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MOTIVATION

Possible damage
from out-of-plane
loading

Extensive use of sandwich construction in military helicopters

Method needed to
predict compression
after impact strength
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BACKGROUND - CONTINUED
 CAI Testing

End fixture

Specimen

Load platen

Specimen loaded under
axial compression

a)  1% of Pmax

b)  87%

c)  90%

d)  99%

Failure
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Shadow Moiré Images
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BACKGROUND - CONTINUED
CAI Strength Prediction

Unnotched strength, σo,
compression test

Average stress criterion used to
calculate stable kink-band growth
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• Test required to measure energy associated
with kink-band growth (KIc calculated)

• Based on compact tension specimen used
for metal fracture

• Displacement control (0.5 mm/min)

• Specimen loaded until kink band has
extended 5-10mm then unloaded.  Process
repeated until kink band length is 50mm.

• Dissipated energy calculated for each load
cycle

• Critical strain energy release rate, GIc,
calculated for each growth increment

• KIc calculated from relationship with Gic for
an orthotropic plate

“Compact Compression” Test

Cylindrical loading bars apply
compressive load at notches

Kink band

w

B

h
A=w/2

Potted Ends

x
y



7

VEHICLE TECHNOLOGY DIRECTORATE

of 24

• Determine effects of geometry on
strain energy release rate and stability.

• Three specimen configurations
modeled using finite elements:

1.  A=w/3, A/B=4
2.  A=w/3, A/B=0.8
3.  A=2w/3, A/B=8

• Finite element analysis used to
calculate strain energy release rates.
Analysis of each configuration
repeated for a range of crack lengths.

• Relationship between strain energy
release rate and crack length assumed
the same in tension and compression.

Analysis of Specimen Geometry
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Finite Element Results

• All configurations have very
similar K curves when plotted
as a function of “a.”

• Notch geometry does not
significantly affect stability.

• Geometry selected:
    A = w/2, A/B = 2
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a
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Force-Displacement Behavior
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• Shadow moiré used

• Moiré grid attached to both facesheets

• High-intensity, collimated light placed
45º to specimen

• Both sides of specimen monitored
(recorded on video)

Monitoring Kink-Band Propagation

45o 45o

Carbon-arc
light source

Specimen
moiré grids

Video camera
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Comparison of Techniques to 
Determine Kink-Band Lengths

Shadow
Moire

Surface
Photo

X-Ray

Front-Surface Crack

Back-Surface Crack
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Optical Deformation Measurements

• Measurements
taken in speckled
region

• One image
recorded every 10
seconds

• All strains were
calculated from an
image of an
unloaded specimen
prior to the first
load application
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Strain Field Animation

Movie
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Compact Compression Test Matrix

• Objectives:

- Evaluate specimen and test methodology

- Generate data for CAI strength predictions

- Investigate the effects of material and layup

• Plain-weave carbon fabric facesheets (3-6 plies)

• Nomex honeycomb

19 mm[(0-90)/(±45)]23 (epoxy)e

29 mm[(0-90)/(±45)]33 (epoxy)d

25 mm[(0-90)/(0-90)/(0-90)1/2]2 (epoxy)c

25 mm[(±45)/(0/90)/(±45)]1 (toughened epoxy)b

25 mm[(±45)/(0/90)]S1 (toughened epoxy)a

Core
Thickness

Facesheet

Layup
Material SystemConfig
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Specimen Geometry
Parametric Testing

0.5”

POTTING

1.  A = w/2, A/B = 6
2.  A = w/2, A/B = 2
3.  A = w/2, A/B = 1.2
4.  A = 2w/3, A/B = 4
5.  A = 2w/3, A/B = 2
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Fracture Toughness Measurements
Parametric Study

[(±45)/(0/90)]S  (Config “a”)

0 10 20 30 40 50
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A = w/2, A/B = 6
A = w/2, A/B = 2
A = w/2, B = 1.2
A = 2w/3, A/B = 4
A = 2w/3, A/B = 2    

Fracture
Toughness,

K

Average kink-band length, mm
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Fracture Toughness Measurements

[(±45)/(0/90)/(±45)]  (Config “b”)
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Fracture Toughness Measurements
Comparison of Layups

Toughened epoxy (Material “1”)

0 10 20 30 40 50

[(±45)/(0-90)]
S
 (a)

[(±45)/(0-90)/(±45)] (b)

Fracture
toughness,

K
Ic

Average kink-band length, mm



19

VEHICLE TECHNOLOGY DIRECTORATE

of 24

Fracture Toughness Measurements

[(0-90)/(0-90)/(0-90)1/2] (Config “c”)
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Fracture Toughness Measurements

[(0-90)/(±45)]3 (Config “d”)
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Fracture Toughness Measurements

[(0-90)/(±45)]2  (Config “d” )
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Fracture Toughness Comparison
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CONCLUDING REMARKS

• Developed new test to obtain facesheet fracture toughness, KIc, needed
for CAI strength predictions.

• Replicates kink-band growth observed during CAI testing.

• Captures energy dissipation associated with kink-band growth.

• Fracture energy measurements were not affected by specimen geometry.

• Fracture energy observed to increase with kink-band length.

• Lower bound values of KIc should be used to yield conservative CAI
strength predictions.

• Scatter in fracture energy measurements does not significantly affect
CAI strength predictions.

• Measured fracture energy was a function of facesheet thickness/layup
(laminate property).
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