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1. INTRODUCTION

Composite materials consist of two or more constituents which
differ in physical properties. They can be prepared in many ways
leading to a large variety of morphologies. The morphology of
a composite has a big influence on its macroscopic behaviour.
Therefore, the relation between the morphology and resulting
physical (e.g., dielectric, thermal, elastic etc.) properties is of a
great practical importance.
With a big progress in computer technology in recent years,
morphology of composites and prediction of their macroscopic
behaviour have become an attractive object for computer mod-
elling [3, 4]. Space distribution of the dielectric constant in a
periodic composite can be prescribed in two ways:

1. explicitly, i.e. ε(x, y) = εa in the matrix and ε(x, y) = εb in
the inclusion,

2. and using an expansion into Fourier series.

While the former method is straightforward for composites of
simple morphologies (spherical, cylindrical inclusions), the latter
one can be useful in case of complex morphlogies (e.g. gyroidal).
The objective of this study is an investigation of the Fourier series
method for using in Finite Element Method (FEM).

2. ELECTROSTATIC

Introducing the scalar electric potential Φ

the electric field intensity E = ∇Φ

the material permittivity ε

the polarization vector P

the electric displacement D = ε.E + P

the electric space charge density ρ

and the Maxwell’s equation ∇.D = ρ

the problem of electrostatic results in solving the differential
equation

−∇. (ε.∇Φ− P ) = ρ in Ω, (1)

associated with boundaries conditions that can be written as a
Neuman condition, −n.D = ρS, where ρS is the surface charge,
or a Dirichlet condition, Φ = U , where U is a fixed potential.

Finite Element Model
Starting by converting the differential problem to its weak form,
the Finite Element Method consists on approximating the prob-
lem (1) on finite space, meshing its geometry using simple geo-
metric elements associated with a finite number of linear forms
Li. For instance linear forms in Lagrangian elements associate
any function to its values at the geometric elements’ vertexes.
Hence, instead of looking for the exact solution Φ of the problem
(1), we look for a finite number of potential’s values (the ones
at the mesh’s nodes). Moreover the definition of finite elements
is coupled with the definition of shape functions si fulfilling the
conditions Li(sj) = δij. Since shape functions form a base for
the finite dimensional space in which approximated solution is
looked for, we can substitute them for test functions occuring
in the variational form. Calculations in the present work were
performed using FEM software package FEMLAB of company
COMSOL [5].

Homogeneisation
We consider a biphasic material constituted of matrix and inclu-
sions with respective permittivities εa and εb. Homogeneisation
consists on finding the permittivity εeff of an ‘equivalent’ ho-
mogeneous material, i.e. a material which would need the same
among of energy as the considered biphasic one when they un-
dergo the same test:

W hom(εeff) = W biph(εa, εb), (2)

where W is the total stored electric energy defined as

W =
1

2

∫
Ω
(ε.∇Φ).∇Φ dx, (3)

with Φ solution of the problem (1) respectively applied to the
biphasic or homogeneous body.

Identification method
Effective permittivity εeff is a matrix whose components can be
determined providing following computering testes.

• The diagonal component εeff
kk (k ∈ {1..d}, d=1,2 or 3 is the

space dimension) is determined imposing a constant difference of
potential U between the capacitor plates on the k-direction while
assuming periodic conditions in all other directions as shown on
the figure Fig. 1. Indeed, because of symmetries, Φ = Φ(xk)
and (3) leads to

εeff
kk =

2 hk W

Sk U 2
(4)

where hk = xmax
k − xmin

k , Sk is the surface normal to the
k-direction and W = W biph has to be previously calculated for
the exact composite material using the Finite Element Method.
Such a test is repeated changing the preferential direction
k ∈ {1..d} to determine all diagonal components.

Fig. 1: Unidirectional model capacitor as a periodic biphasic material.

• The extra-diagonal component εeff
kp is determined making the difference of

potential U on the k-direction dependent on the space variable xp (p ∈ {1..d},
p 6= k), i.e. U = U(xp). Indeed, because of the symmetries, Φ = Φ(xk, xp) and
(3) leads to

εeff
kp =

1

2

(
2W − εeff

kk

∫ (
∂Φ

∂xk

)2

dx− εeff
pp

∫ (
∂Φ

∂xp

)2

dx

)(∫
∂Φ

∂xk

∂Φ

∂xg

dx

)−1

(5)
since the permittivity matrix is symmetric, i.e. εH

kp = εH
pk. This test is done only

once if d = 2. If d = 3, it has to be repeated changing the values of k and p in
{1, 3}, k 6= p.

3. EXPANSION INTO FOURIER SERIES

Let us consider a periodic function f of the d-dimensional orthogonal space with
period hp in the p-direction, p ∈ {1, d}, having real values in [0,1], i.e.

f : [−h1/2, h1/2]× ..× [−hd/2, hd/2] → [0, 1]

This function can be approximated by its expansion into Fourier series F , i.e.

lim
Np→∞, ∀p∈{1,d}

F = f, (6)

with

F(x1, .., xd) =

+N1∑
n1=−N1

..

+Nd∑
nd=−Nd

e(n1, .., n3)S(n1, .., nd) exp

(
2π i

d∑
p=1

np xp

hp

)
,

(7)
where Np, np are integers, e(n1, .., n3) are filters defined as

e(n1, .., n3) = exp

(
−2π2 σ2

0

d∑
p=1

n2
p

)
, (8)

where σ0 < 1 is the so-called sharpness of the interface, and the Fourier coefficients
S(n1, .., n3) are defined as

S(n1, .., n3) =
1∏d

p=1 hp

∫ h1/2

−h1/2
..

∫ hd/2

−hd/2
f (x1, .., xd) exp

(
−2πi

d∑
p=1

npxp

hp

)
dx1..dxd,

(9)
It can be noticed that even if the coefficients S(n1, .., n3) are complex, the series
F(x1, .., xd) is a real number because the coefficients are conjugate one to an
other. For instance

S(n1, .., nd) = S(−n1, ..,−nd),

S(−n1, ..,−np, np+1, .., nd) = S(n1, .., np,−np+1, ..,−nd),

and so on.

General biphasic material
Considering a composite body constituted of two isotropic materials, the space
distribution of permittivity ε(x) = ε Id can be approximated using the Fourier
series

ε

εa
= 1 +

(
εb

εa
− 1

)
F(x1, .., xp), xp ∈ [−hp/2, hp/2], p ∈ {1, d}. (10)

with F defined in (7). In general case, the coefficients S(n1, .., nd) do not have
analytic expressions. However they can always be numerically approached. Nu-
merical integration consists on summing areas being calculated on Mp−1 intervals
[xj−1

p , xj
p], j ∈ {2, Mp}, obtained from a discretisation of [−hp/2, hp/2], i.e.

S(n1, n2, n3) =
1

2d

M1∑
j1=2

..

Md∑
jd=2

(
d∏

p=1

x
jp
p − x

jp−1
1

hp

)
1∑

δ1=0

..

1∑
δd=0

g(xj1−δ1

1 , .., xjd−δd

d ),

(11)
with

g = f exp

(
−π i

d∑
p=1

2 np xp

hp

)
. (12)

With d = 2 the expression (11) becomes

S(n1, n2) =

M1∑
j1=2

M2∑
j2≥2

(xj1

1 − xj1−1
1 )(xj2

2 − xj2−1
2 )

4h1h2
[g(xj1

1 , xj2

2 ) + g(xj1−1
1 , xj2

2 )

+g(xj1

1 , xj2−1
2 ) + g(xj1−1

1 , xj2−1
2 )].

4. RESULTS

We illustrate the effective dielectric behaviour of
periodic composites by a model 2D capacitor of
the size of square elementary composite cell with
edges of the length h filled by matrix and inclu-
sion of circular shape with radius R - see Fig.
2.

Fig. 2: Single circular inclu-
sion in matrix.

Such a geometry leads a to isotropic effective permittivity which value
is determined applying unidirectional gradient of external potential and
assuming periodic conditions along the perpendicular direction as given
in equation (4). Nevertheless dielectric constant of periodic composites
with such morphology is known and given by the asymptotic formula
[1, 2]

εeff

εa
= 1 +

2β vb

1− β vb − 0.305827 β2 vb4 + ...
, β =

εa − εb

εa + εb
(13)

where vb is the volume fraction of inclusions, i.e. vb = πR2.
Result of the homogeneisation is illustrated on the figure Fig. 3 as the
evolution of the relative effective permittivity εeff/εa with the inclusion
radius R for various values of the relative inclusion permittivity εb/εa.
Analytic solution (13) is plotted as solid lines while the numerical result
(4) is marked with triangles, circles and stars. The energy W entering
is the latter expression is calculated solving the Maxwell equation on
composite body using the Finite Element Method. It is worth noticed
that both analytical and numerical results exactly coincide.

Fig. 3: Relative effective permittivity εeff/εa v.s. inclusion’s radius with
εb/εa = 4.

Five inclusions model
The method can be generalized in modeling effective properties of pe-
riodic composites with more complex morphologies, as for example a
square element filled by matrix and 5 circular inclusions at center and
corners - see Fig. 4. Comparison of space distribution of dielectric con-
stant simulated by the above methods is given in Fig. 4 and Fig. 5.
The including of the smoothness parameter leads to more realistic space
distribution except the proximity of interphase. Fig. 6 shows the de-
pendence of the effective dielectric constant obtained by FEM using two
ways of the simulation of the space distribution of dielectric constant. A
systematic error is obtained when smoothness parameter is used.

Fig. 4: Space distribution of the dielectric constant (left figure) and its
expansion into Fourier series (from the right to the left: without filter,
and filtered with smoothness parameter σ0 = 0.05 and σ0 = 0.1)

Fig. 5: Space distribution of the
relative dielectric constant ε(x,y)−εa

εb−εa
in

cross-section y = 0 (black full line)
with R/h = 0.2, and its expan-
sion into Fourier series without fil-
ter (blue dash line) and filtered with
smoothness parameter σ0 = 0.05
(red dot line).

Fig. 6: Relative effective permit-
tivity εeff/εa v.s. inclusion’s radius
with εb/εa = 4 using the real permit-
tivity distribution (black full line)
and its expansion into Fourier series
without filter (marked with blue tri-
angles) and filtered with smoothness
parameter σ0 = 0.05 (marked with
red triangles) and σ0 = 0.1 (marked
with green triangles)
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