Development of Design System for FRP Gears Doshisha Univ. for Power Transmissions

Researcher

Toshiki HIROGAKI¹, Eiichi AOYAMA¹, Tsutao KATAYAMA¹ Kazuya SUGIMURA², Yoshinori YAGURA³

- 1. Faculty of Engineering, Doshisha University Japan Address: 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto, Japan 610-0394 e-mail: <u>thirogak@mail.doshisha.ac.jp</u> Phone: +81-774-65-6503
- 2. Ishida Co., Ltd., Japan Address: 959-1 Shimohoko, Ritto, Shiga, Japan
- 3. Graduate student, Doshisha University Japan Address: 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto, Japan 610-0394 Phone: +81-774-65-6445 (Laboratory)

Introduction

Oil-less running Market needs Light weight **High** strength But

Using for power transmission

Low noise

Metal gear: Heavy, difficult to use oil-less condition, etc..

Plastic gear:Low loading capability, Weaker impact load.

Thus Composite gears are attention (To meet market requirement)

> Although composite gears are used in the old days, there are few researches.

In this research

Purpose: To clearly the fundamental data for constructing a design system of composite gears.

Contents of laminated composite

Material		Phenols Cr All	25% 25%				
		Form	50%				
Reinforced Fiber		Cotton					
Weave Type		Plain Weave					
Thickness of Cotton Yarn	[mm]		20				
Thickness of Ply	[mm]	0.25					
Fiber Concentration	[wt%]	50					

Gears

Manufacturing method

Hobbing cut (same as metal gears)

Merits:

- 1. Needless injection forming.
- 2. Available to use metal gear manufacturing machine.

Cotton fiber-reinforced gear

		Standard gear			-	Paper gear	
Laminate Configuration		[0/90]s					
Module			3	4	47	5	4
Standard Pressure Angle	[deg]	20					
JIS Class	-	4					
Face Width	[mm]	25					
Tooth Depth	[mm]	6.	75	9 11.25		.25	9
Number of Teeth		49	65	49	39	49	49
Diameter of Standard Pitch Circle	[mm]	147	195	196	195	245	196
Refarence Diameter	[mm]	153	201	204	205	255	204

Dimensions of gears

Running Test -1

Purpose: Evaluation the possibility of mechanical factor of rotational and power transmission

Driven gear

Metal gear

(S45C steel)

Running Test -2

Running test machine

Running Test -3

Acceleration [m/s²]

View point of running test

 $F_{\rm Z} = Z N_{\rm S}$

 $\left(\begin{array}{c} N_{\rm S} ({\rm r.p.s}) = {\rm gear \ rotational \ speed} \\ Z = {\rm The \ number \ of \ teeth \ of \ the \ rotating \ gear} \right)$

Running Test –4

Higher vibration: 300-500 (Hz)

In this result

Using elastic modulus of plastic gear

Higher vibration: above 1000 (Hz)

Prevent impact sound (By meshing of gear tooth)

Semi-static tooth Bending Fracture Test

Purpose: To research the influence of the material anistropy on fracture modes at the loading tooth tip.

Test Condition:

Loading method

Fiber angles of each teeth

> Line load at tooth tip (reference below figure)

Based on teeth of 0 degrees, and decide it within the range from 0 to 90 degrees

(reference below figure)

Line load at tooth tip

Bending load vs. fiber angles of teeth

45degrees gear tooth is weakened!

Teeth strength

Cotton fiber-reinforced gear

Paper reinforced gear

Material Tests

Tensile Test

Purpose: To research most basic material properties.

Not same tendency!

Bending Test (3 point bending)

Purpose: To research Bending strength of materials.

Not same tendency!

Shearing Test

Purpose: To research shear strength of materials.

Compressive Test -1

Using Tool to stability specimen for prevent buckling, as shown in below figure.

Compressive test tool

Compressive Test -2

Purpose: To research compressive strength of materials.

Bending Test (4 point bending)

Purpose: To research Bending strength of material only for pure bending moment. 200

Influence of fiber angle

Cotton reinforced

Result of 4-point bending test

Tendency of strength

3 point bending test Cotton Paper reinforced reinforced

Bending fracture test Cotton > Paper reinforced reinforced

Same tendency!

Method for Estimating Tooth Root Stress

From result of tooth bending fracture test

Critical cross sections are risen We thought there are greatly influenced by shear stresses, because of the shearing stresses rises by going to the points of teeth

Thus

The tooth root stress type of anisotropic material to consideration of the influence of the shearing strength

$$Se = \sqrt{\left(Sn\right)^2 + \left(2.5Tn\right)^2}$$

Se = equivalent stress Sn = Vertial stress (when loading the tip) Tn = the shear stress (when loading the tip)

This function apply tooth root stress.....

Method for Estimating Tooth Root Stress

Available to estimate the tooth root strength!

Fatigue Test -1

Purpose: To research frequency until tooth broken under constant load and loading cycle.

Fatigue Test -2

Capable to estimate by the stress! (Regardless of the module) And

Extension each approximation lines.....

Results

- 1. It is confirmed that better noise quality, which avoids unpleasant-sounding frequencies in the field of human engineering, is obtained using plastic gears made of cotton fiber-reinforced phenolic resin in operating machines.
- 2. With a cotton cloth-reinforced plastic gear, the strength of a tooth with a fiber-reinforcement angle of 45 degrees is lowest when the load is applied to the tooth tip. The fracture occurs from the tooth root fillet on the tooth tip side, which is a critical tangency point of a 15-degree angle.
- 3. There are same tendency of strength between Compressive, 4-points bending and gear bending strength made of phenolic resin.
- 4. As a result, it is necessary to input the basic material data of the tensile, bending and shear strength of the cotton cloth-reinforced plastic laminates at the fiber reinforcement angle of 45 degrees in order to estimate the tooth root stresses. It is also necessary to consider the stress concentration factor of the tooth root fillet in design systems.
- 5. The fatigue strength of cotton fiber reinforced gears is 100 times that of paper-reinforced gears.
- 6. Fatigue strength depends on the strength of the resin regardless of the strength of a reinforced fiber when the load is small.