

COMPTEST 2004

Experimental Measurement and Finite Element Analysis of Load Distribution and Strength in Multi-Bolt Composite Joints with Variable Bolt Hole Clearances

M.A. McCarthy, V.P. Lawlor¹, W.F. Stanley, G.S. Padhi, C.T. McCarthy²

University of Limerick

¹ Now National University of Ireland, Galway ² Now University College Dublin

- Context for work
- Quasi-static loading
- Fatigue loading
- Finite Element Analysis

Composites Research Centre

BOLTED JOINTS IN COMPOSITE AIRCRAFT STRUCTURES EU FRAMEWORK V COMPETITIVE AND SUSTAINABLE GROWTH (2000-2003)

Partners:

IRELAND UNITED KINGDOM SWEDEN GERMANY ITALY THE NETHERLANDS GREECE SWITZERLAND University of Limerick (Project Co-ordinator) Airbus UK, QinetQ (formerly DERA) SAAB, FOI, Royal Inst of Tech Stockholm Airbus Germany CIRA NLR ISTRAM

COMPTEST 2004: Composites Testing and Model Identification University of Bristol, UK, Sept 21st – 23rd, 2004

SMR

- Bolt-hole clearance results in 3D variations in stress/strain distributions
 - Good parameter to study for validation of 3D FE
- Clearance is inevitable in any practical manufacturing process
 cannot be avoided, so effects should be understood
- Has not been studied experimentally in multi-bolt joints before
- Previous models of effects of clearance have been analytical or 2D FE

Quasi-Static Loading

Joint Geometries

272

36

Composites Research Centre

Single-lap joint

- HTA/6376 carbon/epoxy
- Quasi-isotropic lay-ups
- Titanium alloy bolts
- Double-lap joint

Controlling Clearance

Composites Research Centre

Clearance Cases

	Nominal Clearance (µm)		
Case Code	Hole 1	Hole 2	Hole 3
C1_C1_C1	0	0	0
C1_C1_C2	0	0	80
C1_C1_C3	0	0	160
C1_C1_C4	0	0	240
C1_C3_C1	0	160	0
C1_C3_C3	0	160	160

Centring/Aligning/Drilling Jigs CRC

Composites Research Centre

Manufactured to very high precision

Measuring Load Distribution CRC

Composites Research Centre

SL Joints – Load Distr.

Composites Research Centre

SL Joints - Failure

Composites Research Centre

Most Interesting Failure

Two bolts failed simultaneously

Usual design rules (ignoring clearance) \rightarrow middle bolt NOT under any threat of failure

But with clearance in one of the outer holes – failure of middle bolt becomes possible

SL Joints – Failure Initiation CRC

Composites Research Centre

Composites Research Centre

Failure "Initiation" Loads

Composites Research Centre

Failure initiated earlier in C1_C1_C4 joints

Double-Lap Joints

Composites Research Centre

DL Joints – Failure Initiation Composites Research Centre

40 Max Stiffness Slope (kN/mm) 30 30% drop 20 10 Load at 30% drop in stiffness 0 60 10 50 70 0 20 30 40 80 Applied Load (kN)

- Strain gauge method of load distribution measurement much cheaper → can test to failure
- strain gauge readings interrupted at a "significant" failure event

Load at 30% loss of stiffness matches load at interruption of strain gauge pattern very well

University of Limerick

• Again load at 30% loss of stiffness matches load at interruption of strain gauge pattern very well (true for all six clearance cases)

- Load is significant lower in C1_C3_C1 case than C1_C1_C1
- From consideration of bearing yield allowable, the "first significant failure" was found to be **bearing failure at one of the holes**

Effect of Clearance on first bearing failure

Composites Research Centre

CRC

Code	Load at first bearing failure (kN)	Percentage Difference from C1_C1_C1
C1_C1_C1	50	0%
C1_C3_C1	44	12%
C1_C1_C4	44.3	11.4%
C2_C1_C1	43.2	13.6%
C4_C1_C1	40	20%
C3_C3_C1	37.2	25.6%

Composites Research Centre

- Clearance:
 - > No significant effect on *ultimate* tensile load
 - DID affect ultimate tensile mode
 - Small effect on failure initiation load in SL joints
 - LARGE effect on failure initiation load in DL joints (load at first bearing failure affected by 25%)
- Strain gauge load distribution method cheaper than instrumented bolts – can be used up to failure (cannot easily be used for SL joints though)
- Load at 30% loss in stiffness appears to be a good measure of first "substantial" failure

Fatigue Loading

Fatigue Cases

	Nominal Clearance (µm)		
Case Code	Hole 1	Hole 2	Hole 3
C1_C1_C1	0	0	0
C1_C1_C4	0	0	240

• Both Single-Lap and Double-lap joint

Test Set-up

- Constant amplitude fatigue loading, R = -1 ($\sigma_{min}/\sigma_{max}$ = -1)
- Anti-buckling guides

- To avoid temperature rise, frequencies between 0.66 and 5 Hz
- Temperature of each bolt monitored maintained < 25°C

- Hole elongation criterion for failure (Starikov and Schon, 2002)
- Increase in peak-to-peak displacement $\Delta\delta$ of 0.8 mm

Ultimate Failure Modes

• However, in single-lap joints, other failure modes occurred on continuation of tests beyond the hole elongation failure point

Bolt failure

Net tension failure

Extreme hole elongation

Double-lap joints exhibited only extreme hole elongation

- Cycles to "ultimate failure" were also recorded
- "Ultimate failure" displacement to + or 10 mm
- Reached suddenly in catastrophic failure modes and gradually in extreme hole elongation cases

SL Joints – Hole Elong

Composites Research Centre

Joints with loose-fit bolt have shorter fatigue life in general

SL Joints – Ult Failure

Composites Research Centre

Joints with loose-fit bolt have shorter fatigue life in general

Temperature and Displ. History CRC

University of Limerick

Composites Research Centre

Temperature and Displ. History CRC

University of Limerick

Composites Research Centre

SL - Cycles to small hole elong CRC

Composites Research Centre

Clearer distinction between clearance cases

UIL

Composites Research Centre

Joints with loose-fit bolt have shorter fatigue life in general

DL - Cycles to small hole elong

Composites Research Centre

Again - clearer distinction between clearance cases

Load distribution during Fatigue CRC

 Due to hole wear, clearance has less effect as wear progresses (load distribution evens out) → clearance most affects initiation of failure, less effect on final failure

- Joints with a loose-fit bolt had shorter fatigue lives than joints with all neat-fit bolts (SL and DL)
- Clearance had a particularly strong effect on failure initiation, i.e. cycles to a small hole elongation
- Effect of clearance less pronounced as failure progresses since failure causes elongation of the neat-fit holes in the C1_C1_C4 joint causing the clearance to even out over time

Finite element Analysis

Model Creation Tool: BOLJAT

University of Limerick

Composites Research Centre

Contact Analysis

Contact analysis performed between all parts

Contact Area Development CRC

Composites Research Centre

Single-Bolt, Single-Lap Joint

C1 Clearance (Contact Area)

Increasing Load

C4 Clearance (Contact Area)

Stress Distribution

Net tension stresses in central laminate highest at this hole (i.e. bypass stresses correctly accounted for)

Progressive Damage Analysis

University of Limerick

Composites Research Centre

Bolt Loads (C1_C1_C1)

Simulation

Experiment

Bolt Loads (C4_C1_C1)

Simulation

Experiment

- 3D FEA with contact can account for: variable contact in each hole and through thickness; bypass stresses; nonuniform bearing stresses through thickness
- PDA gives insight into failure processes at each hole and gives prediction of initial failure (bearing failure in one hole)