MODELLING THE THERMOELASTIC PROPERTIES OF SHORT FIBRE COMPOSITES WITH ANISOTROPIC PHASES

P.J.Hine*, C.D.Price*, B.Whiteside^{\$}, A.M.Cunha[#] and I.M.Ward*

- * IRC in Polymer Science and Technology, University of Leeds, Leeds, LS2 9JT, UK
- * IRC in Polymer Science and Technology, University of Bradford, Bradford, , UK
- # Department of Polymer Engineering, Universidada Do Minho, Campus Azurem, 4800-058, Portugal

Universidade da Minhe

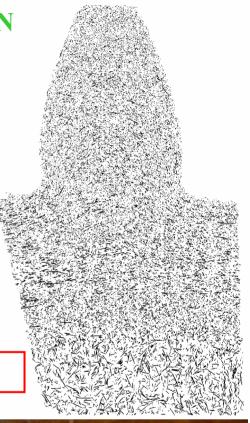
COMPTEST 2004

MOTIVATION

STRUCTURE PROPERTY INVESTIGATIONS IN FIBRE REINFORCED POLYMERS

Injection moulding

Complicated shapes and a fast/cheap process

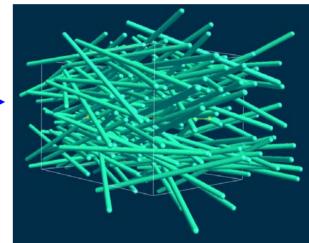

Add short fibre reinforcement Enhanced stiffness and strength but anisotropic properties

Challenges

Reliable models for predicting composite properties
+ prediction of fibre orientation due to processing

Computer aided component design and material optimisation

MOTIVATION


Themes

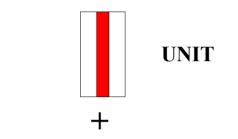
• Development of analytical models for predicting elastic and thermoelastic properties

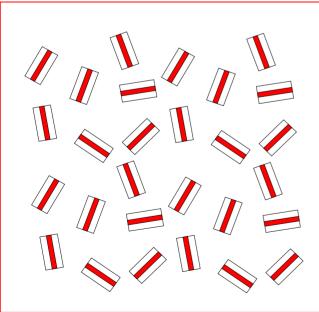
Use of FE techniques to validate/tune analytical models (ETH/Leeds)

P.J.Hine, H.R.Lusti and A.A.Gusev, Comp. Sci and Tech., **2002**, 62, 1445-1453.

Compare with actual manufactured components of increasing complexity and with anisotropy in both phases (requires complete description of the orientation structure and phase properties and measurement of mechanical properties).

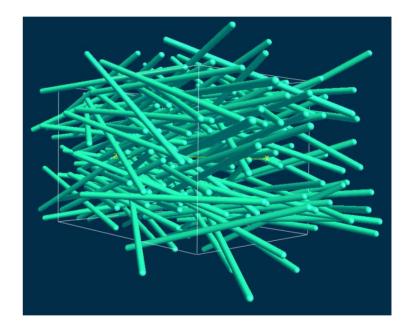
FE model: 100 fibres: periodic boundaries

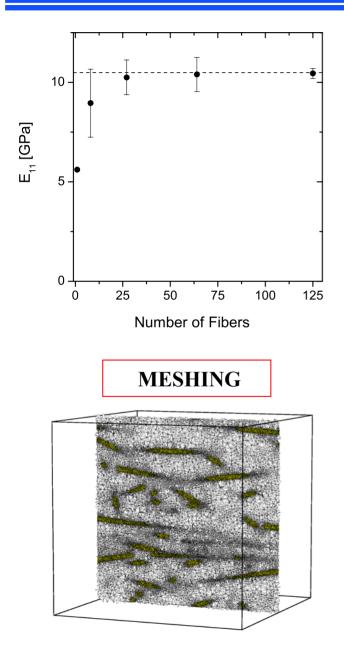



Carbon fibre/LCP ribbed box

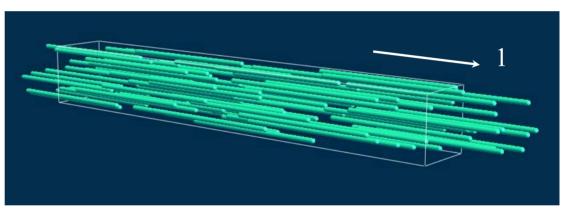
MODELLING APPROACHES

ANALYTICAL

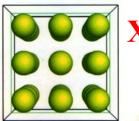

Prediction of elastic properties is split into two components.

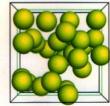

FINITE ELEMENT

Prediction of elastic properties is carried out in one process.


AGGREGATE

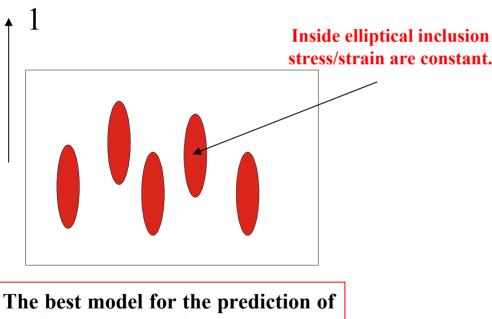
FE MODELLING APPROACH




Finite element based approach of Gusev

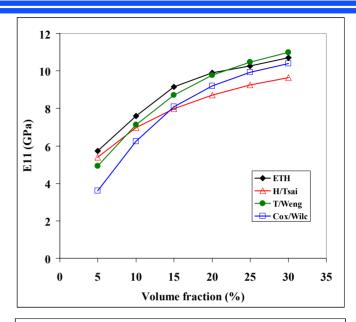
- 100/250 sphero-cylinders required for reliable predictions depending on the orientation state.
- Monte Carlo techniques used to generate random microstructures.
- Periodic boundary conditions used.

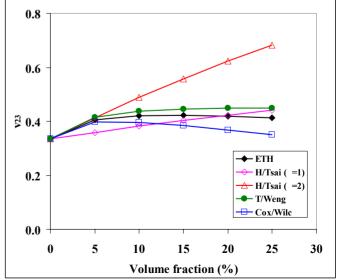
- Periodic morphology adaptive meshing
- tetrahedra based
- quality refinement
- typically 3 million nodes
- random microstructures



ISOTROPIC/ANISOTROPIC FIBRE +

ISOTROPIC MATRIX


Tandon/Weng


Based on Eshelby (equivalent inclusion method) and Mori Tanaka (average stress theory). Can cope with anisotropic fibres (modification by Qui and Weng).

The best model for the prediction of elastic properties of the unit is that of Tandon and Weng.

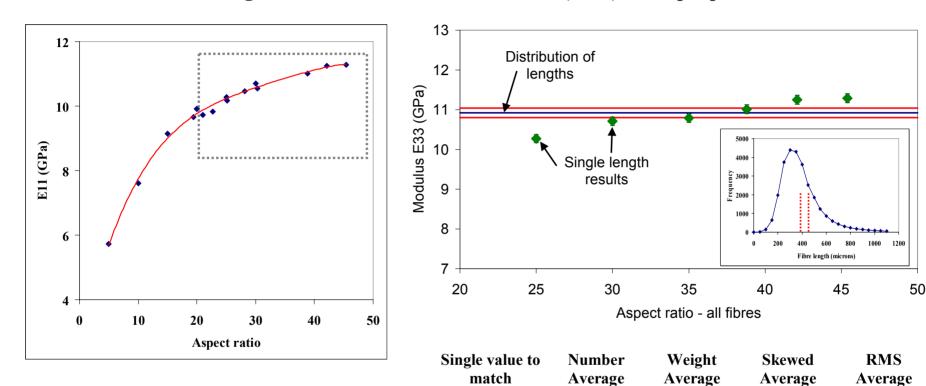
Y. P. Qiu, G. J. Weng, J. Engng. Sci. 1990, 28, 1121.

Halpin-Tsai doesn't capture the physics

The best model for the prediction of thermal expansion properties of the unit is that of Levin (Christensen/Rosen).

This is based on the elastic and thermal properties of the phases and the elastic properties of the unit.

$$\alpha_{i} = (\alpha_{k}^{(1)} - \alpha_{k}^{(2)})(S_{kl}^{(1)} - S_{kl}^{(2)})^{-1}(S_{li} - S_{li}^{(2)}) + \alpha_{i}^{(2)}$$


where subscripts 1 and 2 stand for the fibre and matrix phases

V. M. Levin, Mech. Tverd. Tela 1968, 88, 25.

R.M. Christensen, Mechanics of Composite Materials, Krieger Publishing Company, Mala-bar, Florida, 1991

B.W. Rosen and Z. Hashin, International Journal of Engineering Science 1970, 8, 157-173.

Aligned fibres, Fixed volume fraction (15%) isotropic phases

distribution

 36.6 ± 2.5

 L_N

38.8

<a>

number average length.

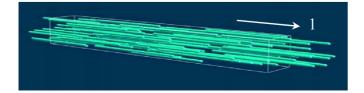
Lw

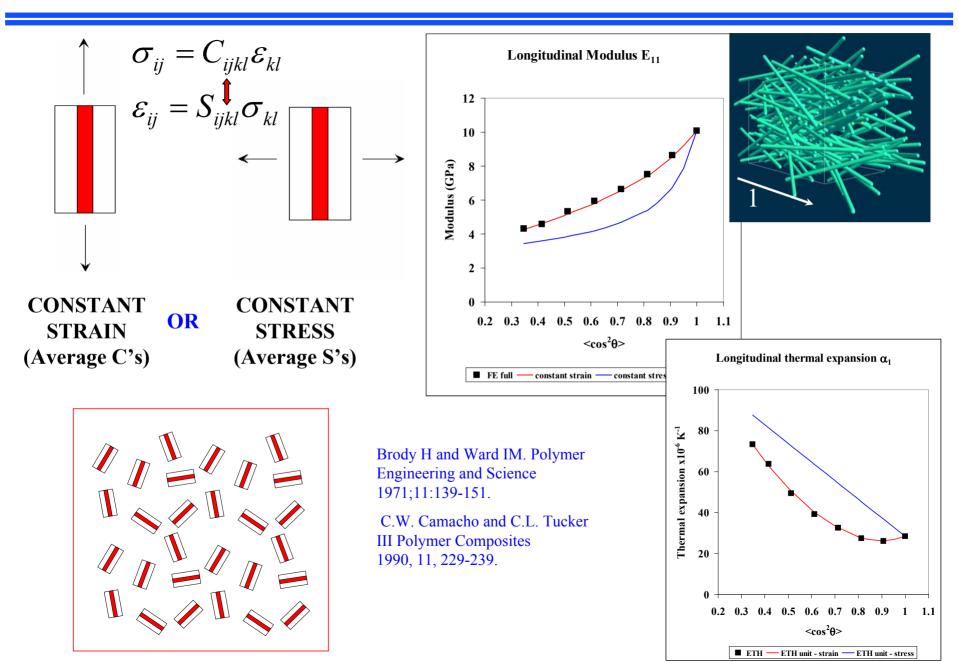
45.4

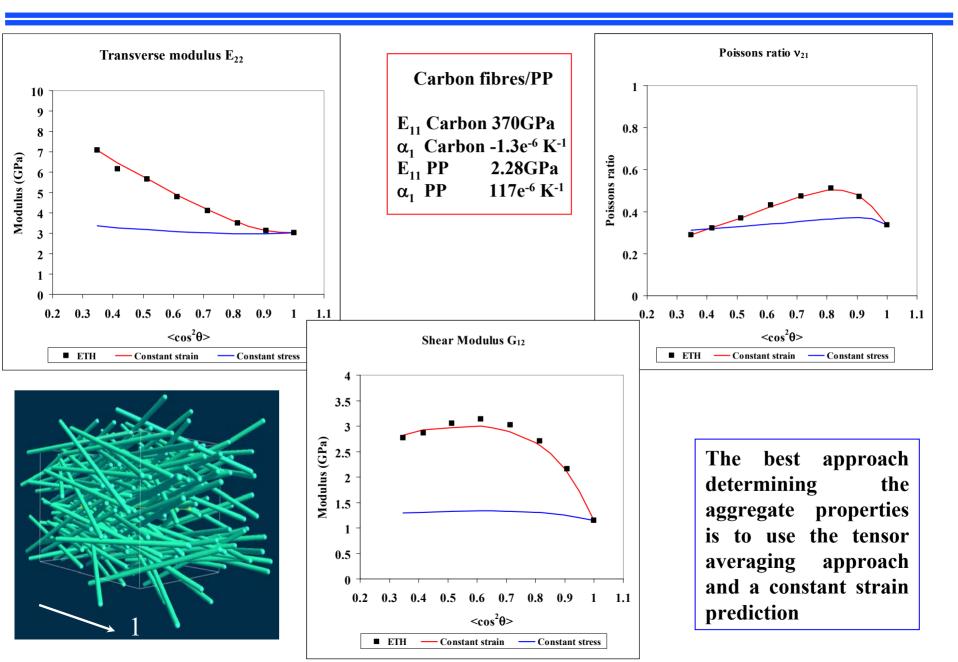
The best measure for the fibre length is the

Ls

41.9


<1/a>-1


L_{RMS}


33.2

 $< a^{2} > -1/2$

Results determined using a single aspect ratio

ANISOTROPIC FIBRE +

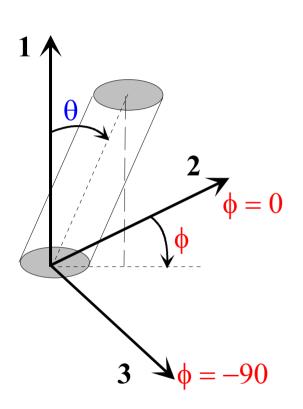
ANISOTROPIC MATRIX

SAMPLES AND MATERIALS

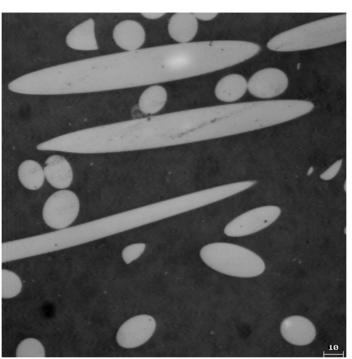
	Description	Grade	Fibre	Matrix	Weight fraction
1	Carbon fibre filled Nylon	Solvay IXEF 300/6/9019	Anisotropic	Isotropic	30%
2	Unfilled LCP	Hoechst Celanese Ticona B950		Anisotropic	
3	Glass fibre filled LCP	Hoechst Celanese Ticona B130	Isotropic	Anisotropic	30%
4	Carbon fibre filled LCP		Anisotropic	Anisotropic	30%

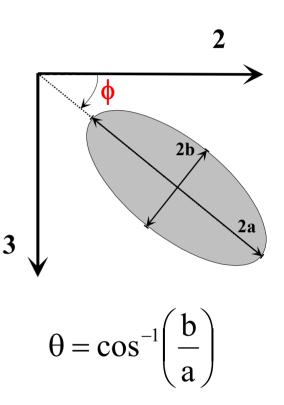
Injection moulded dumbbells made by the University of Minho

Materials 1,2,3,4


Picture of dumbbell

Injection moulded demonstrator component made by the University of Bradford


Material 4


MEASURING FIBRE ORIENTATION

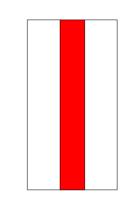
Definition of the orientation angles θ and ϕ

Best technique for measuring fibre orientation (when fibre diameters $\sim \mu m's$) is from polished 2D sections taken from the composite.

Calculation of θ and ϕ from the fibre elliptical footprint

Injection moulded dumbbell – Carbon/Nylon

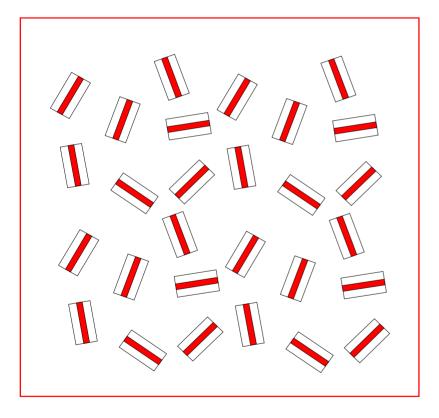
		Tł	Theoretical predictions				
		Fully aligned fibres Infinite fibre length	Fully aligned fibres AR=25 (measured)	Actual alignment AR = 25	Experimentally measured		
E ₁₁	GPa	49.9	25.8	21.8	23.9		
E ₂₂	GPa	3.24	3.21	4.15	3.60		
α_1	X 10-6 K-1	1.92	4.56	7.25	5.50		
α ₂	X 10 ⁻⁶ K ⁻¹	80.7	79.6	67.4	60.0		


Volume fraction	0.21
Aspect ratio	25
$<\cos^2\theta>$	0.856
$<\cos^4\theta>$	0.820

Dumbbells are transversely isotropic

- A full description of the carbon fibre properties is difficult to obtain.
- Within these constraints the agreement is excellent.
- The correction for finite length is more important than for misalignment.

Injection moulded dumbbell – Glass/LCP


	Predictions of the fully aligned unit					
	Analytical		FE			
E ₁₁	GPa	33.9	33.8			
E ₂₂	GPa	2.01	2.34			
v ₁₂		0.427	0.421			
v ₂₃		0.686	0.642			
G ₁₂	GPa	1.63	1.90			
α ₁	x 10 ⁻⁶ K ⁻¹	-1.04	-0.9			
α2	x 10 ⁻⁶ K ⁻¹	63.2	61.9			

• Confirms analytical approach gives excellent agreement with FE predictions

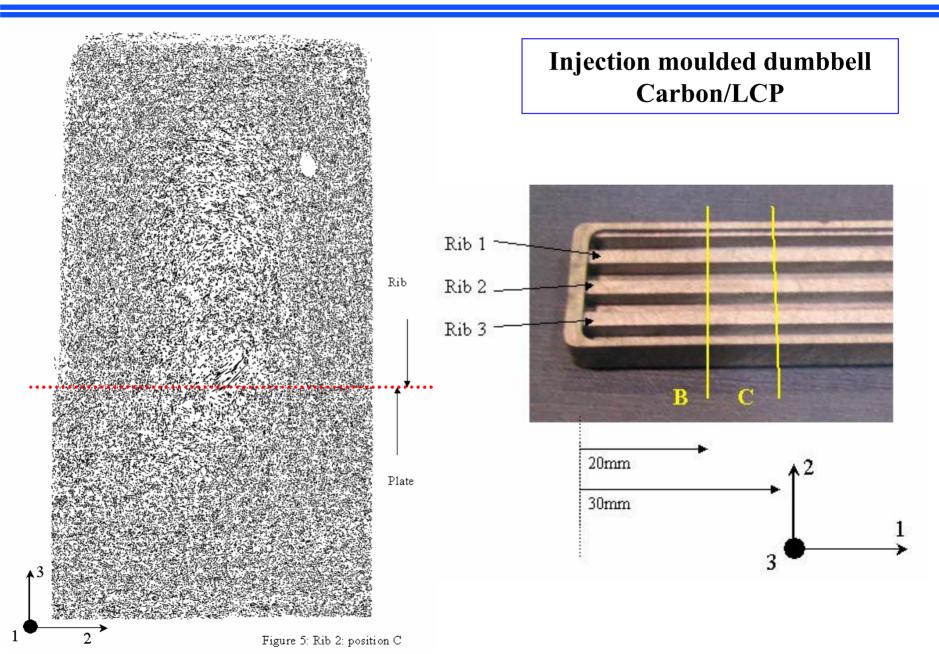
T. Mura, Mechanics of Elastic and Inelastic Solids. 1982, The Hague: Nijhoff.

Injection moulded dumbbell – Glass/LCP

Composite						
Theory Measured						
E ₁₁	GPa	29.1	25.6			
E ₂₂	GPa	2.86	1.95			
α ₁	x 10 ⁻⁶ K ⁻¹	-1.20	-0.43			
α2	x 10 ⁻⁶ K ⁻¹	55	60			

Volume fraction	0.19
Aspect ratio	25
<cos<sup>2θ></cos<sup>	0.904
$<\cos^4\theta>$	0.865

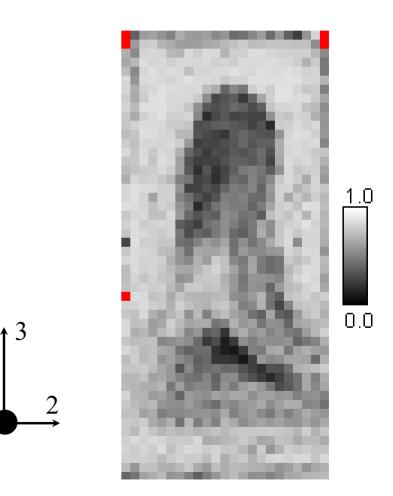
Injection moulded dumbbell – Carbon/LCP


		Fully aligned fibres Infinite fibre length	Fully aligned fibres AR=25 (measured)	Actual alignment AR = 25	Experimentally measured
E ₁₁	GPa	74.6	62.7	51.73	43.2
E ₂₂	GPa	2.09	2.09	2.54	2.45
α_1	X 10 ⁻⁶ K ⁻¹	-1.65	-1.89	-5.0	-1.0
α ₂	X 10 ⁻⁶ K ⁻¹	60.9	61.0	58.2	49.0

Volume fraction	0.21
Aspect ratio	25
$<\cos^2\theta>$	0.856
$<\cos^4\theta>$	0.820

Dumbbells are transversely isotropic

- A full description of the carbon fibre properties is difficult to obtain.
- Within these constraints the agreement is excellent.
- The correction for misalignment is more important than fibre length for this material.


RESULTS – RIBBED BOX

RESULTS – RIBBED BOX

Injection moulded ribbed box - Carbon/LCP

	Measured
$\cos^2\theta_1$	0.675 ± 0.029
$\cos^2\theta_2$	0.157 ± 0.020
$\cos^2\theta_3$	0.168 ± 0.028
sin ² 0	0.325 ± 0.029
sin ² θ cos ² θ	0.141 ± 0.004
$\cos^4\theta$	0.534 ± 0.030
sin ⁴ 0	0.185 ± 0.028
cos ⁴ ¢	0.404 ± 0.033
Cos ² ¢	0.516 ± 0.032
sin ⁴ θcos ⁴ φ	0.075 ± 0.021
sin ² θcos ² φ	0.168 ± 0.028
sin ⁴ θcos ² φ	0.096 ± 0.023
sin ² θcos ⁴ φ	0.132 ± 0.026

Results averaged for Ribs 1,2,3 at B and C

RESULTS – RIBBED BOX

Injection moulded ribbed box - Carbon/LCP

			Best analytical		
		Measured	Matrix = fibre orientationIsotropic matr orientation		
E ₁₁	GPa	25 ± 2	29.7 ± 1.7	24.2 ± 1.4	
α ₁	x 10-6 K-1	-0.9 ± 1.8	-5.02 ± 0.25	1.25 ± 0.1	
α2	x 10-6 K-1	52 ± 3	37.5 ± 1.9	31.9 ± 1.6	

Volume fraction	0.21
Aspect ratio	40.2

- Longitudinal stiffness and thermal expansion best predicted by an isotropic LCP matrix and misoriented fibres for the rib.
- Even better agreement could be possible if the matrix orientation was measured directly by X ray scattering.

MODELLING STRATEGY

		UNIT		AGGREGATE	
Fibre	Matrix	Elastic	Thermal Expansion	Elastic	Thermal expansion
Isotropic Glass	Isotropic	Qui and Weng Eshelby	Christensen	Camacho + Tucker	Camacho + Tucker
Anisotropic Carbon	Isotropic	Qui and Weng Eshelby	Christensen	Camacho + Tucker	Camacho + Tucker
Isotropic Glass	Anisotropic LCP	Qui and Weng Mura	Christensen	Camacho + Tucker	Camacho + Tucker
Anisotropic Carbon	Anisotropic LCP	Qui and Weng Mura	Christensen	Camacho + Tucker	Camacho + Tucker

Y. P. Qiu, G. J. Weng, J. Engng. Sci. 1990, 28, 1121.

T. Mura, Mechanics of Elastic and Inelastic Solids. 1982, The Hague: Nijhoff

R.M. Christensen, Mechanics of Composite Materials, Krieger Publishing Company, Mala-bar, Florida, 1991

C.W. Camacho and C.L. Tucker III, Polymer Composites 1990, 11, 229-239.