
Welcome to an SAA for fitting many model
types developed for Stat-JR v1.0.5
Input questions
Firstly on this page you will need to specify the dataset required from the list of
available datasets.

Next you need to choose many options including the response, estimation method,
clustering variables and predictor variables (both continuous and categorical) from
the chosen dataset. After choosing these variables the SAA will run and you will
see a block of text describing how many observations are to be used at the bottom
of this page. The rest of the analysis will appear in pages 2-12.

SAA for many N level multilevel
models

Which dataset do you wish to use:  

Submit

What estimation method do you
want to use:

MCMC

What is the response variable: attain

What distribution are you going to
assume:

Normal

Which higher level classifications
do you wish to consider:

pid,sid

Are there any continuous predictors
that need including in all models:

No



Are there any categorical predictors
that need including in all models:

No

Do you want to include any
continuous predictors as candidates

for inclusion in the models:

Yes

Which continuous predictors do you
want to consider:

vrq,sc

Do you want to include any
categorical predictors as candidates

for inclusion in the models:

Yes

Which categorical predictors do you
want to consider:

sex,fed,choice,med

What selection type do you require: Forward pass

Do you want to test for random
slopes:

No

Do you want to test for interactions: No

How do you wish to compare
models:

Wald

How long to burnin for: 500

How long to then run chains for: 2000

What is the minimum ESS at which
to stop (use 0 to just run for number

last input):

200



On the next page we will look at the shape of the response and, in the case of
normal responses, decide whether to log transform.

Do you want to use orthogonal
parameterisation:

No

What change in DIC denotes a better
model:

1

The Analysis Assistant you are currently using is designed to work on complete
datasets only and so as a pre-processing step we have to remove any rows that
contain missing data in columns used in the analysis that follows. For now the list
of columns to be considered is: attain, pid, sid, vrq, sc, sex, fed, choice, med. There
are 0 (0.0%) rows that get deleted This results in a dataset of 3435 rows.



Exploring the response
We will begin our analysis of the dataset by doing some basic data exploration.

You have chosen attain as your response variable and so a first step is to take a
look at this variable and assess its suitability for a normal model. The summary
statistics for the variable are in the table below:

Observations 3435

Mean 5.679

Standard Deviation 3.058

Median 5.0

We also look at a histogram of attain to see if it is approximately normally
distributed. Although in modelling the response in terms of a set of predictors it is
what is unexplained (the model residuals) that need to be normally distributed, it is
still useful to look at the response variable as a very skewed variable will often lead
to very skewed residuals.

Here the median is smaller than the mean and there is significant skew to the right.
The skewness value is 0.158. Here the statistical significance may be to some
degree due to the large sample size as from a practical perspective values of skew



less than 2 are not considered too big a skew.

There are no obvious outliers in attain.

Do you want to log transform the
response variable?:

No



Exploring the predictors individually
We can also look at each of the predictor variables in turn in isolation.

For categorical predictors we are looking at how common each category is in the
dataset. In particular we are checking for rare categories which might cause
difficulties in modelling and might therefore be usefully merged with other
categories (though this would need to be done outside this SAA).

For predictor sex we see the following:

sex N Percentage

0 1739 50.626

1 1696 49.374

Total 3435 100

None of the categories of sex have fewer than 5 observations.

For predictor fed we see the following:



fed N Percentage

0 2489 72.46

1 946 27.54

Total 3435 100

None of the categories of fed have fewer than 5 observations.

For predictor choice we see the following:

choice N Percentage

1 3069 89.345

2 212 6.172

3 3 0.087

4 151 4.396

Total 3435 100

The values 3 are rare categories with fewer than 5 observations.



For predictor med we see the following:

med N Percentage

0 2260 65.793

1 1175 34.207

Total 3435 100

None of the categories of med have fewer than 5 observations.



For continuous predictors we are interested in looking at summary statistics, the
shape of the distribution and any unusual values. If the distribution is skewed then
we might want to transform the variable before fitting it in the model although it is
more important to consider transformations of the response variable and remember
what is important is whether the relationship between the response and predictor is
linear. If there are unusual values we will want to check that the unusual values are
correct and not errors and also whether we may want to treat the variable
differently. Another possibility for unusual shaped distributions is to instead
categorise the variable into ranges of values.

For predictor vrq we see the following:

Name vrq

Observations 3435

Mean 97.804

Standard Deviation 13.291

Median 98.0



Here the median is smaller than the mean and there is significant skew to the right.
The skewness value is 0.098. Here the statistical significance may be to some
degree due to the large sample size as from a practical perspective values of skew
less than 2 in absolute magnitude are not considered too big a skew.

There are no obvious outliers in vrq.

For predictor sc we see the following:

Name sc

Observations 3435

Mean 6.845

Standard Deviation 10.886

Median 0.0



The variable has only 4 unique values but is being treated as continuous.

Here the median is smaller than the mean and there is significant skew to the right.
The skewness value is 1.136. Here the statistical significance may be to some
degree due to the large sample size as from a practical perspective values of skew
less than 2 in absolute magnitude are not considered too big a skew.

There are no obvious outliers in sc.



Assessing the relationship between the response and
individual predictors
Once we are happy with our response variable and our set of predictors we now
want to have a preliminary look at them together before progressing to the
univariable modelling.

For the categorical predictors it is worth looking at the mean value of the response
in each category to assess if there are differences. We can then formally test this
with a t-test for binary predictors or an ANOVA for predictors with more than 2
categories.

Here is a tabulation of the response, attain for predictor sex with category 1 having
the largest mean and category 0 the smallest.

Category N Mean Standard Deviation Median

0 1739 5.422 3.076 5.0

1 1696 5.942 3.017 6.0

The formal test is as follows:

There are two groups in the data:  
The first group has 1739 observations with mean 5.422 standard deviation 3.077.  
The second group has 1696 observations with mean 5.942 standard deviation
3.018.  
We are trying to test a hypothesis as to whether the two groups differ in their
(population) means by a statistically significant amount. Statistical significance is
related to how likely a result is to be a chance occurance. Here we are trying to
differentiate between a real difference (no matter how small) and a difference that
may have occurred due to the samples we have chosen.  
The mean difference is 0.521 with the second group having the larger sample
mean.  
We need to quantify if this difference is large relative to the variability in the data. To
do this we calculate the standard error of the difference. This is a function of the
variabilities in the samples from group A and group B combined with their sample
sizes. The bigger the 2 variabilities the larger the standard error, whilst the smaller
the variability the smaller the standard error.  
For our data the standard error of the mean difference is 0.104 and we divide our
observed difference by this standard error to give a test statistic with value 5.007.  



This test statistic is then compared to a t distribution with degrees of freedom equal
to the sum of the sample sizes in each group (3435) - 2. In this case a t distribution
with 3433. This t table has values of 1.961 for p=0.05 and 2.577 for p=0.01.

As 5.007 > 2.577 our p value is less than 0.01 and we have strong evidence to
reject the null hypothesis (at the p=0.01 level).

The p-value is in fact less than 0.0001.

The t test assumes that the distribution of the response in each group follows a
Normal distribution. We could check this by looking at histograms of the variable in
each group. If we were concerned about the normality assumption then we could
instead use a Mann Whitney (MW) test.

A Mann Whitney test works simply on the order (or ranks) of the responses across
the two groups. So the response variable is firstly sorted and then each value is
ranked. The ranks for each group are then summed and the value that is larger is
compared with what would be expected if there was no difference between the
groups.

In this case the MW U statistic is 1324016 which for samples of size 1739 and
1696 corresponds to a p value of less than 0.0001.

Here is a tabulation of the response, attain for predictor fed with category 1 having
the largest mean and category 0 the smallest.



Category N Mean Standard Deviation Median

0 2489 5.419 3.012 5.0

1 946 6.362 3.074 7.0

The formal test is as follows:

There are two groups in the data:  
The first group has 2489 observations with mean 5.419 standard deviation 3.012.  
The second group has 946 observations with mean 6.362 standard deviation
3.076.  
We are trying to test a hypothesis as to whether the two groups differ in their
(population) means by a statistically significant amount. Statistical significance is
related to how likely a result is to be a chance occurance. Here we are trying to
differentiate between a real difference (no matter how small) and a difference that
may have occurred due to the samples we have chosen.  
The mean difference is 0.942 with the second group having the larger sample
mean.  
We need to quantify if this difference is large relative to the variability in the data. To
do this we calculate the standard error of the difference. This is a function of the
variabilities in the samples from group A and group B combined with their sample
sizes. The bigger the 2 variabilities the larger the standard error, whilst the smaller
the variability the smaller the standard error.  
For our data the standard error of the mean difference is 0.117 and we divide our
observed difference by this standard error to give a test statistic with value 8.068.  
This test statistic is then compared to a t distribution with degrees of freedom equal
to the sum of the sample sizes in each group (3435) - 2. In this case a t distribution
with 3433. This t table has values of 1.961 for p=0.05 and 2.577 for p=0.01.

As 8.068 > 2.577 our p value is less than 0.01 and we have strong evidence to
reject the null hypothesis (at the p=0.01 level).

The p-value is in fact less than 0.0001.

The t test assumes that the distribution of the response in each group follows a
Normal distribution. We could check this by looking at histograms of the variable in
each group. If we were concerned about the normality assumption then we could
instead use a Mann Whitney (MW) test.

A Mann Whitney test works simply on the order (or ranks) of the responses across
the two groups. So the response variable is firstly sorted and then each value is
ranked. The ranks for each group are then summed and the value that is larger is



compared with what would be expected if there was no difference between the
groups.

In this case the MW U statistic is 969272 which for samples of size 2489 and 946
corresponds to a p value of less than 0.0001.

Here is a tabulation of the response, attain for predictor choice with category 3
having the largest mean and category 4 the smallest.

Category N Mean Standard Deviation Median

1 3069 5.71 3.061 5.0

2 212 6.434 2.906 6.0

3 3 8.667 1.886 10.0

4 151 3.921 2.502 3.0

The formal test is as follows:



df SS MS F

Between groups 3 617.5 205.8 22.41

Within groups 3431 31510.0 9.183

Total 3434 32120.0 9.354

Pooled within-group S.D. 3.03

Between-group variance component 0.876

For the ANOVA we are testing whether there are differences in the means of the
response variable between the different groups. As shown in the table above this is
done by constructing an ANOVA table that compares how much of the variability in
the data is within the groups compared to between the groups. This results in a test
statistic that follows an F distribution with 3 and 3431 degrees of freedom. This F
table has values of 3.12 for p=0.05 and 4.287 for p=0.01.

As 22.415 > 4.287 our p value is less than 0.01 and we have strong evidence to
reject the null hypothesis (at the p=0.01 level).

The p-value is in fact less than 0.0001.

Category N Mean S.E.M.

1 3069 5.71 0.0547

2 212 6.434 0.208

3 3 8.667 1.75

4 151 3.921 0.247



Here is a tabulation of the response, attain for predictor med with category 1 having
the largest mean and category 0 the smallest.

Category N Mean Standard Deviation Median

0 2260 5.404 2.992 5.0

1 1175 6.207 3.113 6.0

The formal test is as follows:

There are two groups in the data:  
The first group has 2260 observations with mean 5.404 standard deviation 2.993.  
The second group has 1175 observations with mean 6.207 standard deviation
3.115.  
We are trying to test a hypothesis as to whether the two groups differ in their
(population) means by a statistically significant amount. Statistical significance is
related to how likely a result is to be a chance occurance. Here we are trying to
differentiate between a real difference (no matter how small) and a difference that
may have occurred due to the samples we have chosen.  
The mean difference is 0.803 with the second group having the larger sample
mean.  
We need to quantify if this difference is large relative to the variability in the data. To
do this we calculate the standard error of the difference. This is a function of the
variabilities in the samples from group A and group B combined with their sample



sizes. The bigger the 2 variabilities the larger the standard error, whilst the smaller
the variability the smaller the standard error.  
For our data the standard error of the mean difference is 0.111 and we divide our
observed difference by this standard error to give a test statistic with value 7.263.  
This test statistic is then compared to a t distribution with degrees of freedom equal
to the sum of the sample sizes in each group (3435) - 2. In this case a t distribution
with 3433. This t table has values of 1.961 for p=0.05 and 2.577 for p=0.01.

As 7.263 > 2.577 our p value is less than 0.01 and we have strong evidence to
reject the null hypothesis (at the p=0.01 level).

The p-value is in fact less than 0.0001.

The t test assumes that the distribution of the response in each group follows a
Normal distribution. We could check this by looking at histograms of the variable in
each group. If we were concerned about the normality assumption then we could
instead use a Mann Whitney (MW) test.

A Mann Whitney test works simply on the order (or ranks) of the responses across
the two groups. So the response variable is firstly sorted and then each value is
ranked. The ranks for each group are then summed and the value that is larger is
compared with what would be expected if there was no difference between the
groups.

In this case the MW U statistic is 1129544 which for samples of size 2260 and 1175
corresponds to a p value of less than 0.0001.



For the continuous predictors we can look at correlations with the response and
scatterplots to see if there is a linear relationship.

Predictor : vrq

The Pearson correlation between attain and vrq is 0.719 (p value < 0.001).

The Spearman rank correlation between attain and vrq is 0.734 (p value < 0.001).

The graph includes best fitting curves for a constant, linear, quadratic and cubic
relationship between attain and vrq. In this case a linear relationship is most
appropriate.

Predictor : sc

The Pearson correlation between attain and sc is 0.249 (p value < 0.001).

The Spearman rank correlation between attain and sc is 0.323 (p value < 0.001).



The graph includes best fitting curves for a constant, linear, quadratic and cubic
relationship between attain and sc. In this case a polynomial of cubic or higher
order is the most appropriate and you might consider including polynomial terms in
your predictor list.



Choosing appropriate random classifications
We begin this section by deciding which of the possible random classifications to
include in the modelling.

This is done by fitting all possible combinations and picking the model with the
lowest DIC. All models are displayed along with their DIC values in the table below:

Higher-level classifications DIC

None 17431.23

pid 17080.59

sid 17309.98

pid,sid 17048.06

The best model based on the DIC has classifications: pid,sid

As this is a multilevel modelling SAA we will also want to look at how the response
is distributed across the levels of the model.

For this we will use the best model chosen above and look at how the variance is
distributed across levels.

Variable Coefficient SE ESS

Intercept 5.509 0.192 206

sid Variance 0.42 0.22 1155

pid Variance 1.145 0.211 1225

Level 1 Variance 8.12 0.197 3972

Here we see that the VPC for sid = 0.42/9.685 = 0.0434, so we see that sid effects
explain 4.337% of the variability in attain.

Here we see that the VPC for pid = 1.145/9.685 = 0.118, so we see that pid effects
explain 11.82% of the variability in attain.



Performing univariable modelling
Our next step in modelling now that we have a set of potential predictors is to
consider models for each predictor in turn along with a random intercept at each
chosen classification from the best model in the last section. In the fixed part these
models simply contain an intercept and the particular predictor and so for
continuous predictors will be multilevel linear regressions and for categorical
predictors will be multilevel generalisations of ANOVAs. In the table below we
summarise the modelling by showing the coefficients for each predictor along with
the p value comparing the model with that predictor with a Null model. This
Univariable modelling step will identify a set of candidate predictors to be taken
forward into the next stage of modelling.

Variable Coefficient SD ESS p value Significance

vrq 0.16 0.00283 2215 < 0.001 ***

sc 0.054 0.00462 3374 < 0.001 ***

sex_1 0.501 0.0985 4767 < 0.001 ***

fed_1 0.741 0.112 3589 < 0.001 ***

choice_2 0.796 0.215 2814 < 0.001 ***

choice_3 2.481 1.678 4136

choice_4 -1.895 0.243 3713

med_1 0.671 0.105 3742 < 0.001 ***

Which predictors we consider for the next stage of analysis will depend on their
significance in the above table (but may in practice also depend on the size the
effect and substantive interest of the variable though this is hard to automate). We
will use a threshold on the p values associated with the predictors to decide
whether to include the predictors in the next stage. Here we are currently using a
threshold of 0.05. so the predictors to carry forward are: med, vrq, fed, choice, sc,
and sex.















Looking at correlations between predictors
Our next step is to check that none of the correlations between the predictor
variables are too great as this could cause estimation problems when we add the
predictors to the model together. To do this we look at all correlations between the
predictor variables that have been identified as significant univariably and are thus
candidates to be added to the model.

The correlations are as follows:



Variables Correlation

(sc, vrq) 0.189

(sex_1, vrq) 0.096

(sex_1, sc) -0.029

(fed_1, vrq) 0.102

(fed_1, sc) 0.095

(fed_1, sex_1) 0.055

(choice_2, vrq) 0.037

(choice_2, sc) 0.024

(choice_2, sex_1) -0.002

(choice_2, fed_1) 0.015

(choice_3, vrq) 0.018

(choice_3, sc) 0.0

(choice_3, sex_1) 0.03

(choice_3, fed_1) -0.018

(choice_3, choice_2) -0.008

(choice_4, vrq) -0.113

(choice_4, sc) -0.04

(choice_4, sex_1) -0.03

(choice_4, fed_1) -0.046

(choice_4, choice_2) -0.055

(choice_4, choice_3) -0.006

(med_1, vrq) 0.096



Variables Correlation

(med_1, sc) 0.048

(med_1, sex_1) 0.056

(med_1, fed_1) 0.513

(med_1, choice_2) 0.045

(med_1, choice_3) 0.02

(med_1, choice_4) -0.041

Correlations greater than 0.8 (in magnitude) are worth looking at as they may result
in model fitting problems when both predictors are included.



Performing multivariable model selection - random
intercept models
In this next stage we will look at the best random intercepts model using only main
effects for the variables to be considered. You have chosen to perform forward
pass which is a quicker method than full forward selection. It may therefore not
explore as many possible models. The predictor variables are considered in turn
based on their significance in the univariable analysis and each is added to the
current model. If the resulting model is a significant improvement then the predictor
is kept in the model otherwise it is removed. Attention then moves on to the next
predictor until all predictors are considered.

You have chosen to use Wald tests to compare models. These work by looked at
estimates and standard error matrices for each predictor to assess significance and
run quicker than the alternative methods as they do not need to run submodels. It
should be noted that the Wald test is an unusual choice for MCMC estimation even
though we offer it here.

The most significant predictor in the univariable analysis was sc so our starting
point in multivariable modelling is the model:

Variable Coefficient SD ESS
p

value Significance

sc 0.054 0.00462 3374 < 0.001 ***

Intercept 5.166 0.169 240

Between sid
Variance

0.312 0.173 783

Between pid
Variance

0.909 0.182 769

Level 1 Variance 7.861 0.192 3124

Adding variable sc was a significant improvement and so we retain it in the model.

Our next step is to consider adding variable choice to the current model.

=attaini β0sci+β1intercepti+u
(2)
0,pidi

+u
(3)
0,sidi

+ei

=attaini β0sci+β1choice_2i+β2choice_3i+β3choice_4i+β4intercepti
+u

(2)
0,pidi

+u
(3)
0,sidi

+ei



Variable Coefficient SD ESS
p

value Significance

sc 0.052 0.00455 2604 < 0.001 ***

choice_2 0.718 0.209 2316 < 0.001 ***

choice_3 2.491 1.596 2913

choice_4 -1.78 0.235 3023

Intercept 5.197 0.167 203

Between sid
Variance

0.285 0.164 430

Between pid
Variance

0.898 0.168 744

Level 1 Variance 7.703 0.19 2540

Adding variable choice was a significant improvement and so we retain it in the
model.

Our next step is to consider adding variable vrq to the current model.

=attaini β0sci+β1choice_2i+β2choice_3i+β3choice_4i+β4vrqi
+β5intercepti+u

(2)
0,pidi

+u
(3)
0,sidi

+ei



Variable Coefficient SD ESS
p

value Significance

sc 0.0274 0.00342 3236 < 0.001 ***

choice_2 0.458 0.153 3191 < 0.001 ***

choice_3 1.386 1.194 3488

choice_4 -0.634 0.177 4720

vrq 0.155 0.00283 3240 < 0.001 ***

Intercept -9.739 0.281 2836

Between sid
Variance

0.0126 0.0154 201

Between pid
Variance

0.223 0.0545 479

Level 1 Variance 4.171 0.102 2968

Adding variable vrq was a significant improvement and so we retain it in the model.

Our next step is to consider adding variable fed to the current model.

=attaini β0sci+β1choice_2i+β2choice_3i+β3choice_4i+β4vrqi
+β5fed_1i+β6intercepti+u

(2)
0,pidi

+u
(3)
0,sidi

+ei



Variable Coefficient SD ESS
p

value Significance

sc 0.0266 0.00332 3316 < 0.001 ***

choice_2 0.451 0.149 3168 < 0.001 ***

choice_3 1.517 1.207 4405

choice_4 -0.608 0.175 3446

vrq 0.154 0.00282 2985 < 0.001 ***

fed_1 0.331 0.0798 3310 < 0.001 ***

Intercept -9.746 0.281 2790

Between sid
Variance

0.0121 0.0139 207

Between pid
Variance

0.213 0.0521 574

Level 1 Variance 4.155 0.102 3808

Adding variable fed was a significant improvement and so we retain it in the model.

Our next step is to consider adding variable med to the current model.

=attaini β0sci+β1choice_2i+β2choice_3i+β3choice_4i+β4vrqi
+β5fed_1i+β6med_1i+β7intercepti+u

(2)
0,pidi

+u
(3)
0,sidi

+ei



Variable Coefficient SD ESS
p

value Significance

sc 0.0266 0.00335 3122 < 0.001 ***

choice_2 0.44 0.154 3374 < 0.001 ***

choice_3 1.411 1.198 3840

choice_4 -0.605 0.175 3659

vrq 0.154 0.00281 3263 < 0.001 ***

fed_1 0.219 0.0926 3746 0.018 *

med_1 0.204 0.0867 3927 0.019 *

Intercept -9.764 0.277 2904

Between sid
Variance

0.00937 0.0125 305

Between pid
Variance

0.216 0.0517 604

Level 1 Variance 4.148 0.101 3451

Adding variable med was a significant improvement and so we retain it in the
model.

Our next step is to consider adding variable sex to the current model.

=attaini β0sci+β1choice_2i+β2choice_3i+β3choice_4i+β4vrqi
+β5fed_1i+β6med_1i+β7sex_1i+β8intercepti+u

(2)
0,pidi

+u
(3)
0,sidi

+ei



Variable Coefficient SD ESS
p

value Significance

sc 0.0269 0.00338 3319 < 0.001 ***

choice_2 0.442 0.152 3514 < 0.001 ***

choice_3 1.354 1.202 3806

choice_4 -0.598 0.177 4046

vrq 0.154 0.00279 3001 < 0.001 ***

fed_1 0.215 0.0928 3729 0.021 *

med_1 0.199 0.0879 3852 0.023 *

sex_1 0.12 0.0703 4044 0.089 N/S

Intercept -9.781 0.278 2518

Between sid
Variance

0.0109 0.0139 206

Between pid
Variance

0.216 0.0535 602

Level 1 Variance 4.145 0.101 3144

Adding variable sex did not significantly improve the model, so we remove it from
the model.

We have considered all variables so now run our final random intercepts model.

=attaini β0sci+β1choice_2i+β2choice_3i+β3choice_4i+β4vrqi
+β5fed_1i+β6med_1i+β7intercepti+u

(2)
0,pidi

+u
(3)
0,sidi

+ei



Variable Coefficient SD ESS
p

value Significance

sc 0.0266 0.00335 3122 < 0.001 ***

choice_2 0.44 0.154 3374 < 0.001 ***

choice_3 1.411 1.198 3840

choice_4 -0.605 0.175 3659

vrq 0.154 0.00281 3263 < 0.001 ***

fed_1 0.219 0.0926 3746 0.018 *

med_1 0.204 0.0867 3927 0.019 *

Intercept -9.764 0.277 2904

Between sid
Variance

0.00937 0.0125 305

Between pid
Variance

0.216 0.0517 604

Level 1 Variance 4.148 0.101 3451

This is our final model.



Choosing interactions
You have chosen not to investigate interactions and so this page is empty.



Adding random slopes
You have chosen not to look at random slopes and so this page is blank.



Analysing the residuals
Here we look at the residuals from the model and plot them in various ways.

We start with level 1 residuals:

Here the distribution is reasonably symmetric with skewness value 0.016.

There are no obvious outliers in the residuals.



If the residuals are fairly normally distributed then the points in this graph should be
close to the red line.

Here you should consider whether there are any patterns in this plot. Ideally we
would like to see similar variability of the residuals across the range of fitted values.

Next the level 2 residuals for intercept:



Here the distribution is reasonably symmetric with skewness value 0.118.

There are no obvious outliers in the residuals.

If the residuals are fairly normally distributed then the points in this graph should be
close to the red line.

Next the level 3 residuals for intercept:



Here the distribution is reasonably symmetric with skewness value -0.068.

There are no obvious outliers in the residuals.

If the residuals are fairly normally distributed then the points in this graph should be
close to the red line.



Looking at predictions
Having fitted a model with several predictors we might like to represent this model
graphically. This is more difficult than when we have only one predictor and so for
now we consider each predictor in turn and set all other predictors to their mean
values.










