16	2553	3.8	14290	3.3
S-32	2347	6.5	13040	3.6

Size effects in UD Carbon

Weibull Modulus:

- Two parameter model expresses the probability of survival, P(s), of a specimen subjected to a strain field, ε, over a volume, V, as in eqn 1
- $P(s) = exp[-\int (\epsilon/\epsilon_o)^m dV]$ (1)

 $\boldsymbol{\epsilon}_{o}$ is the characteristic strain

m the Weibull modulus

 When two different sizes of specimen with equal probability of survival are compared eqn 1 can be expressed as in eqn 2

•
$$\varepsilon_1 / \varepsilon_2 = (V_2 / V_1)^{1/m}$$
 (2)

- ϵ_1 and ϵ_2 are the strains in the two specimens
- V_1 and V_2 are the volumes

University of

RISTOI

Variation of strength with size for Glass

Size effects in UD Composites

•Material:

IM7/8552 pre-preg

•Specimen:

Lay up sequence of (+45m/90m/-45m/0m)ns Sub-laminate scaled : m fixed at 1 and n scaled Ply-level scaled: n fixed at 1 and m scaled Uniform section QI laminates End tabbed

Specimens:

Specimen ID	Scaling m or n =	Gauge Iength (mm)	Width (mm)	Thickness (mm)
1(m or n)-QI	1	30	8	1
2(m or n)-QI	2	60	16	2
4(m or n)-QI	4	120	32	4
8(m or n)-QI	8	240	64	8

•Test data - failure stress (MPa):

	Sub laminate	Ply level	
m or n	level m=1, n	n=1, m	
1	842		
2	911	660	
4	929	541	
8		458	

• Typical sequence of events in the failure of Ply level scaled specimen

Department of

1050202

Engineering

Sub laminate scaled

Ply level scaled

Failure pattern observed in the 4 mm thick QI specimen

Thickness (mm)

Variation of the strength with increasing specimen thickness

Conclusion

- •Tests on UD Laminates:
 - The failure stress and strains tend to decrease with increasing size
 - Failure in Glass is progressive with multiple fibre failure occurring at different sites
 - Failure in Carbon is sudden with longitudinal and transverse cracks running across the sample width
 - The reduction in stress/strain with volume is more in Carbon than in Glass
 - A Weibull modulus of 40 is derived for Carbon laminates

Conclusion

- •Tests on QI laminates:
 - The strength of the QI laminates decreases with increase in ply block thickness
 - The failure modes of the ply level scaled samples are similar and essentially by transverse cracking followed by extensive delamination
 - A reduction of 45% in failure stress is observed for the Ply-level scaled samples
 - Sub-laminate level scaled specimen show higher resistance to delamination and the fracture is essentially by fibre failure
 - Small increase in strength is seen in the Sub-laminate scaled specimens

