CompTest 2004

<u>Microscopic Observation of Tow</u> <u>Deformation for Carbon Fabric-PVC Foam</u> <u>Sandwich Structures During Forming</u>

21. 09. 2004

Seung Hwan Chang

Chung-Ang University, Seoul, Korea

Verification of Deformation Patterns

- Variations of Tow Parameters
- ⇒ w.r.t. the Foam Density & Forming Pressure

<u>Correlation between Tow Variation</u> <u>and Material Property</u>

- Construct Database for Computational Analysis

Materials for the Sandwich Structures

PVC Foams

- Densities: 50, 70, 90, 110
- Cell Type: Closed Cell

Fabric Composites

- Carbon/Epoxy
- Plain Weave (3k)

Unit Cell of the Fabric

Forming Method

Autoclave De-gassing Moulding

School of Engineering/ Chung-Ang University

35

10

60

70

80

Density [kg/m³]

90

0.8

Vormalized Thickness

0.2

Foam

100

110

120

----- 0.1 MPa

----- 0.2 MPa

--≎--- 0.3 MPa **--∆---** 0.4 MPa

-X-0.7 MPa

100

Stress-Strain Relation of Foams at 125°C

Observation Results: HT50-PVC Foams

Tow Variation: Crimp Angle

<u>Elastic Regions</u> ⇒*Stretching Effect* ⇒Small Crimp Angle <u>Yielding Regions</u> *⇒Maintenance* ⇒Spreading of Tows **Densification Starts** ⇒Abruptly Increases ⇒*Tow Indentation* **Full Densification** \Rightarrow Decreases

Microscopic Deformation: Foam and Fabrics

Tow Variation: Crimp Angle

Conclusion

Microscopic Observation - Crimp Angle - Micro-Deformation of Foams (Cell Wall) = Geometric Deformations of Fabrics = Correlation between Parameters and Foam Behaviour (Elastic, Yielding, Densification) w.r.t. Foam Density, Forming Pressure

