
Welcome to an SAA for fitting many model
types developed for Stat-JR v1.0.5
Input questions
Firstly on this page you will need to specify the dataset required from the list of
available datasets.

Next you need to choose many options including the response, estimation method,
clustering variables and predictor variables (both continuous and categorical) from
the chosen dataset. After choosing these variables the SAA will run and you will
see a block of text describing how many observations are to be used at the bottom
of this page. The rest of the analysis will appear in pages 2-12.

SAA for many N level multilevel
models

Which dataset do you wish to use:  

Submit

What estimation method do you
want to use:

IGLS

What is the response variable: a_point

What distribution are you going to
assume:

Normal

Please enter your possible (nested)
classifications / levels (lowest first,

not including level-1):

estab,lea

Are there any continuous predictors
that need including in all models:

No



On the next page we will look at the shape of the response and, in the case of
normal responses, decide whether to log transform.

Are there any categorical predictors
that need including in all models:

No

Do you want to include any
continuous predictors as candidates

for inclusion in the models:

Yes

Which continuous predictors do you
want to consider:

gcse_tot,gcse_no

Do you want to include any
categorical predictors as candidates

for inclusion in the models:

Yes

Which categorical predictors do you
want to consider:

gender

What selection type do you require: Full forward / Backward

Do you want to test for random
slopes:

Yes

Do you want to test for interactions: Yes

How do you wish to compare
models:

Likelihood Ratio

The Analysis Assistant you are currently using is designed to work on complete
datasets only and so as a pre-processing step we have to remove any rows that
contain missing data in columns used in the analysis that follows. For now the list
of columns to be considered is: a_point, estab, lea, gcse_tot, gcse_no, gender.
There are 0 (0.0%) rows that get deleted This results in a dataset of 2166 rows.



Exploring the response
We will begin our analysis of the dataset by doing some basic data exploration.

You have chosen a_point as your response variable and so a first step is to take a
look at this variable and assess its suitability for a normal model. The summary
statistics for the variable are in the table below:

Observations 2166

Mean 3.518

Standard Deviation 1.757

Median 4.0

We also look at a histogram of a_point to see if it is approximately normally
distributed. Although in modelling the response in terms of a set of predictors it is
what is unexplained (the model residuals) that need to be normally distributed, it is
still useful to look at the response variable as a very skewed variable will often lead
to very skewed residuals.

Here the distribution is reasonably symmetric with skewness value -0.085.

There are no obvious outliers in a_point.



Do you want to log transform the
response variable?:

No



Exploring the predictors individually
We can also look at each of the predictor variables in turn in isolation.

For categorical predictors we are looking at how common each category is in the
dataset. In particular we are checking for rare categories which might cause
difficulties in modelling and might therefore be usefully merged with other
categories (though this would need to be done outside this SAA).

For predictor gender we see the following:

gender N Percentage

0 1223 56.464

1 943 43.536

Total 2166 100

None of the categories of gender have fewer than 5 observations.

For continuous predictors we are interested in looking at summary statistics, the
shape of the distribution and any unusual values. If the distribution is skewed then
we might want to transform the variable before fitting it in the model although it is
more important to consider transformations of the response variable and remember
what is important is whether the relationship between the response and predictor is



linear. If there are unusual values we will want to check that the unusual values are
correct and not errors and also whether we may want to treat the variable
differently. Another possibility for unusual shaped distributions is to instead
categorise the variable into ranges of values.

For predictor gcse_tot we see the following:

Name gcse_tot

Observations 2166

Mean 54.417

Standard Deviation 11.236

Median 54.0

Here the median is smaller than the mean and there is significant skew to the right.
The skewness value is 0.113. Here the statistical significance may be to some
degree due to the large sample size as from a practical perspective values of skew
less than 2 in absolute magnitude are not considered too big a skew.

There are no obvious outliers in gcse_tot.

For predictor gcse_no we see the following:



Name gcse_no

Observations 2166

Mean 8.808

Standard Deviation 0.986

Median 9.0

The variable has only 8 unique values but is being treated as continuous.

Here the median is smaller than the mean and there is significant skew to the right.
The skewness value is 0.371. Here the statistical significance may be to some
degree due to the large sample size as from a practical perspective values of skew
less than 2 in absolute magnitude are not considered too big a skew.

There are no obvious outliers in gcse_no.



Assessing the relationship between the response and
individual predictors
Once we are happy with our response variable and our set of predictors we now
want to have a preliminary look at them together before progressing to the
univariable modelling.

For the categorical predictors it is worth looking at the mean value of the response
in each category to assess if there are differences. We can then formally test this
with a t-test for binary predictors or an ANOVA for predictors with more than 2
categories.

Here is a tabulation of the response, a_point for predictor gender with category 0
having the largest mean and category 1 the smallest.

Category N Mean Standard Deviation Median

0 1223 3.526 1.749 4.0

1 943 3.509 1.766 4.0

The formal test is as follows:

There are two groups in the data:  
The first group has 1223 observations with mean 3.526 standard deviation 1.75.  
The second group has 943 observations with mean 3.509 standard deviation
1.767.  
We are trying to test a hypothesis as to whether the two groups differ in their
(population) means by a statistically significant amount. Statistical significance is
related to how likely a result is to be a chance occurance. Here we are trying to
differentiate between a real difference (no matter how small) and a difference that
may have occurred due to the samples we have chosen.  
The mean difference is 0.017 with the first group having the larger sample mean.  
We need to quantify if this difference is large relative to the variability in the data. To
do this we calculate the standard error of the difference. This is a function of the
variabilities in the samples from group A and group B combined with their sample
sizes. The bigger the 2 variabilities the larger the standard error, whilst the smaller
the variability the smaller the standard error.  
For our data the standard error of the mean difference is 0.076 and we divide our
observed difference by this standard error to give a test statistic with value 0.22.  
This test statistic is then compared to a t distribution with degrees of freedom equal
to the sum of the sample sizes in each group (2166) - 2. In this case a t distribution
with 2164. This t table has values of 1.961 for p=0.05 and 2.578 for p=0.01.



As our test statistic is 0.22 < 1.961 this means that the p value is > 0.05 and so we
cannot reject the null hypothesis.

The p-value is in fact 0.8263.

The t test assumes that the distribution of the response in each group follows a
Normal distribution. We could check this by looking at histograms of the variable in
each group. If we were concerned about the normality assumption then we could
instead use a Mann Whitney (MW) test.

A Mann Whitney test works simply on the order (or ranks) of the responses across
the two groups. So the response variable is firstly sorted and then each value is
ranked. The ranks for each group are then summed and the value that is larger is
compared with what would be expected if there was no difference between the
groups.

In this case the MW U statistic is 579398 which for samples of size 1223 and 943
corresponds to a p value of 1.6929.

For the continuous predictors we can look at correlations with the response and
scatterplots to see if there is a linear relationship.

Predictor : gcse_tot

The Pearson correlation between a_point and gcse_tot is 0.607 (p value < 0.001).

The Spearman rank correlation between a_point and gcse_tot is 0.614 (p value <
0.001).



The graph includes best fitting curves for a constant, linear, quadratic and cubic
relationship between a_point and gcse_tot. In this case a linear relationship is most
appropriate.

Predictor : gcse_no

The Pearson correlation between a_point and gcse_no is 0.19 (p value < 0.001).

The Spearman rank correlation between a_point and gcse_no is 0.183 (p value <
0.001).



The graph includes best fitting curves for a constant, linear, quadratic and cubic
relationship between a_point and gcse_no. In this case a linear relationship is most
appropriate.



Choosing appropriate random classifications
We begin this section by deciding which of the possible random classifications to
include in the modelling.

This is done by fitting combinations in turn and picking more complicated models if
they make a significant improvement via a LR test. All models are displayed along
with their likelihood in the table below:

Higher-level classifications Deviance Likelihood Ratio p value

None 8587.81 - -

estab 8205.24 382.57 < 0.001

estab,lea 8192.81 12.43 < 0.001

The best model based on the Likelihood has levels: estab,lea

As this is a multilevel modelling SAA we will also want to look at how the response
is distributed across the levels of the model.

For this we will use the best model chosen above and look at how the variance is
distributed across levels.

Variable Coefficient SE

Intercept 3.197 0.0876

lea Variance 0.111 0.0834

estab Variance 0.733 0.122

Level 1 Variance 2.26 0.0721

Here we see that the VPC for lea = 0.111/3.104 = 0.0358, so we see that lea effects
explain 3.583% of the variability in a_point.

Here we see that the VPC for estab = 0.733/3.104 = 0.236, so we see that estab
effects explain 23.61% of the variability in a_point.



Performing univariable modelling
Our next step in modelling now that we have a set of potential predictors is to
consider models for each predictor in turn along with a random intercept at each
chosen classification from the best model in the last section. In the fixed part these
models simply contain an intercept and the particular predictor and so for
continuous predictors will be multilevel linear regressions and for categorical
predictors will be multilevel generalisations of ANOVAs. In the table below we
summarise the modelling by showing the coefficients for each predictor along with
the p value comparing the model with that predictor with a Null model. This
Univariable modelling step will identify a set of candidate predictors to be taken
forward into the next stage of modelling.

Variable Coefficient SE p value Significance

gcse_tot 0.098 0.00297 < 0.001 ***

gcse_no 0.302 0.0422 < 0.001 ***

gender_1 0.108 0.0732 0.139 N/S

Which predictors we consider for the next stage of analysis will depend on their
significance in the above table (but may in practice also depend on the size the
effect and substantive interest of the variable though this is hard to automate). so
the predictors to carry forward are: gcse_no, and gcse_tot.









Looking at correlations between predictors
Our next step is to check that none of the correlations between the predictor
variables are too great as this could cause estimation problems when we add the
predictors to the model together. To do this we look at all correlations between the
predictor variables that have been identified as significant univariably and are thus
candidates to be added to the model.

The correlations are as follows:

Variables Correlation

(gcse_no, gcse_tot) 0.712

(gender_1, gcse_tot) 0.126

(gender_1, gcse_no) 0.01

Correlations greater than 0.8 (in magnitude) are worth looking at as they may result
in model fitting problems when both predictors are included.



Performing multivariable model selection - random
intercept models
In this next stage we will look at the best random intercepts model using only main
effects for the variables to be considered. You have chosen to perform full forward
selection followed by backward elimination and so here the model is built up by
considering all predictor variables not in the current model in turn and adding them
to the current model individually. The best model in terms of model fit of this set is
then chosen and the corresponding predictor variable is added to the model to form
a new current model. This procedure is then continued until adding none of the
remaining predictors makes a significant improvement to the model. We then move
onto backward elimination where if there are any non-significant predictors in the
model then the least significant is removed and the model refitted. This elimination
procedure is repeated until all predictors are significant.

You have chosen to use Likelihood ratio tests to compare models and here change
in deviance will be used to indicate whether a model is better or not by comparison
with an appropriate chi-squared distribution. This method is slightly slower than the
alternative Wald test which we offer as for each stage a model is compared with all
its submodels (with 1 predictor removed) to work out p values for each predictor.

The most significant predictor in the univariable analysis was gcse_tot so our
starting point in multivariable modelling is the model:

Variable Coefficient SE p value Significance

gcse_tot 0.098 0.00297 < 0.001 *** (df=1)

Intercept -1.926 0.166

Between lea Variance 0.0 0.0

Between estab Variance 0.443 0.0652

Level 1 Variance 1.53 0.0488

Adding variable gcse_tot is significant and so is retained in the model.

Our next step is to consider adding variable gcse_no to the current model.

=a_pointi β0gcse_toti+β1intercepti+u
(2)
0,estabi

+u
(3)
0,leai

+ei

=a_pointi β0gcse_toti+β1gcse_noi+β2intercepti+u
(2)
0,estabi

+u
(3)
0,leai

+ei



Variable Coefficient SE p value Significance

gcse_tot 0.142 0.00363 < 0.001 *** (df=1)

gcse_no -0.781 0.0422 < 0.001 *** (df=1)

Intercept 2.594 0.286

Between lea Variance 0.0 0.0

Between estab Variance 0.256 0.043

Level 1 Variance 1.36 0.0433

Adding variable gcse_no is significant and so is retained in the model.

Our next step is to consider adding variable gender to the current model.

Variable Coefficient SE p value Significance

gcse_tot 0.147 0.00367 < 0.001 *** (df=1)

gcse_no -0.823 0.0421 < 0.001 *** (df=1)

gender_1 -0.389 0.0564 < 0.001 *** (df=1)

Intercept 2.848 0.285

Between lea Variance 0.0 0.0

Between estab Variance 0.236 0.0407

Level 1 Variance 1.335 0.0425

Adding variable gender is significant and so is retained in the model.

This is our final model.

Our starting point for backward elimination is the model:

=a_pointi β0gcse_toti+β1gcse_noi+β2gender_1i+β3intercepti+u
(2)
0,estabi

+u
(3)
0,leai

+ei

=a_pointi β0gcse_toti+β1gcse_noi+β2gender_1i+β3intercepti+u
(2)
0,estabi

+u
(3)
0,leai

+ei



Variable Coefficient SD p value Significance

gcse_tot 0.147 0.00367 < 0.001 *** (df=1)

gcse_no -0.823 0.0421 < 0.001 *** (df=1)

gender_1 -0.389 0.0564 < 0.001 *** (df=1)

Intercept 2.848 0.285

Between lea Variance 0.0 0.0

Between estab Variance 0.236 0.0407

Level 1 Variance 1.335 0.0425

Now that all variables are significant this is our final model.



Choosing interactions
In this section we add to the best random intercepts model with main effects found
in the last section. Here we consider all possible pairwise interactions between the
significant predictors already found including quadratic terms for predictors. The
model selection methods used are as for the previous best random intercepts
models.

Variable Coefficient SE p value Significance

gcse_tot 0.0906 0.0177 < 0.001 *** (df=1)

gcse_no -0.839 0.0423 < 0.001 *** (df=1)

gender_1 -0.37 0.0566 < 0.001 *** (df=1)

gcse_tot_X_gcse_tot 0.000526 0.00016 0.001 ** (df=1)

Intercept 4.446 0.564

Between lea Variance 0.0 0.0

Between estab Variance 0.236 0.0406

Level 1 Variance 1.328 0.0423

Adding variable gcse_tot_X_gcse_tot

Variable gcse_tot_X_gcse_tot significantly improved the model and so is retained
in the model.

Our next step is to consider adding variable gender_X_gcse_no to the current
model.

=a_pointi β0gcse_toti+β1gcse_noi+β2gender_1i

+β3gcse_tot_X_gcse_toti+β4intercepti+u
(2)
0,estabi

+u
(3)
0,leai

+ei

=a_pointi β0gcse_toti+β1gcse_noi+β2gender_1i

+β3gcse_tot_X_gcse_toti+β4gender_1_X_gcse_noi+β5intercepti

+u
(2)
0,estabi

+u
(3)
0,leai

+ei



Variable Coefficient SE p value Significance

gcse_tot 0.0918 0.0177 < 0.001 *** (df=1)

gcse_no -0.854 0.047 < 0.001 *** (df=1)

gender_1 -0.755 0.517 0.144 N/S (df=1)

gcse_tot_X_gcse_tot 0.000516 0.000161 0.001 ** (df=1)

gender_1_X_gcse_no 0.044 0.0587 0.454 N/S (df=1)

Intercept 4.549 0.58

Between lea Variance 0.0 0.0

Between estab Variance 0.236 0.0406

Level 1 Variance 1.328 0.0423

Adding variable gender_X_gcse_no

Variable gender_X_gcse_no did not significantly improve the model, so we remove
it from the model. All remaining variables are non significant, so we stop here.

We have considered all interaction variables so now run our final model.

=a_pointi β0gcse_toti+β1gcse_noi+β2gender_1i

+β3gcse_tot_X_gcse_toti+β4intercepti+u
(2)
0,estabi

+u
(3)
0,leai

+ei



Variable Coefficient SE p value Significance

gcse_tot 0.0906 0.0177 < 0.001 *** (df=1)

gcse_no -0.839 0.0423 < 0.001 *** (df=1)

gender_1 -0.37 0.0566 < 0.001 *** (df=1)

gcse_tot_X_gcse_tot 0.000526 0.00016 0.001 ** (df=1)

Intercept 4.446 0.564

Between lea Variance 0.0 0.0

Between estab Variance 0.236 0.0406

Level 1 Variance 1.328 0.0423

This is our final model.

Our starting point for backward elimination is the model:

Variable Coefficient SD p value Significance

gcse_tot 0.0906 0.0177 < 0.001 *** (df=1)

gcse_no -0.839 0.0423 < 0.001 *** (df=1)

gender_1 -0.37 0.0566 < 0.001 *** (df=1)

gcse_tot_X_gcse_tot 0.000526 0.00016 0.001 ** (df=1)

Intercept 4.446 0.564

Between lea Variance 0.0 0.0

Between estab Variance 0.236 0.0406

Level 1 Variance 1.328 0.0423

Now that all variables are significant or are non-significant main effects that are
involved in a significant interaction this is our final model.

=a_pointi β0gcse_toti+β1gcse_noi+β2gender_1i

+β3gcse_tot_X_gcse_toti+β4intercepti+u
(2)
0,estabi

+u
(3)
0,leai

+ei



Adding random slopes
Having found a best model that only includes random intercepts we now investigate
random slopes for significant predictor variables in the model. Here we use a
simple forward pass method to look at each possible random slope in turn using
the same comparison method as chosen for earlier models.

The most significant predictor in the univariable analysis was gcse_tot so our
starting point in adding in random slopes is the model:

Variable Coefficient SD
p

value Significance

Intercept 4.475 0.577

gcse_tot 0.0884 0.0183

gcse_no -0.836 0.0425

gender_1 -0.37 0.0566

gcse_tot_X_gcse_tot 0.000547 0.000167

estab Variance(intercept) 0.489 0.39

estab
Covariance(intercept,gcse_tot)

-0.00525 0.00677

estab Variance(gcse_tot) 0.000109 0.000122 0.634 N/S (df=2.0)

lea Variance(intercept) 0.0 0.0

Level 1 Variance 1.318 0.0427

Variable gcse_tot did not show a significant random slope, so we remove it from
the random part of the model and try the next predictor.

=a_pointi β0gcse_toti+β1gcse_noi+β2gender_1i

+β3gcse_tot_X_gcse_toti+β4intercepti+u
(2)
0,estabi

+u
(2)
1,estabi

gcse_toti

+u
(3)
0,leai

+ei



Variable Coefficient SD
p

value Significance

Intercept 4.442 0.568

gcse_tot 0.0895 0.0178

gcse_no -0.835 0.043

gender_1 -0.369 0.0566

gcse_tot_X_gcse_tot 0.000536 0.000161

estab Variance(intercept) 0.588 1.033

estab
Covariance(intercept,gcse_no)

-0.0374 0.112

estab Variance(gcse_no) 0.00394 0.0124 0.936 N/S (df=2.0)

lea Variance(intercept) 0.0 0.0

Level 1 Variance 1.326 0.0426

Variable gcse_no did not show a significant random slope, so we remove it from
the random part of the model and try the next predictor.

=a_pointi β0gcse_toti+β1gcse_noi+β2gender_1i

+β3gcse_tot_X_gcse_toti+β4intercepti+u
(2)
0,estabi

+u
(2)
1,estabi

gcse_noi

+u
(3)
0,leai

+ei

=a_pointi β0gcse_toti+β1gcse_noi+β2gender_1i

+β3gcse_tot_X_gcse_toti+β4intercepti+u
(2)
0,estabi

+u
(2)
1,estabi

gender_1i

+u
(3)
0,leai

+ei



Variable Coefficient SD
p

value Significance

Intercept 4.421 0.563

gcse_tot 0.0912 0.0177

gcse_no -0.837 0.0424

gender_1 -0.388 0.0644

gcse_tot_X_gcse_tot 0.00052 0.00016

estab Variance(intercept) 0.238 0.0504

estab
Covariance(intercept,gender_1)

-0.0275 0.044

estab Variance(gender_1) 0.102 0.0627 0.095 N/S (df=2.0)

lea Variance(intercept) 0.0 0.0

Level 1 Variance 1.307 0.0426

Variable gender did not show a significant random slope, so we remove it from the
random part of the model.

We have considered all predictor variables so now run our final random slopes
model.

=a_pointi β0gcse_toti+β1gcse_noi+β2gender_1i

+β3gcse_tot_X_gcse_toti+β4intercepti+u
(2)
0,estabi

+u
(3)
0,leai

+ei



Variable Coefficient SD p value Significance

Intercept 4.446 0.564

gcse_tot 0.0906 0.0177

gcse_no -0.839 0.0423

gender_1 -0.37 0.0566

gcse_tot_X_gcse_tot 0.000526 0.00016

estab Variance(intercept) 0.236 0.0406

lea Variance(intercept) 0.0 0.0

Level 1 Variance 1.328 0.0423

=a_pointi β0gcse_toti+β1gcse_noi+β2gender_1i

+β3gcse_tot_X_gcse_toti+β4intercepti+u
(2)
0,estabi

+u
(3)
0,leai

+u
(3)
1,leai

gcse_toti+ei



Variable Coefficient SD
p

value Significance

Intercept 4.934 1.778

gcse_tot 0.0561 0.0589

gcse_no -0.816 0.116

gender_1 -0.0142 0.177

gcse_tot_X_gcse_tot 0.000871 0.000551

estab Variance(intercept) 1.508 0.144

lea Variance(intercept) 0.0 0.0

lea
Covariance(intercept,gcse_tot)

0.0 0.0

lea Variance(gcse_tot) 0.0 0.0 1.0 N/S (df=2.0)

Level 1 Variance 0.0 0.0

Variable gcse_tot did not show a significant random slope, so we remove it from
the random part of the model and try the next predictor.

Our next step is to consider adding random slopes for the variable gcse_no at the
lea level to the current model.

=a_pointi β0gcse_toti+β1gcse_noi+β2gender_1i

+β3gcse_tot_X_gcse_toti+β4intercepti+u
(2)
0,estabi

+u
(3)
0,leai

+u
(3)
1,leai

gcse_noi

+ei



Variable Coefficient SD
p

value Significance

Intercept 4.446 0.564

gcse_tot 0.0906 0.0177

gcse_no -0.839 0.0423

gender_1 -0.37 0.0566

gcse_tot_X_gcse_tot 0.000526 0.00016

estab Variance(intercept) 0.236 0.0406

lea Variance(intercept) 0.0 0.0

lea
Covariance(intercept,gcse_no)

0.0 0.0

lea Variance(gcse_no) 0.0 0.0 1.0 N/S (df=2.0)

Level 1 Variance 1.328 0.0423

Variable gcse_no did not show a significant random slope, so we remove it from
the random part of the model and try the next predictor.

Our next step is to consider adding random slopes for the variable gender at the
lea level to the current model.

=a_pointi β0gcse_toti+β1gcse_noi+β2gender_1i

+β3gcse_tot_X_gcse_toti+β4intercepti+u
(2)
0,estabi

+u
(3)
0,leai

+u
(3)
1,leai

gender_1i+ei



Variable Coefficient SD
p

value Significance

Intercept 4.46 0.562

gcse_tot 0.0915 0.0176

gcse_no -0.842 0.0423

gender_1 -0.362 0.067

gcse_tot_X_gcse_tot 0.000516 0.00016

estab Variance(intercept) 0.232 0.0413

lea Variance(intercept) 0.0 0.0

lea
Covariance(intercept,gender_1)

0.0 0.0

lea Variance(gender_1) 0.0523 0.0347 0.437 N/S (df=2.0)

Level 1 Variance 1.315 0.0421

Variable gender did not show a significant random slope, so we remove it from the
random part of the model.

We have considered all predictor variables so now run our final random slopes
model.

=a_pointi β0gcse_toti+β1gcse_noi+β2gender_1i

+β3gcse_tot_X_gcse_toti+β4intercepti+u
(2)
0,estabi

+u
(3)
0,leai

+ei



Variable Coefficient SD p value Significance

Intercept 4.446 0.564

gcse_tot 0.0906 0.0177

gcse_no -0.839 0.0423

gender_1 -0.37 0.0566

gcse_tot_X_gcse_tot 0.000526 0.00016

estab Variance(intercept) 0.236 0.0406

lea Variance(intercept) 0.0 0.0

Level 1 Variance 1.328 0.0423

This is our final random slopes model.



Analysing the residuals
Here we look at the residuals from the model and plot them in various ways.

We start with level 1 residuals:

Here the distribution is reasonably symmetric with skewness value -0.007.

There are no obvious outliers in the residuals.



If the residuals are fairly normally distributed then the points in this graph should be
close to the red line.

Here you should consider whether there are any patterns in this plot. Ideally we
would like to see similar variability of the residuals across the range of fitted values.

Next the level 2 residuals for intercept:



Here the median is larger than the mean and there is significant skew to the left.
The skewness value is -0.41. Here the statistical significance may be to some
degree due to the large sample size as from a practical perspective values of skew
less than 2 in magnitude are not considered too big a skew.

There are no obvious outliers in the residuals.



If the residuals are fairly normally distributed then the points in this graph should be
close to the red line.

Next the level 3 residuals for intercept:

Here the distribution is reasonably symmetric with skewness value 0.0.

There are no obvious outliers in the residuals.



If the residuals are fairly normally distributed then the points in this graph should be
close to the red line.



Looking at predictions
Having fitted a model with several predictors we might like to represent this model
graphically. This is more difficult than when we have only one predictor and so for
now we consider each predictor in turn and set all other predictors to their mean
values.






