

Material characterisation and calibration of a mesomechanical damage model for braid reinforced – composites

— CompTest 2004 - Bristol

Michel R. FOUINNETEAU & Anthony K. PICKETT

Outline of presentation

- I Braided composites Manufacturing & Characteristics
- II The meso-scale damage model Presentation
- III The meso-scale damage model Adaptation to braids
- IV Industrial example and limitation of current models

I. Braided composites: characteristics and ³ performance

1. Characteristics

A potential material for the *automotive industry* due to:

- \rightarrow good specific stiffness
- \rightarrow high strength-to-weight ratios
- \rightarrow high impact resistance
- → high specific energy absorption for crash applications
- → braiding machines are adaptable for a wide range of shapes and fibre architectures and easily tailored for geometric and mechanical properties.

Tubular braided preform (courtesy of Eurocarbon)

I. Braided composites: characteristics and ⁴ performance

1. Characteristics

The braid architecture allows tailoring of mechanical properties by the use of:

- \rightarrow braid angles
- → Percentage of tows in different directions (triaxial braids)
- \rightarrow quantity of fibres in tows
- → number of braider yarns between cross-over points

Repeating unit cell for a 2x2 braid

I. Braided composites: characteristics and 5 performance

2. Manufacturing

Various manufacturing processes available:

 \rightarrow RTM, RIFT, resin infusion, vacuum resin infusion, ...

II. The meso-scale damage model: presentation

6

V

Single layer

Single layer

Interface

Ζ

1. Description

- Laminate scale defined by 2 meso-constituents
- Use of damage mechanics for predicting mesoconstituents degradation
- Damage indicators (d₁₁,d₂₂, d₁₂) are linked to variation in moduli
- Damage mechanisms taken into account are:
 - a. Fibre breakage b. Matrix microcracking c. Fibre/matrix debonding d. Delamination (low)
- Damaged strain energy density in a single layer:

II. The meso-scale damage model: presentation

From damaged strain energy : -

$$Y_{22} = \frac{\partial \langle \langle E_D \rangle \rangle}{\partial d_{22}} = \frac{1}{(1 - d_{22})^2} \left\langle \left\langle \frac{\langle \sigma_{22} \rangle_+^2}{E_2^0} \right\rangle \right\rangle \quad Y_{12} = \frac{\partial \langle \langle E_D \rangle \rangle}{\partial d_{12}} = \frac{1}{(1 - d_{12})^2} \left\langle \left\langle \frac{\sigma_{12}^2}{G_{12}^0} \right\rangle \right\rangle$$

- Assume uniform damage state through each mesoconstituent thickness
- Damage and Plasticity coupling expressed through elastic domain function

$$f = \sqrt{\widetilde{\sigma}_{12}^2 + a\widetilde{\sigma}_{22}^2} - R(p) - R_0$$

Function of the accumulated plastic strain p

Model calibration through testing program on different laminate types

7

1. Experiment

 \rightarrow Focus: Cyclic tensile loading on [±45] braided laminate

• High degree of inhomogeneity resulting from nonuniform strain distribution within a given unit cell

- Width dimension > 3 x RUC length
- Coupon dimensions: 150x65 mm
- \rightarrow Manufacturing of flat coupons
 - Use of vacuum resin infusion for flat braided panels
 - LY3505 (epoxy resin)/XB3403(hardener) system
 - Good price/performance ratio

9

1. Experiment

- \rightarrow Test observations
 - High degree of fibre rotation: "scissoring effect"
 - Necking (up to 23% width reduction at complete failure)

1. Experiment

- \rightarrow Test observations
 - High delamination after first peak load
 - Strain measurement problem after peak load due to strain gauge failure
 - difficulty to measure strains in post-peak load area

1. Experiment

- \rightarrow Measures taken
 - Focus on pre-peak load
 - Necking and delamination
 - measure of width reduction with ε_{22}
 - assume constant thickness Delamination negligible

Use of pseudo true stress for calibration test

2. Fibre rotation

- \rightarrow Angle determination
 - For inextensible fibre, fibre rotation is expressed with:
 - <u>Results in a Non linearity of damage evolution</u>

- \rightarrow Effect on damage evolution
 - Non-linearity of the damage law \longrightarrow Log. & poly. approximations

Y12 [√GPa]

• Example on high strain UD (T800/M21 – 35% rubber content)

Damage law

Simulation

14

3. Edge effect

- Significant edge effect caused by fibre continuity
- Increase of strength and strain at failure
- Low braid angle results in a high increase (fibre loading)
- Same damage law for cut and uncut coupons?
- Equivalent damage evolution and hardening function
- High degree of delamination also present in uncut specimen

CUT & UNCUT Comparison - Cyclic Test on [±45] laminate

16

3. Lay-up effect study

- Tests on 1, 2, 4 and 6 layer coupons
- 1 & 2 layer coupons have large voids between tows
- 4 & 6 layer coupons good coverage and better thickness consistency
- Comparable damage evolution and hardening functions
- High degree of fibre rotation for single layer
- Use of log function for hardening law for 1 layer coupon

17

3. Modelling & Results

- $\rightarrow\,$ Damage model implemented in Pam-Crash $^{\rm TM}$
 - Two super-imposed shell elements containing 1 ply each and sharing same nodes
 - Use of a linear damage law gives
 premature failure
 - Under prediction of the stress and softer response
- \rightarrow Modified model
 - Use of logarithmic and polynomial damage law approximations gives good failure prediction
 - Unable to predict post peak load where delamination is non-negligible

19

3. Modelling & Results

VI. Conclusions – Next steps

\rightarrow Conclusions

- Adaptation of a ply damage model to braided composites
- Edge effect and lay-up studies
- Better understanding on the shear failure mechanism
- Non-linearity of the damage law
- Implementation of logarithmic and polynomial approximations

 \rightarrow Next steps

- Determination of delamination effect (Mode I, II, III)
- Delamination modelling after peak load (energy absorption)
- Eventual simulation using 4 beam elements joining element nodes
- Beam and tube modelling for energy absorbers (e.g car bumper)

VI. Conclusions – Next steps

- Interest in braided beam
- Simulation using linear approximation for damage law

Test and simulation on 4 point bending beam