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Damage meso-modelling of laminates: basic aspects

[Meso—scheme: a laminate = ply + interfaces}

[Type of cracks after localizationJ

Damage mechanims :
internal meso-damage variables

(meso: uniform throughour each ply) Concerning the layer
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A look on the ply model

@ Ladeveze Ledantec 92, Allix-Ladeveze-Vittecoq 92

Use of Hoenig-Delameter paper on periodic crack oriented array 1974
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- opening and closure of microcracks
- specific behaviour in compression for the fiber direction

(stiffness variation)

de: fracture of the fiber
d, d": microcraking of the matrix and matrix/fiber debonding

O

- constant within the thickness of the ply



A look on the ply model identification

« Mechanics of Fibrous Composite », Herakovich CT
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A look on the interface model identification

L Link between fracture Mechanics and Damage Mechanics of the interface J

Comparison of the critical energy release rate ——f-

Y Y
Ga=Y; Ga=-"; Ggy =—* and (G_;) +(G_1;I) +( GII’H) =1
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Pure mode Mixte mode

[ Utilization of standard Fracture Mechanics test for 0°, 22°.5 45° interfaces}
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Example of a low velocity-impact
@ [ Allix-Guinard (2000) |

| Ply | {Interface}

d,, Cumulated ply damage ing

ply

Numerical prediction of double-helix delamination for a T300/914
Quasi-isotropic 8 plies for 15] impact



Example of a low velocity-impact Courtesy of A Johnson DLR
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Extension to dynamic loading of the damage meso-model

An objective prediction of the rupture:

Second gradient approach (Lasry-Belytscko 88, DeBorst-Miilhaus 92 ...)

§& Non local damage model (Bazant- Pijaudier 87 ...)
Rate dependent damage model ( Needleman 88, Loret-Prevot 92 ...)

Physically suited to carbon/epoxy laminates:

Meso model (Ladeveze 89)
Damage Model with bounded rate (Allix Det1 98)



Damage Model with bounded rate

The damage 1s not instantaneous :“delayed” compared to the static case

A maximum damage rate exists 1/ tc

d=L[l—exp[<f(Y)—d>+], d=lI

o

d= f(Y) « static law » 3X10°

Tc and a are material constants that 5 —
(a I £= S

govern the rupture process = °

. o @ 1.5 : =7000/s

Tc 1S a characteristic time = il

e thickness of the ply 0.5

~ :

To =0(—) =lus > 0.5

0 0.01 0.02
Strain

C\ C: Rayleigh wave speed of the matrix



Possible 1dentification for 3D-Composites or Metallic Materials

5 (GPa) oo .
Identification of

: | 1/t Plate-Plate

\ experiments

14\

Goeke/McClintock

| Carbon/Carbon
/ Delay Damllllage model (AlllX_Sen_Gupta
98-2003)
Metallic material

02 04 06 08 1 12 14 16 18 2 Combescure-
Suffis 2004

a=0,065 1,=2.10"s

Material
£ - low modulus flbers
h - high modulus fibers
P hp - high modulus libers, high porosity
Stress Location
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Possible identification for 2D-Composites

Plate-Plate experiments not adapted
s * to laminates -> Hopkinson bar test
| 1\5 Measurement of
Wit B3 RN '
e ) deduced by strain

gages on thears

- Test with localization of damage -> strongly heferogneous
- Rupture in dynamics -> strong corruption of the boundary
conditions



Position of identification problem with uncertain boundary conditions

The problem of the influence of the noise on measurements
Is known to be a key question :

Usually a model of the noise is used

Kalman filter Maier, Corgliano ...

Tykhonov regularization, Orkicz ...

Iterative Tykhonov regularization Cimetiere

Influence of the choice of the norm (Deramaeker-Ladeveze ...)

In the test which are considered there 1s no a priori information about
the noise and its level which can be very high

---> corrupted measurements



Behaviour of 1dentification method with uncertain boundary conditions

Method proposed by Rota

B In order to recover a well-posed problem,
some equations have to be released:

@ — [ Split into two auxiliary problems [Rota]

~g ~8
ud E 2 ud
~e ~8
Jd Id
Prescribed displacements Prescribed forces
~a ~ ~e ~
— | yields a solution field: uqca(E) — | yields a solution field: uga (E)
definition of a distance between the two calculations : e(UcalE), usa(E))

B The identification becomes :

mtjn C(E) = mEin e(UcalE). usa(E))



Results as a function of the level of corruption
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Proposed identification strategy : keypoints

% Allix, Feissel (2002)

Remark on the previous method
- There are multiple ways to split the experimental information
- Experimental corrupted measures are strongly prescribed

Main aspects of the proposed method
- To deal with all the information in one analysis
- To avoid prescribing strongly corrupted experimental data



Proposed identification strategy: main lines

Split information into:

Reliable and Non-reliable information

Reliable : Constrains of the problem >

Non-reliable : Minimization of an error

Concept of Modified Error in Constitutive Relation
Leads to a true validation method proposed & developed in vibration

@ (Ladeveze & coll.)

Basic ideas : extension and adaptation of the framework for
identification problems in dynamics with corrupted measurements



Proposed 1dentification strategy: example 1n elasticity

First step : splitting of the information

Deterministic model

N

Reliable Uncertain \

Equilibrium:  p.u— dive =0 | Constitutive relation: o = E.c

Measurements: Ul and f4

Corrupted values /

The constrain divo = pu  will be always enforced



Proposed 1dentification strategy

Second step: Confrontation of the model and the measurments :
“Decorruption” of the Measurements (E fixed)

T
{J(l_ld,id,o,e(u))}fo 2o E0E o Eor [ atnTn s [ duust

Error in constitutive relation Distance to the measure

under the constraints:

UCAauy, oDAafy, pi+dve=0

Uy and f Pl results of the minimization and appear to be regularized

values of the experimental boundary measurements Dd and ?d

— | ylelds the solution fields: ¢(E), Uu(E), uy(E), f4(E)




Proposed 1dentification strategy

Third step: Determination of the constitutive parameter and model
error estimation

T
_ 1 N
J2(E) = 5{ dtg (0-Ee)E (0 -Ee)y, (&) £4(B).0(B).e(u)(E) 42

Error in purely Constitutive Relation for the solution of the
decorruption problem



Results as a function of the level of corruption
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Example with defects

Identifi ed localization size
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Filtering property of the method-1

40% of white noise on the boundary condition in u and F

. I'EfEfEﬁCE YDLII'IQ’S deUIUS measurements boundary conditions from the formulation
E=E,
B perturbed measurements
calc -
Ug = U™ + Uy
and
fg‘ caﬁ: _|_mc

f:tjjfd}f = 0 and -’:(Sud}f =0

displacements

B reference Young’s modulus
E =E

B perturbed measurements

Ug = Ugram + duy

measurements boundary conditions from the formulation

0.3

0.2

and
fg = £57° + oty

-0.1 . : =0.1

{5fd:if #+ 0 and {rﬁud}f #+ 0 y 0.5 1 15 0 05 E 1.5



Filtering property of the method-2
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Example of an heterogeneous media
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Conclusion & Perspectives

A first step 1n order to build a robust identification method for imprecise
boundary conditions —
LA e i v

D

Courtesy of
A Jonhson
DLR

Present work concerns the development of numerical strategy
in case of damage with localization



