Synthesis of Al₂O₃/Al Co-continuous* Composite by Reactive Melt Infiltration

C. M. Lawrence Wu^{1,3} and G. W. Han^{1,3}

¹Dept. of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, P.R. China ²Dept. of High Temperature Mater. Res., Central Iron & Steel Research Institute, Beijing 100081, P.R. China ³Corresponding author, Fax. (852) 27887830, e-mail: Lawrence.Wu@cityu.edu.hk

*A ceramic/metal co-continuous has the interconnecting empty spaces in the ceramic reinforcement filled with metal, thus providing continuity in both the metal and ceramic phases.

Objectives

- Using a Al₂O₃ preform, fabricate Al₂O₃/Al co-continuous composite by melt infiltration.
- Using a SiO₂ preform, fabricate Al₂O₃/Al co-continuous composite by melt infiltration involving chemical reaction to change SiO₂ to Al₂O₃.
- Compare the two processes of infiltration using scanning electron microscopy (SEM), energy dispersive x-ray microanalysis (EDS) and x-ray diffraction analysis (XRD).

Major findings:

- Using a Al₂O₃ preform, the reaction 3SiO₂+4Al → 2Al₂O₃+3Si
 Occurred at the infiltration front, and generated a transition zone containing a new type of interconnecting porosities of about 100m in width. The reaction continued with further infiltration of molten aluminium alloy into these porosities and reaction with residual SiO₂ until all the SiO₂ are transformed into Al₂O₃.
- Reactive melt infiltration took place at a higher rate for the SiO₂ preform than that for the direct infiltration of the Al₂O₃ preform.
- The fracture surface examination demonstrated the toughening effect provided by the continuous aluminium alloy in the composite.

