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2Outline of presentation

I Braided composites – Manufacturing & Characteristics

II The meso-scale damage model – Presentation

III The meso-scale damage model – Adaptation to braids

IV Industrial example and limitation of current models
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A potential material for the automotive 
industry due to:

→ good specific stiffness

→ high strength-to-weight ratios

→ high impact resistance

→ high specific energy absorption for 
crash applications

→ braiding machines are adaptable for a 
wide range of shapes and fibre 
architectures and easily tailored for 
geometric and mechanical properties.

Tubular braided preform (courtesy of Eurocarbon)

I. Braided composites: characteristics and
performance

1. Characteristics
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θ

Repeating unit cell (RUC)

+θ braider yarn
-θ braider yarn

x

y

Repeating unit cell for a 2x2 braid

The braid architecture allows tailoring of 
mechanical properties by the use of:

→ braid angles

→ Percentage of tows in different 
directions (triaxial braids)

→ quantity of fibres in tows

→ number of braider yarns between 
cross-over points

I. Braided composites: characteristics and
performance

1. Characteristics
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Various manufacturing processes available:

→ RTM, RIFT, resin infusion, vacuum resin infusion, …

Vacuum 
pump

Resin 
container Metallic 

plates

Inlet pipe Outlet pipe

Preform

Vacuum 
bag

Vacuum resin infusion

I. Braided composites: characteristics and
performance

2. Manufacturing
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• Laminate scale defined by 2 meso-constituents

Single layer

Single layer
Interface

• Use of damage mechanics for predicting meso-
constituents degradation
• Damage indicators (d11,d22, d12) are linked to variation 
in moduli

• Damage mechanisms taken into account are:
a. Fibre breakage   b. Matrix microcracking   
c. Fibre/matrix debonding   d. Delamination (low)

• Damaged strain energy density in a single layer:
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II. The meso-scale damage model: 
presentation
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Damage governed by in-plane stress

1. Description
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• From damaged strain energy : -
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• Assume uniform damage state through each meso-
constituent thickness

• Damage and Plasticity coupling expressed through     
elastic domain function
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Function of the accumulated 
plastic strain p 

• Model calibration through testing program on 
different laminate types
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II. The meso-scale damage model: 
presentation
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→ Focus: Cyclic tensile loading on [±45] braided laminate 

• High degree of inhomogeneity resulting from non-
uniform strain distribution within a given unit cell

• Width dimension > 3 x RUC length

III. The meso-scale damage model: 
Adaptation to braids

1. Experiment

• Coupon dimensions: 150x65 mm

→ Manufacturing of flat coupons

• Use of vacuum resin infusion for flat braided panels

• LY3505 (epoxy resin)/XB3403(hardener) system

• Good price/performance ratio
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1. Experiment

III. The meso-scale damage model: 
Adaptation to braids

→ Test observations

• High degree of fibre rotation: “scissoring effect”
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1. Experiment

III. The meso-scale damage model: 
Adaptation to braids

→ Test observations

• Strain measurement problem after peak load

• High delamination after first peak load

• difficulty to measure strains in post-peak load area 0
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1. Experiment

III. The meso-scale damage model: 
Adaptation to braids

→ Measures taken

• Use of pseudo true stress for calibration test

• Necking and delamination

• measure of width reduction with ε22

• assume constant thickness Delamination negligible

• Focus on pre-peak load



12

• For inextensible fibre, fibre rotation is expressed with:
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III. The meso-scale damage model: 
Adaptation to braids

2. Fibre rotation

→ Angle determination

5° at peak load

10° at complete failure

• Results in a Non linearity of damage evolution 

• No delamination taken into account

45°

35 °



13

→ Effect on damage evolution

III. The meso-scale damage model: 
Adaptation to braids

Log. &  poly. approximations• Non-linearity of the damage law
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• Example on high strain UD (T800/M21 – 35% rubber content)

III. The meso-scale damage model: 
Adaptation to braids

Damage law Simulation
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• Significant edge effect caused by fibre continuity  

III. The meso-scale damage model: 
Adaptation to braids

• Increase of strength and strain at failure

• Low braid angle results in a high increase (fibre 
loading)

• Same damage law for cut and uncut coupons?

• Equivalent damage evolution and hardening     
function 

• High degree of delamination also present in 
uncut specimen 

3. Edge effect



16III. The meso-scale damage model: 
Adaptation to braids

CUT & UNCUT Comparison - Cyclic Test on [±45] laminate

cut specimen

uncut specimen
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17III. The meso-scale damage model: 
Adaptation to braids

• Tests on 1, 2, 4 and 6 layer coupons

• 1 & 2 layer coupons have large voids  between 
tows

• 4 & 6 layer coupons – good coverage and better 
thickness consistency

• Comparable damage evolution and hardening 
functions 

• High degree of fibre rotation for single layer 

• Use of log function for hardening law for 1 layer 
coupon 

R(p) = 19.471Ln(p) + 156.06

R(p) = 866.05p0.4921
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3. Lay-up effect study
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→ Damage model implemented in Pam-CrashTM

• Two super-imposed shell elements containing     
1 ply each and sharing same nodes
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x

• Use of a linear damage law gives 
premature failure 

• Under prediction of the stress and softer 
response 

• Unable to predict post peak load where 
delamination is non-negligible  

III. The meso-scale damage model: 
Adaptation to braids

3. Modelling & Results

→ Modified model

• Use of  logarithmic and polynomial damage 
law approximations gives good failure 
prediction



19III. The meso-scale damage model: 
Adaptation to braids

3. Modelling & Results

Stress strain 



20VI. Conclusions – Next steps

• Determination of delamination effect (Mode I, II, III)

• Non-linearity of the damage law

• Delamination modelling after peak load (energy absorption)

• Beam and tube modelling for energy absorbers (e.g car bumper) 

• Eventual simulation using 4 beam elements joining element nodes

→ Conclusions

• Adaptation of a ply damage model to braided composites

• Better understanding on the shear failure mechanism

• Edge effect and lay-up studies

• Implementation of logarithmic and polynomial approximations

→ Next steps



21VI. Conclusions – Next steps
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Test and simulation on 4 point bending beam

• Interest in braided beam

• Simulation using linear approximation for damage law

Premature failure


