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Introduction

• Failure Criteria are used for predicting damage initiation and, when used in 
a Continuum Damage Model, final failure.

• Composites have multiple damage modes; each requires a different 
criterion.

• Failure prediction methodologies and criteria still under debate; main 
unresolved issues:

in-situ effects.
effects of σ12 on fibre kinking.
increase of apparent shear strength under moderate 
compressive σ22

Failed composite lug

LaRC03 
Failure Criteria

Clevage
Fracture



Tank failed during testing. X-33 Program cancelled by NASA

X-33
RLV

Cryopumping in sandwich core

Internal pressure, P

Gas expands

Facesheet Delamination

Matrix cracks provide 
primary leakage path 
in composite tanks

Transverse matrix crack
Leakage pathP
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Introduction 

Transverse Tension Matrix Cracking
• Typically considered a benign damage mode
• Important for leakage, damage initiation

Issues/Difficulties Predicting Transverse Matrix Cracks 
• In-situ matrix strengths are a function of ply thickness

Typically:

• No fracture mechanics basis in Hashin’s criterion

Previous work
• Parvisi, Wang, etc. (’78-’84): identified in-situ effect in tensile tests
• Dvorak, Laws, Tan (’86-’89): fracture mechanics predictions of in-situ strength 
• Shahid & Chang (’95): PDCOMP extension of Tan

L
UD

L
is

L
UD

T
UD

T
is

T
UD

SSS

YYY

4

4

≤≤

≤≤ tension

shear UD=unidirectional; is=in-situ



Introduction

[ 25/90 ]n s±

[0/90 /0]n

[25 /-25 /90 ]s2 2 2

[90 ]s8

Onset of
delamination

T300/944

0

0.1

0.2

0.3

0.4 0.8 1.2 1.6 2.00

Tr
an

sv
er

se
 S

tre
ng

th
 o

f 9
0

 P
ly,

 G
P

a
°

Inner 90  Ply Tickness 2a, mm°

Unidirectional

Thick ply model

Dvorak, 1987

Thin ply model

Thin   Thick

In-situ effect:



Objectives

• To develop a model able to predict the in-situ strenghts.

• To develop a novel failure criterion for matrix transverse
cracking under transverse tension and in-plane shear.

• Validate the models proposed by comparing predictions with
experimental data.



Approach
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Eshelby’s inhomogeneity problem for isotropic materials
(1957)

Elastic field far from inclusion.
Stress & strain tensors outside the inclusion.
Interaction energy.

(cavity)0CΩ →
(slit crack)

(inhomogeneity)

Inhomogeneity problem for orthotropic materials:

• Kinoshita (1971), Faivre (1971), Laws (1977). 



Approach
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Thick Plies
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Transverse Crack Growth

In-situ strengths of thick plies are 
independent of ply thickness t

In-situ strengths:

Defect size a0 is assumed 
to be a material property 
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Thin Plies
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In-situ strengths of thin plies
• depend on ply thickness t
• do not depend on defect size a0

In-situ strengths:
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Unidirectional Laminates
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Classic Free Edge Crack 
Solutions (Tada):

Tension test coupon Shear test coupon
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Thin Outer Plies
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General solution for in-situ shear strengths
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Mixed-Mode Criterion for Matrix Cracking
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Hahn Criterion:

Experimental tests on composite specimens under mode I, mode II and 
mixed-mode I & II loading.
Fracture surface topography depends on the type of loading.
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Wu and Reuter:
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Mixed-Mode Criterion for Matrix Cracking

LEFM not applicable for relating K to G.

( ) ( )
( )

2
1222 22

12

1 1T T u
is is

g g
Y Y

χ γσ σ
χ γ

⎛ ⎞
− + + ≤⎜ ⎟

⎝ ⎠

Non-linear behavior:



Verification Problems
CASE 1: In-situ shear strength
Chang and Chen experiments in (0n/90n)s CFRP laminates (1987).

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6

In-situ strength

UD strength

In-situ strength (MPa)

n
0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6

Experimental
Non-linear model
UD Strength
Linear model
Experimental (corrected)

n

In-situ strength (MPa)



Verification Problems
CASE 2: New failure criterion applied to unidirectional laminates
Experimental data:

• AS4-55A, Swanson (1987).
• E-glass-LY556, Soden (1998).
• Scotchply, Voloshin (1980).

AS4-55A



Verification Problems

Scotchply E-glass-LY556



Conclusions

• New model, based on non-linear shear behavior, was 
developed for the prediction in-situ shear strengths.

• New criterion for tensile matrix cracking developed based on 
ply-level fracture mechanisms.

• New criterion uses easily measured unidirectional strength 
properties and ply configuration to calculate in-situ strengths.

• Predictions are in excellent correlation with experimental 
results.

Conclusions


