Extracting matrix creep parameters for modelling the consolidation of MCF composites

Hua-Xin Peng

Prof. Michael Wisnom

Dr. Fionn Dunne- Oxford University Prof. Patrick Grant- Oxford University Prof. Brian Cantor- York University

Background

Matrix-coated fibres (MCFs) approach

• FE modelling the MCF consolidation

- Matrix coating property
- Fibres arrangement
- Consolidating Ti-MMC with regular fibre arrangements
- Summary

Aeroengine Materials

Background

Application of Ti-MMCs

Background

A demonstrator Ti MMC BLING ~20cm in diameter.

Ti-MMCs Manufacture -- MCF method

Background

SiC fibre

vapour coated with matrix alloy

Matrix coated fibre (MCF)

HIPing / VHPing

Compression Testing on Single MCF

Matrix property

FE Model for Compression Testing

Movable boundary Matrix Ux=Úy=0 Fibre

A & **n** in power-law creep (PLC): $\dot{e} = A \sigma^n$

Matrix property

Best-fitting & Geometry Comparison

40 Displacement / µm FEM 30 EXP. 20 10 0 400 800 1200 0 Time / s Optimum A & n 10 min

Matrix property

Consolidation Process Simulation --Hexagonal array

FE modelling

Consolidation Process Simulation --Square array

MARIE
MARIE

0
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
<td

MISES VALUE +9.56E=02 +1.86E+00 +3.62E+00 +5.38E+00 +7.14E+00 +8.90E+00 +1.07E+01 +1.24E+01 +1.42E+01 Movable boundary +1.59E+01 **ABAQUS** +1.77E+01 +1.95E+01 +2.12E+01 +2.30E+01 Matrix Ux=Uy=0

FE modelling

Effect of Fibre Re-arrangement

Control of fibre arrangement in experiments

SQUARE Fibre Arrangement

(0) 0.) \bigcirc

HEXAGONAL Fibre Arrangement

Densification Behaviour (Exp. vs FEM)

Densification Behaviour (Exp. vs FEM)

Densification Behaviour (Exp. vs FEM)

MCF Dynamic Densification Behaviour

Summary

- Matrix coating properties were extracted by coupled experimental and FEM studies on single MCF.
- FE models have been developed to simulate the MCF consolidation processes.
- Fibre arrangement has been carefully controlled to provide meaningful comparison with FEM predictions.

Novel test methods and predictive modelling are helping Rolls-Royce to develop manufacturing processes for aero-engine components.