Tensile Scaling Effects In Notched Composites

B.G. Green, M.R. Wisnom & S.R. Hallett University of Bristol, UK

CompTest 2004, Bristol, UK 21st - 23rd September

Introduction

- Size effect: Strength of a material/ laminate is dependent upon size
 - Statistical/ deterministic
- For a notched specimen, notch size is also a factor
- Understanding this phenomenon will lead to more accurate strength predictions and hence more efficient component design

Summary

- Extensive experimental program undertaken with specimen size as the controlled variable
- Sub-critical damage growth and failure mechanism/ strength were investigated
- Results show a large variation in strength, and a change in failure mechanism, dependent upon specimen dimensions
- This is because of sub-critical damage growth

Specimen Design

- Quasi-isotropic specimens with a centrallylocated circular hole tested in tension
- Carbon fibre/ epoxy IM7/8552 UD pre-preg
- Stacking sequence (45/90/-45/0)_s
- w/d=5 and I/d=20

Testing Matrix

	Sublaminate-level Scaling Hole sizes (mm)				Ply-level Scaling Hole sizes (mm)			
t (mm)	3.175	6.35	12.7	25.4	3.175	6.35	12.7	25.4
1	*				*			
2								
4								
8	*			*	*			*

- * = 6 specimens tested, otherwise 4 per condition
- 3 types of scaling investigated: 1-D, 2-D & 3-D

Thickness Scaling

	Sublaminate-level Scaling Hole sizes (mm)				Ply-level Scaling Hole sizes (mm)				
t (mm)	3.1	75	6.35	12.7	25.4	3.17	5 6.35	12.7	25.4
1									
2			n				1 D		
4			-0						
8		7				•			

• All in-plane dimensions kept constant

In-Plane Scaling

	Sublaminate-level Scaling Hole sizes (mm)				Ply-level Scaling Hole sizes (mm)			
t (mm)	3.175	6.35	12.7	25.4	3.175	6.35	12.7	25.4
1								
2		2.	-D			2	-D	
4				-				
8								

Laminate thickness is constant

3-Dimensional Scaling

	Sublaminate-level Scaling Hole sizes (mm)				Ply-level Scaling Hole sizes (mm)			
t (mm)	3.175	6.35	12.7	25.4	3.175	6.35	12.7	25.4
1								
2			3- C				3- D	
4								
8								

 Both thickness and in-plane dimensions are scaled simultaneously

Increasing Laminate Thickness

- 2 methodologies are used to increase laminate thickness:
 - Sublaminate-level scaling Ply thickness remains constant, sequence is repeated as required.
 - Ply-level scaling
 Plies are blocked together to increase effective ply thickness.

Jniversity of

Results: Strength

t (mm)	Sublam Hole siz	inate-lev æs (mm)	el Scaling	g	Ply-level Scaling Hole sizes (mm)			
	3.175	6.35	12.7	25.4	3.175	6.35	12.7	25.4
1	560				560			
2	499	417			394	475		
4	457	416	359	313	263	279	342	391
8	471			323	202			225

 Failure stress (MPa) (Stress at first major load drop)

Thickness Scaling

- Sublaminate-level scaling: 18% decrease
- Ply-level scaling:

64% decrease

In-Plane Scaling

Scaling factor

- Sublaminate-level scaling: 32% decrease
- Ply-level scaling:

49% increase

3-Dimensional Scaling

Scaling Factor

- Sublaminate-level scaling: 42% decrease
- Ply-level scaling:

60% decrease

Results: Failure Mechanisms

	Sublam Hole siz	inate-lev æs (mm)	el Scaling	9	Ply-level Scaling Hole sizes (mm)			
t (mm)	3.175	6.35	12.7	25.4	3.175	6.35	12.7	25.4
1	560				560			
2	499	417			394	475		
4	457	416	359	313	263	279	342	391
8	471			323	202			225

Failure stress (MPa)

"Pull-out" failure

"[

"Delamination" failure

"Brittle" failure

Failure Mechanism A: Pull-out

- Sublaminate-level scaled specimens with d = 3.175mm
- Ply-level scaled specimens with t = 2mm and d = 6.35mm

	Sublaminate-level Scaling Hole sizes (mm)				Ply-level Scaling Hole sizes (mm)			
t (mm)	3.175	6.35	12.7	25.4	3.175	6.35	12.7	25.4
1	560				560			
2	499	417			394	475		
4	457	416	359	313	263	279	342	391
8	471			323	202			225

Failure Mechanism A: Pull-out

- Failure is fibredominated
- Off-axis plies fail via splitting adjacent to hole

Failure Mechanism A: Pull-out

- Sub-critical damage is present during loading, throughout the thickness of the laminate
- Splitting initiates at the hole in off-axis plies
- This leads to delamination at the 45/90 and 90/-45 interfaces
- These propagate steadily across the width
- Damage corresponds to non-linearity of L-D curve

Failure Mechanism B: Brittle

- Sublaminate-level scaling with $d \ge 6.35 \text{mm}$
- Strength is independent of thickness

	Sublaminate-level Scaling Hole sizes (mm)				Ply-lev Hole si	Ply-level Scaling Hole sizes (mm)			
t (mm)	3.175	6.35	12.7	25.4	3.175	6.35	12.7	25.4	
1	560				560				
2	499	417			394	475			
4	457	416	359	313	263	279	342	391	
8	471			323	202			225	

Failure Mechanism B: Brittle

_oad

- Fibre failure throughout thickness of laminate
- Little or no sub-critical damage apparent during/ after loading
- L-D curve is linear to failure

Failure Mechanism C: Delamination

- Occurs for ply-level scaled specimens where ply t ≥ 4mm, plus those where ply t = 2mm and d = 3.175mm
- Failure stresses are –45/0 delamination stresses

	Sublan Hole si	Ply-level Scaling Hole sizes (mm)						
t (mm)	3.175	6.35	12.7	25.4	3.175	6.35	12.7	25.4
1	560				560			
2	499	417			394	475		
4	457	416	359	313	263	279	342	391
8	471			323	202			225

Failure Mechanism C: Delamination

- -45/ 0 delamination stress is first load drop (1)
- Occurs over whole specimen
- 0° ply continues to be loaded
- Grip failure then ensues (2)

University of

Failure Mechanism C: Delamination

- Sub-critical damage occurs as for pull-out failure mode, ie. splitting, and 45/90 & 90/ -45 delamination initiating at hole
- Non-linearity on L-D curve seen to correspond to 45/90 delamination:

t (mm)	Ply-level Scaling Hole sizes (mm)							
	3.175	6.35	12.7	25.4				
1	n/a							
2	189	266						
4	132	131	164	173				
8	99			63				

45/90 Delamination stress (MPa)

Analysis: Sub-Critical Damage

- Splitting, and 45/90 & 90/-45 delaminations initiating at the hole boundary
- Thicker ply blocks more susceptible to delamination as more energy is available
 - 1-D ply-level scaled series
- As hole size increases, delamination stress increases
 - 2-D ply-level scaled series

Analysis: Failure Stress

- Failure at point of first gross damage:
 - Fibre failure in 0° plies, or
 - -45/0 delamination
- Fibre failure stress decreases with increasing hole size
- Delamination stress increases with increasing hole size
- Delamination also dependent on ply thickness

Conclusions

- A scaling effect has been observed in notched composites
- This will affect the failure stress and possibly the failure mechanism
- This is dependent upon the level of subcritical damage present
- The notch size and ply/ laminate thickness determine the extent of this growth

The authors would like to acknowledge the support of Airbus UK, the Engineering and Physical Sciences Research Council and the Ministry of Defence for this research.

