FAILURE CRITERIA FOR PREDICTION OF TRANSVERSE MATRIX CRACKING IN COMPOSITES

Pedro P. Camanho

University of Porto Porto, Portugal

Carlos G. Dávila

NASA Langley Research Center Hampton, VA, U.S.A.

Comptest 2004 Bristol, 21-23 September 2004

Contents

- Introduction and objectives.
- Approach: slit crack models in composites.
- In-situ strengths.
- Failure criterion for matrix cracking under inplane shear and transverse tension.
- Validation: comparison with experimental data.
- Conclusions.

Failed composite lug

- <u>Failure Criteria</u> are used for predicting damage initiation and, when used in a Continuum Damage Model, final failure.
- Composites have <u>multiple damage modes</u>; each requires a different criterion.
- Failure prediction methodologies and criteria still <u>under debate</u>; main unresolved issues:

✓ in-situ effects.

- \checkmark effects of $\sigma_{\rm 12}$ on fibre kinking.
- \checkmark increase of apparent shear strength under moderate compressive $\sigma_{\rm 22}$

LaRC03 Failure Criteria

Transverse Tension Matrix Cracking

- Typically considered a benign damage mode
- Important for leakage, damage initiation

Issues/Difficulties Predicting Transverse Matrix Cracks

• In-situ matrix strengths are a function of ply thickness

Typically:
$$Y_{UD}^T \leq Y_{is}^T \leq 4Y_{UD}^T$$
tension $S_{UD}^L \leq S_{is}^L \leq 4S_{UD}^L$ shearUD=unidirectional; is=in-situ

• No fracture mechanics basis in Hashin's criterion

Previous work

- Parvisi, Wang, etc. ('78-'84): identified in-situ effect in tensile tests
- Dvorak, Laws, Tan ('86-'89): fracture mechanics predictions of in-situ strength
- Shahid & Chang ('95): PDCOMP extension of Tan

Objectives

- To develop a model able to predict the in-situ strenghts.
- To develop a novel failure criterion for matrix transverse cracking under transverse tension and in-plane shear.
- Validate the models proposed by comparing predictions with experimental data.

Approach

Eshelby's inhomogeneity problem for isotropic materials (1957)

- Elastic field far from inclusion.
- Stress & strain tensors outside the inclusion.
- ✓ Interaction energy.

Inhomogeneity problem for orthotropic materials:

• Kinoshita (1971), Faivre (1971), Laws (1977).

Approach

▲ 3 (T)

Material defects can propagate in longitudinal (L) and transverse (T) directions.

$$\chi(\gamma_{12}) = 2 \int_0^{\gamma_{12}} \sigma_{12} d\gamma_{12}$$

Transverse: unstable growth $G(T) = \frac{1}{2} \frac{\partial E_{\text{int}}}{\partial a_0} = \frac{\pi a_0}{2} \left(\Lambda_{22}^0 \sigma_{22}^2 + \chi(\gamma_{12}) \right)$

Longitudinal: stable growth

3 (T)

 $2a_{o}$

$$G(L) = \frac{E_{\text{int}}}{2a_0} = \frac{\pi a_0}{4} \left(\Lambda_{22}^0 \sigma_{22}^2 + \chi(\gamma_{12}) \right)$$

Thick Plies $2a_0 \ll t$

Thin Plies $2a_0 = t$

Inner 90° Ply Thickness, mm

Unidirectional Laminates

Classic Free Edge Crack Solutions (Tada):

$$G_{Ic}(T) = 1.12^{2} \pi a_{0} \Lambda_{22}^{0} (Y^{T})$$
$$G_{Ilc}(T) = 2\pi a_{0} \int_{0}^{\gamma_{12}^{u}} \sigma_{12} d\gamma_{12}$$

2

Substituting $G_{Ic}(T)$ and $G_{IIc}(T)$ into expressions for thick plies:

$$\begin{cases} Y_{is}^{T} = 1.12\sqrt{2} Y^{T} \\ \frac{\left(S^{L}\right)^{2}}{G_{12}} + \frac{6}{4}\beta\left(S^{L}\right)^{4} = \frac{\left(S_{is}^{L}\right)^{2}}{2G_{12}} + \frac{3}{4}\beta\left(S_{is}^{L}\right)^{4} \end{cases}$$

Longitudinal crack growth

Free Edge Crack Solutions (Tada):

$$Y_{is}^{T} = 1.79 \sqrt{\frac{G_{Ic}(L)}{\pi t \Lambda_{22}^{0}}}$$
$$\frac{\left(S_{o}^{L}\right)^{2}}{4G_{12}} + \frac{3}{8} \beta \left(S_{o}^{L}\right)^{4} = \frac{G_{IIc}(L)}{\pi t}$$

General solution for in-situ shear strengths

$$S_{is}^{L} = \sqrt{\frac{\left(1 + \beta \phi G_{12}^{2}\right)^{1/2} - 1}{3\beta G_{12}}}$$

Thick ply: $\phi = \frac{12(S^{L})^{2}}{G_{12}} + \frac{72}{4}\beta(S^{L})^{4}$
Thin ply: $\phi = \frac{48G_{IIC}}{\pi t}$
Thin outer ply: $\phi = \frac{24G_{IIC}}{\pi t}$
Thin outer ply: $\phi = \frac{24G_{IIC}}{\pi t}$

Mixed-Mode Criterion for Matrix Cracking

Wu and Reuter:

Experimental tests on composite specimens under mode I, mode II and mixed-mode I & II loading.

Fracture surface topography depends on the type of loading.

Hahn Criterion:

$$(1-g)\frac{K_{I}}{K_{Ic}} + g\left(\frac{K_{I}}{K_{Ic}}\right)^{2} + \left(\frac{K_{II}}{K_{IIc}}\right)^{2} \le 1$$

Using LEFM:
$$(1-g)\sqrt{\frac{G_I}{G_{Ic}}} + g\frac{G_I}{G_{Ic}} + \frac{G_{II}}{G_{IIc}} \le 1$$
 $g = \frac{G_{Ic}}{G_{IIc}}$

Substituting the stresses into the expressions for: $G_{I}, G_{II}, G_{II}, G_{IIc}, G_{IIc}$

LaRC03 criterion for matrix tensile cracking:

$$\left(1 - g\right) \frac{\sigma_{22}}{Y_{is}^{T}} + g\left(\frac{\sigma_{22}}{Y_{is}^{T}}\right)^{2} + \left(\frac{\sigma_{12}}{S_{is}^{L}}\right)^{2} \le 1$$

Mixed-Mode Criterion for Matrix Cracking

Non-linear behavior:

LEFM not applicable for relating K to G.

$$\left(1-g\right)\frac{\sigma_{22}}{Y_{is}^{T}}+g\left(\frac{\sigma_{22}}{Y_{is}^{T}}\right)^{2}+\frac{\chi\left(\gamma_{12}\right)}{\chi\left(\gamma_{12}^{u}\right)}\leq 1$$

Verification Problems

CASE 1: In-situ shear strength

Chang and Chen experiments in $(0_n/90_n)_s$ CFRP laminates (1987).

Verification Problems

CASE 2: New failure criterion applied to unidirectional laminates

Experimental data:

- AS4-55A, Swanson (1987).
- E-glass-LY556, Soden (1998).
- Scotchply, Voloshin (1980).

AS4-55A

Verification Problems

Scotchply

E-glass-LY556

Conclusions

Conclusions

- New model, based on non-linear shear behavior, was developed for the prediction in-situ shear strengths.
- New criterion for tensile matrix cracking developed based on ply-level fracture mechanisms.
- New criterion uses easily measured unidirectional strength properties and ply configuration to calculate in-situ strengths.
- Predictions are in excellent correlation with experimental results.