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Off-Axis Creep Rupture of Unidirectional CFRP 

Laminates at Elevated Temperature



The off-axis creep rupture behavior of a unidirectional CFRP laminate is
examined for various fiber orientations at high temperature.
A phenomenological creep rupture modeling is attempted for the creep 
deformation and rupture behaviors of the unidirectional CFRP.

Experimental Observation: Applicability of Creep Rupture Model:
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+
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Introduction
Polymers have strong tendencies for the significant time- and rate-dependent damage under a 

sustained stress over a wide range of temperature.  This fact explains that the time-dependent 
fracture of polymer matrix composites (PMCs) and PMC structures under practical loading 
conditions should be appropriately considered for their reliable designs.  The effect of load duration 
on the long-term performance and reliability of PMC structures cannot be always checked by 
experiment, because of time and cost limitation.  Therefore, creep rupture modeling of PMCs is 
required to evaluate the lifetime and design stress of PMC structures for various loading conditions 
of practical interest. 

However, information on creep fracture behavior and creep rupture modeling of PMCs are still 
limited in literature, especially for off-axis loading conditions. Regarding a problem of predicting 
the whole process of the creep deformation and creep fracture of unidirectional and multidirectional 
PMC laminates at high stresses and at high temperatures, very few studies have been reported.
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Experimental Procedure (Creep rupture 
Test )

a-b :  Loading 
（1.0 mm/min; Stroke 
control）

Timea

c
bσ

σc chosen so as to obtain creep rupture 
data within the time range up to 10 
h

b-c : Creep period
（within 10 h; Load 
control）

100°C

Creep stress σc : 

*θ  : Fiber orientation 
angle*φ : Oblique tab angle



Off-Axis Creep Rupture Behavior

The off-axis creep rupture strength becomes lower as the fiber orientation angle 
increases, demonstrating a strong fiber orientation dependence of the creep rupture 
life.Straight lines can be fitted well to the log-log plots of the off-axis creep rupture 
data over the range of creep time up to 10 h, regardless of the fiber orientations.  

The macroscopic creep failure morphology is similar to the static tensile fail
morphology
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Normalized Creep Rupture Behavior and 
the Monkman-Grant Relationship

The fiber orientation dependence of the off-axis creep rupture strength is 
approximately removed using the normalized creep stress, and the creep strength ratio 
can be used as a creep strength measure for creep rupture modeling.

2.

The creep rupture time exhibits an inverse dependence on the minimum creep rate, and 
the slope of the Monkman-Grant plot is almost identical for all the off-axis fiber 

The off-axis creep rupture data, which correspond to data at the stress ratio of R = 1, 
are distributed slightly above the off-axis fatigue data at R = 0.1.
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Creep Deformation-Rupture Modeling
Viscoplasticity Model
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 (K, m : Materialconstants)

(Qi, bi : Materialconstants)

(a66 : Material constant)

3.

Damage Mechanics Model 

Damage evolution equation:

Failure criterion:

Non-dimensional effective stress:
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Predictions of Off-Axis Creep Rupture Behavior

A good agreement between the predicted and observed results has been achieved 
regarding the fiber orientation dependence of the creep rupture time.

4.
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Coupled Creep Deformation-Rupture Analysis
Material 

Constants:
a66 = 1.3
Q1 = 100 MPa
Q2 = 7 MPa
b1 = 10
b2 = 3000
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The end points of these solid lines correspond to creep fracture. 
The overall features of off-axis creep behavior have been qualitatively described 

using the proposed model.

5.



Off-axis creep rupture behavior of a unidirectional T800H/Epoxy laminate 
under constant load conditions at 100°C is studied.  

Applicability of the proposed model is evaluated by comparing with 
experimental results.

Conclusion
s

The off-axis creep rupture strength decreases with increasing fiber orientation angle.  
The creep rupture time becomes shorter as the creep stress increases, regardless of the 
fiber orientations. 

The proposed model can moderately describe the salient features of the creep 
deformation and rupture behaviors of the unidirectional CFRP laminate.  Applicability 
and accuracy of the model should be further examined on the basis of more extensive 
creep rupture testing on unidirectional and multidirectional laminates at different 
temperatures. 

The fiber orientation dependence of the off-axis creep rupture strength can be almost 
eliminated using the creep strength ratio. This suggests that the non-dimensional 
effective stress becomes a good creep strength measure to cope with the fiber orientation 
effect. 
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