Application of the **Open Hole Tensile Test** to the **Identification** of the **in-plane Characteristics** of **Orthotropic Plates**

J. Molimard, R. Le Riche, A. Vautrin, and J. R. Lee,

GDR CNRS 2519,

SMS/MeM, ENSM-SE, 158 Cours Fauriel, 42023 Saint Etienne, France

Presentation summary

- Introduction
- Identification procedure
- First results
- Interaction between anisotropy and geometrical modelling errors
- Conclusion

Introduction: global overview

Specimen geometry

for an evaluation

using only one test?

Hole on plate tensile test

Strain field strongly localized near the hole boundary: High spatial resolution and strains known near the hole boundary

I-Introduction

Introduction: identification strategy

I-Introduction

Experimental technique: digital phase-shifting grating interferometry

Experimental technique: mechanical set-up and specimen

•Specimen: NC2[®] reinforcement from Hexcel Composite + Epoxy resin processed in a RTM mold Stacking sequence [{0/90}₃]_s

 Mechanical set-up: Table-top tensile device Applied stress 10 MPa

Département Mécanique et Matériaux

Identification procedure: Unknown parameters

• Geometrical parameters:

Position of the hole center $(\underline{x_c}, \underline{y_c})$

• Material parameters:

First results: displacements and strains maps

Mécanique et Matériaux

SAINT-ETIENNE

III- First results

First identification results

Identified values

	E _{xx}	E _{yy}	G _{xy}	ν _{xy}
Reference values	60 GPa	56 GPa	4.3 GPa	0.05
ldentified values	57.1 GPa	58.1 GPa	4.48 GPa	0.062
Difference	4.1 %	4.0 %	5.2 %	26.5 %

Differences between experimental and numerical strain maps

III- First results

Study of geometrical modelling error

Study of anisotropy vs geometrical modelling errors

1st- Simulation of various material cases using a micro/macro approach

- glass or carbon fibres
- 2 epoxy resins
- fibre volume fraction from 30 % to 60 %
- [0]₄, [90]₄ or [0, 90]_S stacking sequence

2nd- Calculation of the 3 required strain fields

- with the normalized test geometry
- using a FEM approach

3rd- Identification of the 9 parameters

• with the Lekhnitskii-based algorithm

4th- Results expressed as a 'ratio' vs. 'anisotropy'

24 different cases Anisotropy ratio from 0.20 to 0.74

Ecole Nationale
Supérieure des MinesDépartementSAINT-ETIENNEMécanique et Matériaux

Study of anisotropy vs geometrical modelling errors

Geometrical modelling errors grow with anisotropy Use regression curves to correct identified material parameters

Ecole Nationale Supérieure des Mines Département Mécanique et Matériaux

SA

ETIENNE

An attempt to correct geometrical modelling errors

	E _{xx}	E _{yy}	G _{xy}	ν _{xy}
Reference values	60 GPa	56 GPa	4.3 GPa	0.05
Identified values	57.9 GPa	63.5 GPa	4.43 GPa	0.059
Mean error for all studied cases	-	7.5 %	-	92.6 %

Correction approach too simple and regression curves unable to follow data scattering induce low confidence in corrected values. In particular, highest errors (up to 98%) for low Poisson's ratio.

It is necessary to include the FEM within the identification procedure

Département Mécanique et Matériaux

IInd CompTest Conference, Bristol, Sept. 2004, 14/15

Final results using experimental maps and a FEM

	E _{xx}	E _{yy}	G_{xy}	$ u_{xy}$
Reference value	59.5 GPa	55.8 GPa	4.26 GPa	0.049
Identified value	57.6 GPa	55.3 GPa	4.48 GPa	0.046
Difference (%)	4.1%	4.0%	5.2%	6.1%

(reference values from 3 classical tensile tests)

Département Mécanique et Matériaux

Conclusions

Finally, identified mechanical parameters in agreement with classical tests (<6 %) Necessity of using a FEM within the identification procedure

These identification studies show that extrapolating the normalized open hole tensile test to other geometries is questionable because of the anisotropy / geometry interaction.

Perspectives

Experimental techniques

Use of a simpler OFFM Technique (Speckle shearography) Further results with other reference materials

Numerical simulation: Lekhnistskii's analytical approach

Mécanique et Matériaux