
Welcome to an SAA for fitting many model
types developed for Stat-JR v1.0.5
Input questions
Firstly on this page you will need to specify the dataset required from the list of
available datasets.

Next you need to choose many options including the response, estimation method,
clustering variables and predictor variables (both continuous and categorical) from
the chosen dataset. After choosing these variables the SAA will run and you will
see a block of text describing how many observations are to be used at the bottom
of this page. The rest of the analysis will appear in pages 2-12.

SAA for many N level multilevel
models

Which dataset do you wish to use:  

Submit

What estimation method do you
want to use:

IGLS

What is the response variable: use

What distribution are you going to
assume:

Binomial

Which column contains the
denominators:

cons

What link function do you wish to
use:

logit



Please enter your possible (nested)
classifications / levels (lowest first,

not including level-1):

district

Are there any continuous predictors
that need including in all models:

No

Are there any categorical predictors
that need including in all models:

No

Do you want to include any
continuous predictors as candidates

for inclusion in the models:

Yes

Which continuous predictors do you
want to consider:

age,d_illit,d_pray

Do you want to include any
categorical predictors as candidates

for inclusion in the models:

Yes

Which categorical predictors do you
want to consider:

lc,urban,educ,hindu

What selection type do you require: Forward pass

Do you want to test for random
slopes:

Yes

Do you want to test for interactions: Yes

The Analysis Assistant you are currently using is designed to work on complete
datasets only and so as a pre-processing step we have to remove any rows that
contain missing data in columns used in the analysis that follows. For now the list



On the next page we will look at the shape of the response and, in the case of
normal responses, decide whether to log transform.

of columns to be considered is: use, cons, district, age, d_illit, d_pray, lc, urban,
educ, hindu. There are 0 (0.0%) rows that get deleted This results in a dataset of
1934 rows.



Exploring the response
We will begin our analysis of the dataset by doing some basic data exploration.

You have chosen use as your response variable and so a first step is to take a look
at this variable and assess its suitability for modelling. The summary statistics for
the variable are in the table below:

Observations 1934

Mean 0.392

Standard Deviation 0.488

Median 0.0

We also look at a histogram of use to see what it looks like - noting that for a
Binomial model this is of less interest as it will simply look like a bar graph.

Here the median is smaller than the mean and there is significant skew to the right.
The skewness value is 0.441. Here the statistical significance may be to some
degree due to the large sample size as from a practical perspective values of skew
less than 2 are not considered too big a skew.

There are no obvious outliers in use.



Exploring the predictors individually
We can also look at each of the predictor variables in turn in isolation.

For categorical predictors we are looking at how common each category is in the
dataset. In particular we are checking for rare categories which might cause
difficulties in modelling and might therefore be usefully merged with other
categories (though this would need to be done outside this SAA).

For predictor lc we see the following:

lc N Percentage

0 530 27.404

1 354 18.304

2 307 15.874

3 743 38.418

Total 1934 100

None of the categories of lc have fewer than 5 observations.

For predictor urban we see the following:



urban N Percentage

0 1372 70.941

1 562 29.059

Total 1934 100

None of the categories of urban have fewer than 5 observations.

For predictor educ we see the following:

educ N Percentage

1 1214 62.771

2 238 12.306

3 185 9.566

4 297 15.357

Total 1934 100

None of the categories of educ have fewer than 5 observations.



For predictor hindu we see the following:

hindu N Percentage

0 1654 85.522

1 280 14.478

Total 1934 100

None of the categories of hindu have fewer than 5 observations.



For continuous predictors we are interested in looking at summary statistics, the
shape of the distribution and any unusual values. If the distribution is skewed then
we might want to transform the variable before fitting it in the model although it is
more important to consider transformations of the response variable and remember
what is important is whether the relationship between the response and predictor is
linear. If there are unusual values we will want to check that the unusual values are
correct and not errors and also whether we may want to treat the variable
differently. Another possibility for unusual shaped distributions is to instead
categorise the variable into ranges of values.

For predictor age we see the following:

Name age

Observations 1934

Mean 0.002

Standard Deviation 9.011

Median -1.56



Here the median is smaller than the mean and there is significant skew to the right.
The skewness value is 0.441. Here the statistical significance may be to some
degree due to the large sample size as from a practical perspective values of skew
less than 2 in absolute magnitude are not considered too big a skew.

There are no obvious outliers in age.

For predictor d_illit we see the following:

Name d_illit

Observations 1934

Mean 0.622

Standard Deviation 0.128

Median 0.63



Here the median is larger than the mean and there is significant skew to the left.
The skewness value is -0.323. Here the statistical significance may be to some
degree due to the large sample size as from a practical perspective values of skew
less than 2 in absolute magnitude are not considered too big a skew.

There are no obvious outliers in d_illit.

For predictor d_pray we see the following:

Name d_pray

Observations 1934

Mean 0.428

Standard Deviation 0.154

Median 0.43



Here the median is smaller than the mean and there is significant skew to the right.
The skewness value is 0.251. Here the statistical significance may be to some
degree due to the large sample size as from a practical perspective values of skew
less than 2 in absolute magnitude are not considered too big a skew.

There are no obvious outliers in d_pray.



Assessing the relationship between the response and
individual predictors
Once we are happy with our response variable and our set of predictors we now
want to have a preliminary look at them together before progressing to the
univariable modelling.

For the categorical predictors it is worth tabulating the response for each category
to look at whether patterns differ. We can formally test this with a chi-squared test.

We will investigate categorical variable lc. To do a chi-squared test we start by
tabulated observed counts and totals:

Observed use=0 use=1 Total

lc=0 397 133 530

lc=1 190 164 354

lc=2 160 147 307

lc=3 428 315 743

Total 1175 759 1934

We can therefore work out the expected counts from the margins of the observed
data.

And so we expect

E(use = 0, lc = 0) = Total use = 0 * Total lc = 0 / grand total = 1175 * 530 / 1934 =
322.0.  
E(use = 1, lc = 0) = Total use = 1 * Total lc = 0 / grand total = 759 * 530 / 1934 =
208.0.  
E(use = 0, lc = 1) = Total use = 0 * Total lc = 1 / grand total = 1175 * 354 / 1934 =
215.07.  
E(use = 1, lc = 1) = Total use = 1 * Total lc = 1 / grand total = 759 * 354 / 1934 =
138.93.  
E(use = 0, lc = 2) = Total use = 0 * Total lc = 2 / grand total = 1175 * 307 / 1934 =
186.52.  
E(use = 1, lc = 2) = Total use = 1 * Total lc = 2 / grand total = 759 * 307 / 1934 =
120.48.  
E(use = 0, lc = 3) = Total use = 0 * Total lc = 3 / grand total = 1175 * 743 / 1934 =



451.41.  
E(use = 1, lc = 3) = Total use = 1 * Total lc = 3 / grand total = 759 * 743 / 1934 =
291.59.  

So the table of expected counts is:

Expected use=0 use=1 Total

lc=0 322.0 208.0 530.0

lc=1 215.07 138.93 354.0

lc=2 186.52 120.48 307.0

lc=3 451.41 291.59 743.0

Total 1175.0 759.0 1934.0

We next look at differences between what we observe and expect in each cell. We
square these values so that every difference is positive and scale by the expected
counts so that more frequently expected cells aren�t overly influential. So for
example for use=0, lc=0 (O-E)^2/E = (397-322.0)^2/322.0=17.47. This statistic is
shown in tabular form below:

(O-E)^2/E use=0 use=1

lc=0 17.47 27.04

lc=1 2.92 4.52

lc=2 3.77 5.84

lc=3 1.21 1.88

The test statistic for a chi-squared test is found by summing the values of this table
so:

Chisq=17.47+27.04+2.92+4.52+3.77+5.84+1.21+1.88=64.66.

This is compared with a chi-squared table with degrees of freedom = (number of
columns -1)x(number of rows - 1) =

(4-1)x(2-1)=3.

Looking up the chi-squared table the value for p=0.05 is 7.81 and for p=0.01 =
11.34



As 64.66 > 11.34 our p value is less than 0.01 and we have strong evidence to
reject the null hypothesis (at the p=0.01) level.

The p-value is in fact less than 0.0001.

We will investigate categorical variable urban. To do a chi-squared test we start by
tabulated observed counts and totals:

Observed use=0 use=1 Total

urban=0 903 469 1372

urban=1 272 290 562

Total 1175 759 1934

We can therefore work out the expected counts from the margins of the observed
data.

And so we expect

E(use = 0, urban = 0) = Total use = 0 * Total urban = 0 / grand total = 1175 * 1372 /
1934 = 833.56.  
E(use = 1, urban = 0) = Total use = 1 * Total urban = 0 / grand total = 759 * 1372 /
1934 = 538.44.  
E(use = 0, urban = 1) = Total use = 0 * Total urban = 1 / grand total = 1175 * 562 /
1934 = 341.44.  
E(use = 1, urban = 1) = Total use = 1 * Total urban = 1 / grand total = 759 * 562 /
1934 = 220.56.  

So the table of expected counts is:

Expected use=0 use=1 Total

urban=0 833.56 538.44 1372.0

urban=1 341.44 220.56 562.0

Total 1175.0 759.0 1934.0

We next look at differences between what we observe and expect in each cell. We
square these values so that every difference is positive and scale by the expected
counts so that more frequently expected cells aren�t overly influential. So for
example for use=0, urban=0 (O-E)^2/E = (903-833.56)^2/833.56=5.79. This
statistic is shown in tabular form below:



(O-E)^2/E use=0 use=1

urban=0 5.79 8.96

urban=1 14.12 21.86

The test statistic for a chi-squared test is found by summing the values of this table
so:

Chisq=5.79+8.96+14.12+21.86=50.73.

This is compared with a chi-squared table with degrees of freedom = (number of
columns -1)x(number of rows - 1) =

(2-1)x(2-1)=1.

Looking up the chi-squared table the value for p=0.05 is 3.84 and for p=0.01 = 6.63

As 50.73 > 6.63 our p value is less than 0.01 and we have strong evidence to reject
the null hypothesis (at the p=0.01) level.

The p-value is in fact less than 0.0001.

We will investigate categorical variable educ. To do a chi-squared test we start by
tabulated observed counts and totals:

Observed use=0 use=1 Total

educ=1 837 377 1214

educ=2 137 101 238

educ=3 93 92 185

educ=4 108 189 297

Total 1175 759 1934

We can therefore work out the expected counts from the margins of the observed
data.

And so we expect

E(use = 0, educ = 1) = Total use = 0 * Total educ = 1 / grand total = 1175 * 1214 /
1934 = 737.56.  
E(use = 1, educ = 1) = Total use = 1 * Total educ = 1 / grand total = 759 * 1214 /
1934 = 476.44.  



E(use = 0, educ = 2) = Total use = 0 * Total educ = 2 / grand total = 1175 * 238 /
1934 = 144.6.  
E(use = 1, educ = 2) = Total use = 1 * Total educ = 2 / grand total = 759 * 238 /
1934 = 93.4.  
E(use = 0, educ = 3) = Total use = 0 * Total educ = 3 / grand total = 1175 * 185 /
1934 = 112.4.  
E(use = 1, educ = 3) = Total use = 1 * Total educ = 3 / grand total = 759 * 185 /
1934 = 72.6.  
E(use = 0, educ = 4) = Total use = 0 * Total educ = 4 / grand total = 1175 * 297 /
1934 = 180.44.  
E(use = 1, educ = 4) = Total use = 1 * Total educ = 4 / grand total = 759 * 297 /
1934 = 116.56.  

So the table of expected counts is:

Expected use=0 use=1 Total

educ=1 737.56 476.44 1214.0

educ=2 144.6 93.4 238.0

educ=3 112.4 72.6 185.0

educ=4 180.44 116.56 297.0

Total 1175.0 759.0 1934.0

We next look at differences between what we observe and expect in each cell. We
square these values so that every difference is positive and scale by the expected
counts so that more frequently expected cells aren�t overly influential. So for
example for use=0, educ=1 (O-E)^2/E = (837-737.56)^2/737.56=13.41. This
statistic is shown in tabular form below:

(O-E)^2/E use=0 use=1

educ=1 13.41 20.75

educ=2 0.4 0.62

educ=3 3.35 5.18

educ=4 29.08 45.02



The test statistic for a chi-squared test is found by summing the values of this table
so:

Chisq=13.41+20.75+0.4+0.62+3.35+5.18+29.08+45.02=117.81.

This is compared with a chi-squared table with degrees of freedom = (number of
columns -1)x(number of rows - 1) =

(4-1)x(2-1)=3.

Looking up the chi-squared table the value for p=0.05 is 7.81 and for p=0.01 =
11.34

As 117.81 > 11.34 our p value is less than 0.01 and we have strong evidence to
reject the null hypothesis (at the p=0.01) level.

The p-value is in fact less than 0.0001.

We will investigate categorical variable hindu. To do a chi-squared test we start by
tabulated observed counts and totals:

Observed use=0 use=1 Total

hindu=0 1017 637 1654

hindu=1 158 122 280

Total 1175 759 1934

We can therefore work out the expected counts from the margins of the observed
data.

And so we expect

E(use = 0, hindu = 0) = Total use = 0 * Total hindu = 0 / grand total = 1175 * 1654 /
1934 = 1004.89.  
E(use = 1, hindu = 0) = Total use = 1 * Total hindu = 0 / grand total = 759 * 1654 /
1934 = 649.11.  
E(use = 0, hindu = 1) = Total use = 0 * Total hindu = 1 / grand total = 1175 * 280 /
1934 = 170.11.  
E(use = 1, hindu = 1) = Total use = 1 * Total hindu = 1 / grand total = 759 * 280 /
1934 = 109.89.  

So the table of expected counts is:



Expected use=0 use=1 Total

hindu=0 1004.89 649.11 1654.0

hindu=1 170.11 109.89 280.0

Total 1175.0 759.0 1934.0

We next look at differences between what we observe and expect in each cell. We
square these values so that every difference is positive and scale by the expected
counts so that more frequently expected cells aren�t overly influential. So for
example for use=0, hindu=0 (O-E)^2/E = (1017-1004.89)^2/1004.89=0.15. This
statistic is shown in tabular form below:

(O-E)^2/E use=0 use=1

hindu=0 0.15 0.23

hindu=1 0.86 1.34

The test statistic for a chi-squared test is found by summing the values of this table
so:

Chisq=0.15+0.23+0.86+1.34=2.57.

This is compared with a chi-squared table with degrees of freedom = (number of
columns -1)x(number of rows - 1) =

(2-1)x(2-1)=1.

Looking up the chi-squared table the value for p=0.05 is 3.84 and for p=0.01 = 6.63

As our test statistic is 2.57 %lt; 3.84 this means that the p value is > 0.05 and so we
cannot reject the null hypothesis.

The p-value is in fact 0.1089.

For the continuous predictors it is worth looking at the mean value of each predictor
for the 0 and 1 responses to assess if there is any difference. We can formally test
this with a t-test.

Here is a tabulation of the predictor, age for response use with category 1 having
the largest mean and category 0 the smallest.



Category N Mean Standard Deviation Median

0 1175 -0.208 9.707 -1.56

1 759 0.327 7.802 -0.56

The formal test is as follows:

There are two groups in the data:  
The first group has 1175 observations with mean -0.208 standard deviation 9.711.  
The second group has 759 observations with mean 0.327 standard deviation
7.807.  
We are trying to test a hypothesis as to whether the two groups differ in their
(population) means by a statistically significant amount. Statistical significance is
related to how likely a result is to be a chance occurance. Here we are trying to
differentiate between a real difference (no matter how small) and a difference that
may have occurred due to the samples we have chosen.  
The mean difference is 0.534 with the second group having the larger sample
mean.  
We need to quantify if this difference is large relative to the variability in the data. To
do this we calculate the standard error of the difference. This is a function of the
variabilities in the samples from group A and group B combined with their sample
sizes. The bigger the 2 variabilities the larger the standard error, whilst the smaller
the variability the smaller the standard error.  
For our data the standard error of the mean difference is 0.401 and we divide our
observed difference by this standard error to give a test statistic with value 1.334.  
This test statistic is then compared to a t distribution with degrees of freedom equal
to the sum of the sample sizes in each group (1934) - 2. In this case a t distribution
with 1932. This t table has values of 1.961 for p=0.05 and 2.578 for p=0.01.

As our test statistic is 1.334 < 1.961 this means that the p value is > 0.05 and so
we cannot reject the null hypothesis.

The p-value is in fact 0.1825. .

The t test assumes that the distribution of the response in each group follows a
Normal distribution. We could check this by looking at histograms of the variable in
each group. If we were concerned about the normality assumption then we could
instead use a Mann Whitney (MW) test.

A Mann Whitney test works simply on the order (or ranks) of the responses across
the two groups. So the response variable is firstly sorted and then each value is
ranked. The ranks for each group are then summed and the value that is larger is



compared with what would be expected if there was no difference between the
groups.

In this case the MW U statistic is 413204 which for samples of size 1175 and 759
corresponds to a p value of 0.0127.

Here is a tabulation of the predictor, d_illit for response use with category 0 having
the largest mean and category 1 the smallest.

Category N Mean Standard Deviation Median

0 1175 0.639 0.124 0.65

1 759 0.597 0.13 0.62

The formal test is as follows:

There are two groups in the data:  
The first group has 1175 observations with mean 0.639 standard deviation 0.124.  
The second group has 759 observations with mean 0.597 standard deviation 0.13.  
We are trying to test a hypothesis as to whether the two groups differ in their
(population) means by a statistically significant amount. Statistical significance is
related to how likely a result is to be a chance occurance. Here we are trying to
differentiate between a real difference (no matter how small) and a difference that
may have occurred due to the samples we have chosen.  
The mean difference is 0.042 with the first group having the larger sample mean.  



We need to quantify if this difference is large relative to the variability in the data. To
do this we calculate the standard error of the difference. This is a function of the
variabilities in the samples from group A and group B combined with their sample
sizes. The bigger the 2 variabilities the larger the standard error, whilst the smaller
the variability the smaller the standard error.  
For our data the standard error of the mean difference is 0.006 and we divide our
observed difference by this standard error to give a test statistic with value 7.077.  
This test statistic is then compared to a t distribution with degrees of freedom equal
to the sum of the sample sizes in each group (1934) - 2. In this case a t distribution
with 1932. This t table has values of 1.961 for p=0.05 and 2.578 for p=0.01.

As 7.077 > 2.578 our p value is less than 0.01 and we have strong evidence to
reject the null hypothesis (at the p=0.01 level).

The p-value is in fact less than 0.0001..

The t test assumes that the distribution of the response in each group follows a
Normal distribution. We could check this by looking at histograms of the variable in
each group. If we were concerned about the normality assumption then we could
instead use a Mann Whitney (MW) test.

A Mann Whitney test works simply on the order (or ranks) of the responses across
the two groups. So the response variable is firstly sorted and then each value is
ranked. The ranks for each group are then summed and the value that is larger is
compared with what would be expected if there was no difference between the
groups.

In this case the MW U statistic is 521432 which for samples of size 1175 and 759
corresponds to a p value of less than 0.0001.



Here is a tabulation of the predictor, d_pray for response use with category 0
having the largest mean and category 1 the smallest.

Category N Mean Standard Deviation Median

0 1175 0.436 0.157 0.43

1 759 0.417 0.149 0.43

The formal test is as follows:

There are two groups in the data:  
The first group has 1175 observations with mean 0.436 standard deviation 0.157.  
The second group has 759 observations with mean 0.417 standard deviation
0.149.  
We are trying to test a hypothesis as to whether the two groups differ in their
(population) means by a statistically significant amount. Statistical significance is
related to how likely a result is to be a chance occurance. Here we are trying to
differentiate between a real difference (no matter how small) and a difference that
may have occurred due to the samples we have chosen.  
The mean difference is 0.018 with the first group having the larger sample mean.  
We need to quantify if this difference is large relative to the variability in the data. To
do this we calculate the standard error of the difference. This is a function of the
variabilities in the samples from group A and group B combined with their sample
sizes. The bigger the 2 variabilities the larger the standard error, whilst the smaller



the variability the smaller the standard error.  
For our data the standard error of the mean difference is 0.007 and we divide our
observed difference by this standard error to give a test statistic with value 2.603.  
This test statistic is then compared to a t distribution with degrees of freedom equal
to the sum of the sample sizes in each group (1934) - 2. In this case a t distribution
with 1932. This t table has values of 1.961 for p=0.05 and 2.578 for p=0.01.

As 2.603 > 2.578 our p value is less than 0.01 and we have strong evidence to
reject the null hypothesis (at the p=0.01 level).

The p-value is in fact 0.0093. .

The t test assumes that the distribution of the response in each group follows a
Normal distribution. We could check this by looking at histograms of the variable in
each group. If we were concerned about the normality assumption then we could
instead use a Mann Whitney (MW) test.

A Mann Whitney test works simply on the order (or ranks) of the responses across
the two groups. So the response variable is firstly sorted and then each value is
ranked. The ranks for each group are then summed and the value that is larger is
compared with what would be expected if there was no difference between the
groups.

In this case the MW U statistic is 473639 which for samples of size 1175 and 759
corresponds to a p value of 0.04131.



Choosing appropriate random classifications
We begin this section by deciding which of the possible random classifications to
include in the modelling.

This is done by fitting combinations in turn and picking more complicated models if
they make a significant improvement via a Wald test. All models are displayed
along with their chi-squared test statistic in the table below:

Higher-level classifications Significance

district 0.001

The best model based on the Likelihood has levels: district

As this is a multilevel modelling SAA we will also want to look at how the response
is distributed across the levels of the model.

For this we will use the best model chosen above and look at how the variance is
distributed across levels.

Variable Coefficient SE

Intercept -0.506 0.0803

district Variance 0.218 0.0681

Here we see that the VPC for district = 0.218/3.508 = 0.0623, so we see that
district effects explain 6.228% of the variability in use.



Performing univariable modelling
Our next step in modelling now that we have a set of potential predictors is to
consider models for each predictor in turn along with a random intercept at each
chosen classification from the best model in the last section. In the fixed part these
models simply contain an intercept and the particular predictor and so for
continuous predictors will be multilevel linear regressions and for categorical
predictors will be multilevel generalisations of ANOVAs. In the table below we
summarise the modelling by showing the coefficients for each predictor along with
the p value comparing the model with that predictor with a Null model. This
Univariable modelling step will identify a set of candidate predictors to be taken
forward into the next stage of modelling.

Variable Coefficient SE p value Significance

age 0.00801 0.00525 0.127 N/S

d_illit -2.672 0.543 < 0.001 ***

d_pray -0.582 0.5 0.244 N/S

lc_1 0.926 0.15 < 0.001 ***

lc_2 1.023 0.156

lc_3 0.837 0.128

urban_1 0.623 0.113 < 0.001 ***

educ_2 0.415 0.148 < 0.001 ***

educ_3 0.76 0.162

educ_4 1.247 0.137

hindu_1 0.233 0.143 0.102 N/S

Which predictors we consider for the next stage of analysis will depend on their
significance in the above table (but may in practice also depend on the size the
effect and substantive interest of the variable though this is hard to automate). We
will use a threshold on the p values associated with the predictors to decide
whether to include the predictors in the next stage. Here we are currently using a
threshold of 0.05. so the predictors to carry forward are: urban, lc, d_illit, and educ.











Looking at correlations between predictors
Our next step is to check that none of the correlations between the predictor
variables are too great as this could cause estimation problems when we add the
predictors to the model together. To do this we look at all correlations between the
predictor variables that have been identified as significant univariably and are thus
candidates to be added to the model.

The correlations are as follows:



Variables Correlation

(d_illit, age) -0.037

(d_pray, age) 0.031

(d_pray, d_illit) -0.374

(lc_1, age) -0.206

(lc_1, d_illit) 0.018

(lc_1, d_pray) -0.046

(lc_2, age) 0.013

(lc_2, d_illit) -0.014

(lc_2, d_pray) 0.029

(lc_2, lc_1) -0.206

(lc_3, age) 0.632

(lc_3, d_illit) -0.016

(lc_3, d_pray) 0.053

(lc_3, lc_1) -0.374

(lc_3, lc_2) -0.343

(urban_1, age) -0.017

(urban_1, d_illit) -0.243

(urban_1, d_pray) -0.038

(urban_1, lc_1) 0.033

(urban_1, lc_2) -0.022

(urban_1, lc_3) -0.047

(educ_2, age) -0.024



Variables Correlation

(educ_2, d_illit) -0.087

(educ_2, d_pray) -0.022

(educ_2, lc_1) -0.01

(educ_2, lc_2) 0.001

(educ_2, lc_3) 0.021

(educ_2, urban_1) -0.011

(educ_3, age) -0.049

(educ_3, d_illit) -0.103

(educ_3, d_pray) 0.07

(educ_3, lc_1) 0.037

(educ_3, lc_2) 0.013

(educ_3, lc_3) -0.022

(educ_3, urban_1) 0.016

(educ_3, educ_2) -0.122

(educ_4, age) -0.115

(educ_4, d_illit) -0.165

(educ_4, d_pray) 0.063

(educ_4, lc_1) 0.062

(educ_4, lc_2) 0.015

(educ_4, lc_3) -0.16

(educ_4, urban_1) 0.283

(educ_4, educ_2) -0.16



Variables Correlation

(educ_4, educ_3) -0.139

(hindu_1, age) 0.011

(hindu_1, d_illit) 0.036

(hindu_1, d_pray) -0.044

(hindu_1, lc_1) 0.045

(hindu_1, lc_2) 0.022

(hindu_1, lc_3) -0.044

(hindu_1, urban_1) -0.001

(hindu_1, educ_2) -0.02

(hindu_1, educ_3) 0.036

(hindu_1, educ_4) 0.008

Correlations greater than 0.8 (in magnitude) are worth looking at as they may result
in model fitting problems when both predictors are included.



Performing multivariable model selection - random
intercept models
In this next stage we will look at the best random intercepts model using only main
effects for the variables to be considered. You have chosen to perform forward
pass which is a quicker method than full forward selection. It may therefore not
explore as many possible models. The predictor variables are considered in turn
based on their significance in the univariable analysis and each is added to the
current model. If the resulting model is a significant improvement then the predictor
is kept in the model otherwise it is removed. Attention then moves on to the next
predictor until all predictors are considered.

You have chosen to use Wald tests to compare models. These work by looked at
estimates and standard error matrices for each predictor to assess significance and
run quicker than the alternative methods as they do not need to run submodels.

The most significant predictor in the univariable analysis was educ so our starting
point in multivariable modelling is the model:

Variable Coefficient SE p value Significance

educ_2 0.415 0.148 < 0.001 ***

educ_3 0.76 0.162

educ_4 1.247 0.137

Intercept -0.82 0.0861

Between district Variance 0.18 0.0617

Adding variable educ was a significant improvement and so we retain it in the
model.

Our next step is to consider adding variable lc to the current model.

∼ Binomial( , ), logit( ) =usei consi pi pi β0educ_2i+β1educ_3i

+β2educ_4i+β3intercepti+u
(2)
0,districti

∼ Binomial( , ), logit( ) =usei consi pi pi β0educ_2i+β1educ_3i
+β2educ_4i+β3lc_1i+β4lc_2i+β5lc_3i+β6intercepti+u

(2)
0,districti



Variable Coefficient SE p value Significance

educ_2 0.435 0.152 < 0.001 ***

educ_3 0.807 0.167

educ_4 1.483 0.147

lc_1 1.027 0.157 < 0.001 ***

lc_2 1.205 0.163

lc_3 1.135 0.137

Intercept -1.714 0.138

Between district Variance 0.212 0.0695

Adding variable lc was a significant improvement and so we retain it in the model.

Our next step is to consider adding variable urban to the current model.

Variable Coefficient SE p value Significance

educ_2 0.42 0.152 < 0.001 ***

educ_3 0.774 0.168

educ_4 1.371 0.152

lc_1 1.041 0.157 < 0.001 ***

lc_2 1.227 0.164

lc_3 1.146 0.138

urban_1 0.406 0.122 < 0.001 ***

Intercept -1.808 0.14

Between district Variance 0.181 0.0633

∼ Binomial( , ), logit( ) =usei consi pi pi β0educ_2i+β1educ_3i
+β2educ_4i+β3lc_1i+β4lc_2i+β5lc_3i+β6urban_1i+β7intercepti
+u

(2)
0,districti



Adding variable urban was a significant improvement and so we retain it in the
model.

Our next step is to consider adding variable d_illit to the current model.

Variable Coefficient SE p value Significance

educ_2 0.377 0.154 < 0.001 ***

educ_3 0.725 0.17

educ_4 1.336 0.153

lc_1 1.05 0.158 < 0.001 ***

lc_2 1.229 0.165

lc_3 1.139 0.138

urban_1 0.376 0.123 0.002 **

d_illit -1.736 0.587 0.003 **

Intercept -0.688 0.403

Between district Variance 0.16 0.0597

Adding variable d_illit was a significant improvement and so we retain it in the
model.

Our next step is to consider adding variable hindu to the current model.

∼ Binomial( , ), logit( ) =usei consi pi pi β0educ_2i+β1educ_3i
+β2educ_4i+β3lc_1i+β4lc_2i+β5lc_3i+β6urban_1i+β7d_illiti
+β8intercepti+u

(2)
0,districti

∼ Binomial( , ), logit( ) =usei consi pi pi β0educ_2i+β1educ_3i
+β2educ_4i+β3lc_1i+β4lc_2i+β5lc_3i+β6urban_1i+β7d_illiti
+β8hindu_1i+β9intercepti+u

(2)
0,districti



Variable Coefficient SE p value Significance

educ_2 0.381 0.154 < 0.001 ***

educ_3 0.721 0.17

educ_4 1.336 0.153

lc_1 1.045 0.158 < 0.001 ***

lc_2 1.225 0.165

lc_3 1.141 0.138

urban_1 0.373 0.123 0.002 **

d_illit -1.752 0.586 0.003 **

hindu_1 0.203 0.15 0.174 N/S

Intercept -0.707 0.402

Between district Variance 0.158 0.0596

Adding variable hindu did not significantly improve the model, so we remove it from
the model and try the next predictor.

Our next step is to consider adding variable age to the current model.

∼ Binomial( , ), logit( ) =usei consi pi pi β0educ_2i+β1educ_3i
+β2educ_4i+β3lc_1i+β4lc_2i+β5lc_3i+β6urban_1i+β7d_illiti+β8agei
+β9intercepti+u

(2)
0,districti



Variable Coefficient SE p value Significance

educ_2 0.344 0.154 < 0.001 ***

educ_3 0.691 0.171

educ_4 1.322 0.153

lc_1 1.141 0.161 < 0.001 ***

lc_2 1.418 0.178

lc_3 1.491 0.184

urban_1 0.387 0.123 0.002 **

d_illit -1.813 0.591 0.002 **

age -0.0233 0.00798 0.003 **

Intercept -0.815 0.407

Between district Variance 0.163 0.0605

Adding variable age was a significant improvement and so we retain it in the model.

Our next step is to consider adding variable d_pray to the current model.

∼ Binomial( , ), logit( ) =usei consi pi pi β0educ_2i+β1educ_3i
+β2educ_4i+β3lc_1i+β4lc_2i+β5lc_3i+β6urban_1i+β7d_illiti+β8agei
+β9d_prayi+β10intercepti+u

(2)
0,districti



Variable Coefficient SE p value Significance

educ_2 0.334 0.154 < 0.001 ***

educ_3 0.716 0.172

educ_4 1.383 0.155

lc_1 1.174 0.162 < 0.001 ***

lc_2 1.473 0.179

lc_3 1.546 0.186

urban_1 0.343 0.122 0.005 **

d_illit -2.688 0.574 < 0.001 ***

age -0.0246 0.00802 0.002 **

d_pray -2.02 0.475 < 0.001 ***

Intercept 0.558 0.499

Between district Variance 0.0794 0.0425

Adding variable d_pray was a significant improvement and so we retain it in the
model.

This is our final model.



Choosing interactions
In this section we add to the best random intercepts model with main effects found
in the last section. Here we consider all possible pairwise interactions between the
significant predictors already found including quadratic terms for predictors. The
model selection methods used are as for the previous best random intercepts
models.

Variable Coefficient SE p value Significance

educ_2 0.329 0.155 < 0.001 ***

educ_3 0.707 0.173

educ_4 1.307 0.156

lc_1 0.906 0.168 < 0.001 ***

lc_2 1.056 0.191

lc_3 1.139 0.195

urban_1 0.325 0.123 0.009 **

d_illit -2.771 0.582 < 0.001 ***

age 0.00253 0.00949 0.79 N/S

d_pray -2.032 0.482 < 0.001 ***

age_X_age -0.004 0.000734 < 0.001 ***

Intercept 1.218 0.519

Between district Variance 0.0843 0.0441

Adding variable age_X_age significantly improved the model and so is retained in
the model.

Our next step is to consider adding variable d_pray_X_age to the current model.

∼ Binomial( , ), logit( ) =usei consi pi pi β0educ_2i+β1educ_3i
+β2educ_4i+β3lc_1i+β4lc_2i+β5lc_3i+β6urban_1i+β7d_illiti+β8agei
+β9d_prayi+β10age_X_agei+β11intercepti+u

(2)
0,districti



Variable Coefficient SE p value Significance

educ_2 0.341 0.156 < 0.001 ***

educ_3 0.697 0.173

educ_4 1.297 0.156

lc_1 0.905 0.168 < 0.001 ***

lc_2 1.041 0.191

lc_3 1.128 0.195

urban_1 0.322 0.124 0.009 **

d_illit -2.812 0.584 < 0.001 ***

age 0.0376 0.0198 0.057 N/S

d_pray -2.014 0.482 < 0.001 ***

age_X_age -0.00401 0.000735 < 0.001 ***

d_pray_X_age -0.0835 0.0411 0.042 *

Intercept 1.246 0.52

Between district Variance 0.0856 0.0444

Adding variable d_pray_X_age significantly improved the model and so is retained
in the model.

Our next step is to consider adding variable urban_X_educ to the current model.

∼ Binomial( , ), logit( ) =usei consi pi pi β0educ_2i+β1educ_3i
+β2educ_4i+β3lc_1i+β4lc_2i+β5lc_3i+β6urban_1i+β7d_illiti+β8agei
+β9d_prayi+β10age_X_agei+β11d_pray_X_agei+β12intercepti
+u

(2)
0,districti

∼ Binomial( , ), logit( ) =usei consi pi pi β0educ_2i+β1educ_3i
+β2educ_4i+β3lc_1i+β4lc_2i+β5lc_3i+β6urban_1i+β7d_illiti+β8agei
+β9d_prayi+β10age_X_agei+β11d_pray_X_agei
+β12urban_1_X_educ_2i+β13urban_1_X_educ_3i

+β14urban_1_X_educ_4i+β15intercepti+u
(2)
0,districti



Variable Coefficient SE p value Significance

educ_2 0.466 0.183 < 0.001 ***

educ_3 0.738 0.206

educ_4 0.995 0.213

lc_1 0.924 0.169 < 0.001 ***

lc_2 1.074 0.192

lc_3 1.156 0.196

urban_1 0.288 0.161 0.074 N/S

d_illit -2.801 0.585 < 0.001 ***

age 0.0372 0.0198 0.06 N/S

d_pray -1.995 0.483 < 0.001 ***

age_X_age -0.00399 0.000737 < 0.001 ***

d_pray_X_age -0.085 0.0411 0.039 *

urban_1_X_educ_2 -0.427 0.344 0.084 N/S

urban_1_X_educ_3 -0.127 0.374

urban_1_X_educ_4 0.569 0.306

Intercept 1.22 0.521

Between district Variance 0.0864 0.0447

Adding variable urban_X_educ did not significantly improve the model, so we
remove it from the model and try the next predictor.

Our next step is to consider adding variable d_illit_X_urban to the current model.

∼ Binomial( , ), logit( ) =usei consi pi pi β0educ_2i+β1educ_3i
+β2educ_4i+β3lc_1i+β4lc_2i+β5lc_3i+β6urban_1i+β7d_illiti+β8agei
+β9d_prayi+β10age_X_agei+β11d_pray_X_agei
+β12d_illit_X_urban_1i+β13intercepti+u

(2)
0,districti



Variable Coefficient SE p value Significance

educ_2 0.347 0.156 < 0.001 ***

educ_3 0.697 0.174

educ_4 1.297 0.156

lc_1 0.917 0.168 < 0.001 ***

lc_2 1.05 0.192

lc_3 1.141 0.195

urban_1 1.167 0.601 0.052 N/S

d_illit -2.418 0.646 < 0.001 ***

age 0.0377 0.0198 0.057 N/S

d_pray -2.038 0.484 < 0.001 ***

age_X_age -0.00395 0.000737 < 0.001 ***

d_pray_X_age -0.0846 0.0412 0.04 *

d_illit_X_urban_1 -1.399 0.975 0.151 N/S

Intercept 0.991 0.55

Between district Variance 0.0888 0.0452

Adding variable d_illit_X_urban did not significantly improve the model, so we
remove it from the model and try the next predictor.

Our next step is to consider adding variable age_X_d_illit to the current model.

∼ Binomial( , ), logit( ) =usei consi pi pi β0educ_2i+β1educ_3i
+β2educ_4i+β3lc_1i+β4lc_2i+β5lc_3i+β6urban_1i+β7d_illiti+β8agei
+β9d_prayi+β10age_X_agei+β11d_pray_X_agei+β12age_X_d_illiti
+β13intercepti+u

(2)
0,districti



Variable Coefficient SE p value Significance

educ_2 0.343 0.156 < 0.001 ***

educ_3 0.696 0.173

educ_4 1.297 0.156

lc_1 0.911 0.168 < 0.001 ***

lc_2 1.047 0.191

lc_3 1.13 0.195

urban_1 0.321 0.124 0.01 **

d_illit -2.817 0.585 < 0.001 ***

age 0.0128 0.0469 0.784 N/S

d_pray -2.005 0.483 < 0.001 ***

age_X_age -0.00399 0.000735 < 0.001 ***

d_pray_X_age -0.07 0.047 0.137 N/S

age_X_d_illit 0.0314 0.0541 0.562 N/S

Intercept 1.243 0.52

Between district Variance 0.0856 0.0444

Adding variable age_X_d_illit did not significantly improve the model, so we remove
it from the model and try the next predictor.

Our next step is to consider adding variable age_X_lc to the current model.

∼ Binomial( , ), logit( ) =usei consi pi pi β0educ_2i+β1educ_3i
+β2educ_4i+β3lc_1i+β4lc_2i+β5lc_3i+β6urban_1i+β7d_illiti+β8agei
+β9d_prayi+β10age_X_agei+β11d_pray_X_agei+β12age_X_lc_1i

+β13age_X_lc_2i+β14age_X_lc_3i+β15intercepti+u
(2)
0,districti



Variable Coefficient SE p value Significance

educ_2 0.335 0.156 < 0.001 ***

educ_3 0.686 0.173

educ_4 1.283 0.156

lc_1 1.233 0.254 < 0.001 ***

lc_2 1.358 0.245

lc_3 1.288 0.241

urban_1 0.333 0.124 0.007 **

d_illit -2.847 0.581 < 0.001 ***

age -0.0132 0.0291 0.65 N/S

d_pray -2.01 0.48 < 0.001 ***

age_X_age -0.006 0.00112 < 0.001 ***

d_pray_X_age -0.0898 0.0413 0.03 *

age_X_lc_1 0.0511 0.0311 0.081 N/S

age_X_lc_2 0.0728 0.0338

age_X_lc_3 0.0911 0.0355

Intercept 1.032 0.534

Between district Variance 0.0821 0.0437

Adding variable age_X_lc did not significantly improve the model, so we remove it
from the model and try the next predictor.

Our next step is to consider adding variable d_pray_X_educ to the current model.

∼ Binomial( , ), logit( ) =usei consi pi pi β0educ_2i+β1educ_3i
+β2educ_4i+β3lc_1i+β4lc_2i+β5lc_3i+β6urban_1i+β7d_illiti+β8agei
+β9d_prayi+β10age_X_agei+β11d_pray_X_agei



Variable Coefficient SE p value Significance

educ_2 0.0728 0.471 0.312 N/S

educ_3 -0.268 0.538

educ_4 0.809 0.471

lc_1 0.911 0.168 < 0.001 ***

lc_2 1.034 0.191

lc_3 1.121 0.195

urban_1 0.337 0.124 0.007 **

d_illit -2.78 0.589 < 0.001 ***

age 0.0346 0.0198 0.081 N/S

d_pray -2.477 0.553 < 0.001 ***

age_X_age -0.00402 0.000735 < 0.001 ***

d_pray_X_age -0.0754 0.0415 0.069 N/S

d_pray_X_educ_2 0.657 1.068 0.23 N/S

d_pray_X_educ_3 2.159 1.126

d_pray_X_educ_4 1.113 0.99

Intercept 1.414 0.533

Between district Variance 0.0858 0.0445

Adding variable d_pray_X_educ did not significantly improve the model, so we
remove it from the model and try the next predictor.

Our next step is to consider adding variable age_X_educ to the current model.

+β12d_pray_X_educ_2i+β13d_pray_X_educ_3i
+β14d_pray_X_educ_4i+β15intercepti+u

(2)
0,districti



Variable Coefficient SE p value Significance

educ_2 0.347 0.156 < 0.001 ***

educ_3 0.668 0.175

educ_4 1.308 0.163

lc_1 0.91 0.17 < 0.001 ***

lc_2 1.058 0.192

lc_3 1.139 0.195

urban_1 0.334 0.124 0.007 **

d_illit -2.818 0.585 < 0.001 ***

age 0.0418 0.02 0.037 *

d_pray -2.018 0.482 < 0.001 ***

age_X_age -0.00414 0.000749 < 0.001 ***

d_pray_X_age -0.0744 0.0414 0.073 N/S

age_X_educ_2 -0.0206 0.0185 0.226 N/S

age_X_educ_3 -0.0407 0.0212

age_X_educ_4 -0.00779 0.02

Intercept 1.24 0.521

Between district Variance 0.0848 0.0443

Adding variable age_X_educ did not significantly improve the model, so we remove
it from the model and try the next predictor.

Our next step is to consider adding variable d_pray_X_lc to the current model.

∼ Binomial( , ), logit( ) =usei consi pi pi β0educ_2i+β1educ_3i
+β2educ_4i+β3lc_1i+β4lc_2i+β5lc_3i+β6urban_1i+β7d_illiti+β8agei
+β9d_prayi+β10age_X_agei+β11d_pray_X_agei+β12age_X_educ_2i
+β13age_X_educ_3i+β14age_X_educ_4i+β15intercepti+u

(2)
0,districti



Variable Coefficient SE p value Significance

educ_2 0.343 0.156 < 0.001 ***

educ_3 0.696 0.173

educ_4 1.295 0.156

lc_1 1.398 0.482 0.013 *

lc_2 1.197 0.526

lc_3 1.545 0.542

urban_1 0.321 0.124 0.009 **

d_illit -2.799 0.584 < 0.001 ***

age 0.0287 0.0253 0.257 N/S

d_pray -1.298 0.92 0.158 N/S

age_X_age -0.00404 0.000736 < 0.001 ***

d_pray_X_age -0.0619 0.0552 0.262 N/S

d_pray_X_lc_1 -1.206 1.096 0.679 N/S

d_pray_X_lc_2 -0.398 1.143

d_pray_X_lc_3 -1.004 1.188

Intercept 0.948 0.618

Between district Variance 0.0857 0.0445

Adding variable d_pray_X_lc did not significantly improve the model, so we remove
it from the model and try the next predictor.

Our next step is to consider adding variable d_pray_X_d_pray to the current model.

∼ Binomial( , ), logit( ) =usei consi pi pi β0educ_2i+β1educ_3i
+β2educ_4i+β3lc_1i+β4lc_2i+β5lc_3i+β6urban_1i+β7d_illiti+β8agei
+β9d_prayi+β10age_X_agei+β11d_pray_X_agei+β12d_pray_X_lc_1i
+β13d_pray_X_lc_2i+β14d_pray_X_lc_3i+β15intercepti+u

(2)
0,districti



Variable Coefficient SE p value Significance

educ_2 0.341 0.156 < 0.001 ***

educ_3 0.695 0.173

educ_4 1.298 0.156

lc_1 0.906 0.168 < 0.001 ***

lc_2 1.039 0.191

lc_3 1.13 0.195

urban_1 0.322 0.124 0.009 **

d_illit -2.924 0.6 < 0.001 ***

age 0.0372 0.0197 0.058 N/S

d_pray -3.713 2.396 0.121 N/S

age_X_age -0.004 0.000735 < 0.001 ***

d_pray_X_age -0.0828 0.0408 0.042 *

d_pray_X_d_pray 1.873 2.599 0.471 N/S

Intercept 1.655 0.761

Between district Variance 0.0828 0.0438

Adding variable d_pray_X_d_pray did not significantly improve the model, so we
remove it from the model and try the next predictor.

Our next step is to consider adding variable age_X_urban to the current model.

∼ Binomial( , ), logit( ) =usei consi pi pi β0educ_2i+β1educ_3i
+β2educ_4i+β3lc_1i+β4lc_2i+β5lc_3i+β6urban_1i+β7d_illiti+β8agei
+β9d_prayi+β10age_X_agei+β11d_pray_X_agei
+β12d_pray_X_d_prayi+β13intercepti+u

(2)
0,districti

∼ Binomial( , ), logit( ) =usei consi pi pi β0educ_2i+β1educ_3i
+β2educ_4i+β3lc_1i+β4lc_2i+β5lc_3i+β6urban_1i+β7d_illiti+β8agei
+β9d_prayi+β10age_X_agei+β11d_pray_X_agei+β12age_X_urban_1i



Variable Coefficient SE p value Significance

educ_2 0.343 0.156 < 0.001 ***

educ_3 0.705 0.174

educ_4 1.293 0.156

lc_1 0.907 0.168 < 0.001 ***

lc_2 1.043 0.191

lc_3 1.13 0.195

urban_1 0.326 0.124 0.008 **

d_illit -2.794 0.585 < 0.001 ***

age 0.0426 0.0203 0.036 *

d_pray -2.004 0.483 < 0.001 ***

age_X_age -0.00405 0.000736 < 0.001 ***

d_pray_X_age -0.0848 0.0411 0.039 *

age_X_urban_1 -0.014 0.013 0.282 N/S

Intercept 1.23 0.521

Between district Variance 0.0864 0.0446

Adding variable age_X_urban did not significantly improve the model, so we
remove it from the model and try the next predictor.

Our next step is to consider adding variable d_pray_X_urban to the current model.

+β13intercepti+u
(2)
0,districti

∼ Binomial( , ), logit( ) =usei consi pi pi β0educ_2i+β1educ_3i
+β2educ_4i+β3lc_1i+β4lc_2i+β5lc_3i+β6urban_1i+β7d_illiti+β8agei
+β9d_prayi+β10age_X_agei+β11d_pray_X_agei
+β12d_pray_X_urban_1i+β13intercepti+u

(2)
0,districti



Variable Coefficient SE p value Significance

educ_2 0.343 0.156 < 0.001 ***

educ_3 0.701 0.173

educ_4 1.295 0.156

lc_1 0.906 0.168 < 0.001 ***

lc_2 1.042 0.191

lc_3 1.131 0.195

urban_1 0.112 0.353 0.751 N/S

d_illit -2.776 0.59 < 0.001 ***

age 0.0378 0.0198 0.056 N/S

d_pray -2.12 0.518 < 0.001 ***

age_X_age -0.004 0.000735 < 0.001 ***

d_pray_X_age -0.0844 0.0411 0.04 *

d_pray_X_urban_1 0.514 0.805 0.523 N/S

Intercept 1.267 0.524

Between district Variance 0.0886 0.0451

Adding variable d_pray_X_urban did not significantly improve the model, so we
remove it from the model and try the next predictor.

Our next step is to consider adding variable lc_X_educ to the current model.

∼ Binomial( , ), logit( ) =usei consi pi pi β0educ_2i+β1educ_3i
+β2educ_4i+β3lc_1i+β4lc_2i+β5lc_3i+β6urban_1i+β7d_illiti+β8agei
+β9d_prayi+β10age_X_agei+β11d_pray_X_agei+β12lc_1_X_educ_2i
+β13lc_1_X_educ_3i+β14lc_1_X_educ_4i+β15lc_2_X_educ_2i
+β16lc_2_X_educ_3i+β17lc_2_X_educ_4i+β18lc_3_X_educ_2i
+β19lc_3_X_educ_3i+β20lc_3_X_educ_4i+β21intercepti+u

(2)
0,districti



Variable Coefficient SE p value Significance

educ_2 -0.115 0.39 < 0.001 ***

educ_3 1.015 0.357

educ_4 1.226 0.254

lc_1 0.855 0.225 < 0.001 ***

lc_2 0.885 0.241

lc_3 1.142 0.227

urban_1 0.328 0.124 0.008 **

d_illit -2.819 0.582 < 0.001 ***

age 0.0352 0.0199 0.077 N/S

d_pray -2.06 0.481 < 0.001 ***

age_X_age -0.00399 0.000736 < 0.001 ***

d_pray_X_age -0.0787 0.0413 0.057 N/S

lc_1_X_educ_2 0.866 0.527 0.603 N/S

lc_1_X_educ_3 -0.587 0.501

lc_1_X_educ_4 0.0797 0.4

lc_2_X_educ_2 0.796 0.54

lc_2_X_educ_3 -0.0125 0.544

lc_2_X_educ_4 0.421 0.455

lc_3_X_educ_2 0.328 0.453

lc_3_X_educ_3 -0.48 0.452

lc_3_X_educ_4 -0.0515 0.401

Intercept 1.298 0.527



Variable Coefficient SE p value Significance

Between district Variance 0.0816 0.0436

Adding variable lc_X_educ did not significantly improve the model, so we remove it
from the model and try the next predictor.

Our next step is to consider adding variable d_illit_X_educ to the current model.

∼ Binomial( , ), logit( ) =usei consi pi pi β0educ_2i+β1educ_3i
+β2educ_4i+β3lc_1i+β4lc_2i+β5lc_3i+β6urban_1i+β7d_illiti+β8agei
+β9d_prayi+β10age_X_agei+β11d_pray_X_agei+β12d_illit_X_educ_2i
+β13d_illit_X_educ_3i+β14d_illit_X_educ_4i+β15intercepti+u

(2)
0,districti



Variable Coefficient SE p value Significance

educ_2 0.46 0.771 0.042 *

educ_3 1.853 0.853

educ_4 1.636 0.724

lc_1 0.908 0.168 < 0.001 ***

lc_2 1.039 0.191

lc_3 1.123 0.195

urban_1 0.321 0.124 0.01 **

d_illit -2.48 0.673 < 0.001 ***

age 0.0373 0.0198 0.059 N/S

d_pray -2.017 0.481 < 0.001 ***

age_X_age -0.00402 0.000736 < 0.001 ***

d_pray_X_age -0.0818 0.0411 0.046 *

d_illit_X_educ_2 -0.175 1.266 0.576 N/S

d_illit_X_educ_3 -1.948 1.408

d_illit_X_educ_4 -0.554 1.202

Intercept 1.039 0.561

Between district Variance 0.0842 0.0441

Adding variable d_illit_X_educ did not significantly improve the model, so we
remove it from the model and try the next predictor.

Our next step is to consider adding variable d_illit_X_d_illit to the current model.

∼ Binomial( , ), logit( ) =usei consi pi pi β0educ_2i+β1educ_3i
+β2educ_4i+β3lc_1i+β4lc_2i+β5lc_3i+β6urban_1i+β7d_illiti+β8agei
+β9d_prayi+β10age_X_agei+β11d_pray_X_agei+β12d_illit_X_d_illiti

+β13intercepti+u
(2)
0,districti



Variable Coefficient SE p value Significance

educ_2 0.343 0.156 < 0.001 ***

educ_3 0.696 0.173

educ_4 1.3 0.156

lc_1 0.909 0.168 < 0.001 ***

lc_2 1.044 0.191

lc_3 1.131 0.195

urban_1 0.321 0.124 0.009 **

d_illit -4.375 3.583 0.222 N/S

age 0.0375 0.0197 0.058 N/S

d_pray -2.037 0.482 < 0.001 ***

age_X_age -0.00401 0.000735 < 0.001 ***

d_pray_X_age -0.0834 0.0411 0.042 *

d_illit_X_d_illit 1.289 2.91 0.658 N/S

Intercept 1.706 1.161

Between district Variance 0.0841 0.0441

Adding variable d_illit_X_d_illit did not significantly improve the model, so we
remove it from the model and try the next predictor.

Our next step is to consider adding variable d_illit_X_lc to the current model.

∼ Binomial( , ), logit( ) =usei consi pi pi β0educ_2i+β1educ_3i
+β2educ_4i+β3lc_1i+β4lc_2i+β5lc_3i+β6urban_1i+β7d_illiti+β8agei
+β9d_prayi+β10age_X_agei+β11d_pray_X_agei+β12d_illit_X_lc_1i
+β13d_illit_X_lc_2i+β14d_illit_X_lc_3i+β15intercepti+u

(2)
0,districti



Variable Coefficient SE p value Significance

educ_2 0.342 0.156 < 0.001 ***

educ_3 0.698 0.173

educ_4 1.297 0.156

lc_1 1.048 0.809 0.457 N/S

lc_2 0.977 0.825

lc_3 0.962 0.692

urban_1 0.322 0.124 0.009 **

d_illit -2.906 0.936 0.002 **

age 0.0354 0.0207 0.087 N/S

d_pray -2.012 0.482 < 0.001 ***

age_X_age -0.004 0.000735 < 0.001 ***

d_pray_X_age -0.0783 0.0435 0.072 N/S

d_illit_X_lc_1 -0.225 1.29 0.981 N/S

d_illit_X_lc_2 0.108 1.316

d_illit_X_lc_3 0.273 1.094

Intercept 1.302 0.676

Between district Variance 0.0853 0.0444

Adding variable d_illit_X_lc did not significantly improve the model, so we remove it
from the model and try the next predictor.

Our next step is to consider adding variable urban_X_lc to the current model.

∼ Binomial( , ), logit( ) =usei consi pi pi β0educ_2i+β1educ_3i
+β2educ_4i+β3lc_1i+β4lc_2i+β5lc_3i+β6urban_1i+β7d_illiti+β8agei
+β9d_prayi+β10age_X_agei+β11d_pray_X_agei+β12urban_1_X_lc_1i

+β13urban_1_X_lc_2i+β14urban_1_X_lc_3i+β15intercepti+u
(2)
0,districti



Variable Coefficient SE p value Significance

educ_2 0.342 0.156 < 0.001 ***

educ_3 0.7 0.173

educ_4 1.294 0.156

lc_1 0.958 0.209 < 0.001 ***

lc_2 1.116 0.226

lc_3 1.157 0.223

urban_1 0.403 0.233 0.083 N/S

d_illit -2.812 0.584 < 0.001 ***

age 0.0367 0.0198 0.064 N/S

d_pray -2.019 0.482 < 0.001 ***

age_X_age -0.00399 0.000738 < 0.001 ***

d_pray_X_age -0.0826 0.0411 0.045 *

urban_1_X_lc_1 -0.136 0.333 0.918 N/S

urban_1_X_lc_2 -0.227 0.357

urban_1_X_lc_3 -0.0428 0.288

Intercept 1.21 0.529

Between district Variance 0.0852 0.0444

Adding variable urban_X_lc did not significantly improve the model, so we remove
it from the model and try the next predictor.

Our next step is to consider adding variable d_pray_X_d_illit to the current model.

∼ Binomial( , ), logit( ) =usei consi pi pi β0educ_2i+β1educ_3i
+β2educ_4i+β3lc_1i+β4lc_2i+β5lc_3i+β6urban_1i+β7d_illiti+β8agei
+β9d_prayi+β10age_X_agei+β11d_pray_X_agei+β12d_pray_X_d_illiti
+β13intercepti+u

(2)
0,districti



Variable Coefficient SE p value Significance

educ_2 0.342 0.156 < 0.001 ***

educ_3 0.695 0.173

educ_4 1.298 0.156

lc_1 0.905 0.168 < 0.001 ***

lc_2 1.04 0.191

lc_3 1.127 0.195

urban_1 0.323 0.124 0.009 **

d_illit -2.358 1.637 0.15 N/S

age 0.0378 0.0198 0.056 N/S

d_pray -1.386 2.173 0.524 N/S

age_X_age -0.00401 0.000735 < 0.001 ***

d_pray_X_age -0.084 0.0411 0.041 *

d_pray_X_d_illit -0.945 3.192 0.767 N/S

Intercept 0.941 1.155

Between district Variance 0.085 0.0443

Adding variable d_pray_X_d_illit did not significantly improve the model, so we
remove it from the model.

We have considered all interaction variables so now run our final model.

∼ Binomial( , ), logit( ) =usei consi pi pi β0educ_2i+β1educ_3i
+β2educ_4i+β3lc_1i+β4lc_2i+β5lc_3i+β6urban_1i+β7d_illiti+β8agei
+β9d_prayi+β10age_X_agei+β11d_pray_X_agei+β12intercepti
+u

(2)
0,districti



Variable Coefficient SE p value Significance

educ_2 0.341 0.156 < 0.001 ***

educ_3 0.697 0.173

educ_4 1.297 0.156

lc_1 0.905 0.168 < 0.001 ***

lc_2 1.041 0.191

lc_3 1.128 0.195

urban_1 0.322 0.124 0.009 **

d_illit -2.812 0.584 < 0.001 ***

age 0.0376 0.0198 0.057 N/S

d_pray -2.014 0.482 < 0.001 ***

age_X_age -0.00401 0.000735 < 0.001 ***

d_pray_X_age -0.0835 0.0411 0.042 *

Intercept 1.246 0.52

Between district Variance 0.0856 0.0444

This is our final model.



Adding random slopes
Having found a best model that only includes random intercepts we now investigate
random slopes for significant predictor variables in the model. Here we use a
simple forward pass method to look at each possible random slope in turn using
the same comparison method as chosen for earlier models.

The most significant predictor in the univariable analysis was educ so our starting
point in adding in random slopes is the model:

∼ Binomial( , ), logit( ) =usei consi pi pi β0educ_2i+β1educ_3i
+β2educ_4i+β3lc_1i+β4lc_2i+β5lc_3i+β6urban_1i+β7d_illiti+β8agei
+β9d_prayi+β10age_X_agei+β11d_pray_X_agei+β12intercepti
+u

(2)
0,districti

+u
(2)
1,districti

educ_2i+u
(2)
2,districti

educ_3i+u
(2)
3,districti

educ_4i



Variable Coefficient SD
p

value Significance

Intercept 1.37 0.486

educ_2 0.323 0.162

educ_3 0.702 0.173

educ_4 1.283 0.167

lc_1 0.877 0.168

lc_2 1.03 0.191

lc_3 1.099 0.195

urban_1 0.338 0.122

d_illit -2.96 0.545

age 0.0381 0.0197

d_pray -2.026 0.449

age_X_age -0.004 0.000733

d_pray_X_age -0.0825 0.041

district Variance(intercept) 0.0868 0.0539

district
Covariance(intercept,educ_2)

0.0793 0.0794

district
Covariance(intercept,educ_3)

0.0 0.0

district
Covariance(intercept,educ_4)

-0.114 0.0868

district Variance(educ_2) 0.0677 0.213 inf N/S

district
Covariance(educ_3,educ_2)

0.0 0.0

district Variance(educ_3) 0.0 0.0



Variable Coefficient SD
p

value Significance

district
Covariance(educ_4,educ_2)

-0.0559 0.151

district
Covariance(educ_4,educ_3)

0.0 0.0

district Variance(educ_4) 0.137 0.193

Level 1 Variance 1.0 0.0

Variable educ did not show a significant random slope, so we remove it from the
random part of the model and try the next predictor.

Our next step is to consider adding random slopes for the variable lc at the district
level to the current model.

∼ Binomial( , ), logit( ) =usei consi pi pi β0educ_2i+β1educ_3i
+β2educ_4i+β3lc_1i+β4lc_2i+β5lc_3i+β6urban_1i+β7d_illiti+β8agei
+β9d_prayi+β10age_X_agei+β11d_pray_X_agei+β12intercepti
+u

(2)
0,districti

+u
(2)
1,districti

lc_1i+u
(2)
2,districti

lc_2i+u
(2)
3,districti

lc_3i



Variable Coefficient SD
p

value Significance

Intercept 1.267 0.506

educ_2 0.351 0.156

educ_3 0.715 0.173

educ_4 1.305 0.156

lc_1 0.904 0.174

lc_2 1.052 0.192

lc_3 1.117 0.207

urban_1 0.313 0.122

d_illit -2.754 0.561

age 0.03 0.0203

d_pray -2.145 0.462

age_X_age -0.00397 0.000736

d_pray_X_age -0.066 0.0426

district Variance(intercept) 0.161 0.0996

district
Covariance(intercept,lc_1)

-0.171 0.124

district
Covariance(intercept,lc_2)

0.0 0.0

district
Covariance(intercept,lc_3)

-0.103 0.111

district Variance(lc_1) 0.122 0.198 inf N/S

district
Covariance(lc_2,lc_1)

0.0 0.0

district Variance(lc_2) 0.0 0.0



Variable Coefficient SD
p

value Significance

district
Covariance(lc_3,lc_1)

0.154 0.15

district
Covariance(lc_3,lc_2)

0.0 0.0

district Variance(lc_3) 0.217 0.173

Level 1 Variance 1.0 0.0

Variable lc did not show a significant random slope, so we remove it from the
random part of the model and try the next predictor.

Our next step is to consider adding random slopes for the variable urban at the
district level to the current model.

∼ Binomial( , ), logit( ) =usei consi pi pi β0educ_2i+β1educ_3i
+β2educ_4i+β3lc_1i+β4lc_2i+β5lc_3i+β6urban_1i+β7d_illiti+β8agei
+β9d_prayi+β10age_X_agei+β11d_pray_X_agei+β12intercepti
+u

(2)
0,districti

+u
(2)
1,districti

urban_1i



Variable Coefficient SD
p

value Significance

Intercept 1.576 0.505

educ_2 0.349 0.156

educ_3 0.676 0.174

educ_4 1.319 0.157

lc_1 0.929 0.168

lc_2 1.041 0.192

lc_3 1.148 0.196

urban_1 0.292 0.148

d_illit -3.12 0.545

age 0.0366 0.0197

d_pray -2.383 0.469

age_X_age -0.0038 0.000735

d_pray_X_age -0.0846 0.0411

district Variance(intercept) 0.268 0.0942

district
Covariance(intercept,urban_1)

-0.328 0.124

district Variance(urban_1) 0.389 0.19 0.017 *

Level 1 Variance 1.0 0.0

Variable urban exhibits a significant random slope and so this is retained in the
model.

Our next step is to consider adding random slopes for the variable d_illit at the
district level to the current model.

d_illit does not vary at the district level, so we will not attempt to add a random
slope for it.



Our next step is to consider adding random slopes for the variable age at the
district level to the current model.

∼ Binomial( , ), logit( ) =usei consi pi pi β0educ_2i+β1educ_3i
+β2educ_4i+β3lc_1i+β4lc_2i+β5lc_3i+β6urban_1i+β7d_illiti+β8agei
+β9d_prayi+β10age_X_agei+β11d_pray_X_agei+β12intercepti
+u

(2)
0,districti

+u
(2)
1,districti

urban_1i+u
(2)
2,districti

agei



Variable Coefficient SD
p

value Significance

Intercept 0.777 0.0972

educ_2 0.0739 0.032

educ_3 0.15 0.0358

educ_4 0.282 0.0311

lc_1 0.175 0.0325

lc_2 0.203 0.0373

lc_3 0.221 0.0374

urban_1 0.0586 0.0294

d_illit -0.596 0.104

age 0.00565 0.0037

d_pray -0.436 0.0909

age_X_age -0.000732 0.000139

d_pray_X_age -0.0129 0.00745

district Variance(intercept) 0.0082 0.00686

district
Covariance(intercept,urban_1)

-0.00972 0.0106

district
Covariance(intercept,age)

7.77e-05 0.000459

district Variance(urban_1) 0.0131 0.0204 0.825 N/S

district
Covariance(age,urban_1)

0.000112 0.000763

district Variance(age) 1.7e-06 5.87e-05 0.988 N/S

Level 1 Variance 0.195 0.033



Variable age did not show a significant random slope, so we remove it from the
random part of the model and try the next predictor.

Our next step is to consider adding random slopes for the variable d_pray at the
district level to the current model.

d_pray does not vary at the district level, so we will not attempt to add a random
slope for it.

We have considered all predictor variables so now run our final random slopes
model.

∼ Binomial( , ), logit( ) =usei consi pi pi β0educ_2i+β1educ_3i
+β2educ_4i+β3lc_1i+β4lc_2i+β5lc_3i+β6urban_1i+β7d_illiti+β8agei
+β9d_prayi+β10age_X_agei+β11d_pray_X_agei+β12intercepti
+u

(2)
0,districti

+u
(2)
1,districti

urban_1i



Variable Coefficient SD
p

value Significance

Intercept 1.576 0.505

educ_2 0.349 0.156

educ_3 0.676 0.174

educ_4 1.319 0.157

lc_1 0.929 0.168

lc_2 1.041 0.192

lc_3 1.148 0.196

urban_1 0.292 0.148

d_illit -3.12 0.545

age 0.0366 0.0197

d_pray -2.383 0.469

age_X_age -0.0038 0.000735

d_pray_X_age -0.0846 0.0411

district Variance(intercept) 0.268 0.0942

district
Covariance(intercept,urban_1)

-0.328 0.124

district Variance(urban_1) 0.389 0.19 0.017 *

Level 1 Variance 1.0 0.0

This is our final random slopes model.



Analysing the residuals
Here we look at the residuals from the model and plot them in various ways.

Next the level 2 residuals for intercept:

Here the distribution is reasonably symmetric with skewness value 0.325.

There are no obvious outliers in the residuals.



If the residuals are fairly normally distributed then the points in this graph should be
close to the red line.

Next the level 2 residuals for urban:

Here the distribution is reasonably symmetric with skewness value -0.303.

There are no obvious outliers in the residuals.



If the residuals are fairly normally distributed then the points in this graph should be
close to the red line.

There is a negative correlation (-1.017) between intercept and urban_1.This means
generally positive intercept residuals occur with negative urban_1 residuals and
negative intercept residuals occur with positive urban_1 residuals.



Looking at predictions
Having fitted a model with several predictors we might like to represent this model
graphically. This is more difficult than when we have only one predictor and so for
now we consider each predictor in turn and set all other predictors to their mean
values.






