An Advanced User’s Guide to
Stat-JR version 1.0.6

Programming and Documentation by

William J. Browne*, Christopher M.J. Charlton*, Danius T.
Michaelides**, Richard M.A. Parker*, Bruce Cameron*,
Camille Szmaragd®*, Huanjia Yang**, Zhengzheng Zhang*,
Harvey Goldstein*, Kelvyn Jones*, George Leckie* and Luc
Moreau™*

*Centre for Multilevel Modelling,
University of Bristol.
**Electronics and Computer Science,

University of Southampton.

November 2018

An Advanced User’s Guide to Stat-JR version 1.0.6

© 2018. William J. Browne, Christopher M.J. Charlton, Danius T. Michaelides, Richard M.A.
Parker, Bruce Cameron, Camille Szmaragd, Huanjia Yang, Zhengzheng Zhang, Harvey
Goldstein, Kelvyn Jones, George Leckie and Luc Moreau.

No part of this document may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, for any
purpose other than the owner s personal use, without the prior written
permission of one of the copyright holders.

ISBN: To be confirmed

Printed in the United Kingdom

Contents

L6701 =T 01 (PSP PP PP iii
R A o To 1WA - | S SUUPUPPN: 1
1.1 Stat-JR: software for scaling statistical heights........cccccvevieiiiiciii i, 1
1.2 About the Advanced USEr’'s GUIAEccc.eiiiuiiiiiierieeeiee ettt 2

2 InStallation INSTFUCTIONS ...cceuiiiiiiieiie ettt ettt et s e sbe e e sabe e sbe e e sareesaneeesanes 3
3 Asimple regression template eXamPle... ... e 4
3.1 RUNNING @ First tEMPIAte woeveieiiie e e e e srae e e s saaeeeeas 4
3.2 Opening the bonnet and looking at the COde ..o 9
3.2.1 g 18 £ RN 11
3.2.2 VT o [SRS 12
3.2.3 I 0 RN 13
3.24 SOME POINTS TO NOTE....ueeiiiiiiiiiieieiiieeee et e e e et e e e e s s s s sabtbaeeeesssssasreaaeeeesssnnns 15

3.3 Writing your own first temMPIate ...eeecuieei i e 15
331 EXEICISE 1 ot 16

4 Running templates With the @Stat @NZINEccuiiiiiiie e 17
41 Algebra and Code GENEIatioN.......ccoccuiiii ettt ettt ecte e e et e e e ebee e e e sateeeeereeeeeeanes 17
4.2 The algebraic SOftWare SYSTEMooicciiii et et e e et e e e aaeaeeas 22

5 INcluding INteroperability........c.ceee i e e ere e e e araeas 26
5.1 L) =) o) 26
5.2 YT =] (o o172 o /2N 27
53 LVAT a2 1O TR TaTo IMVAVAT g o TUT={y ol T] o 1Y SR 28
54 IVILWIIN Lttt e e e e ettt e e e e e e et bt e e e e e e e e s anbe bt e e e e e e e nnnebeeeeeeeeaannreneeaaeeeaanan 32
55 N 37
5.6 Other PACKAEES ...ttt e e e e e e e e e e e e sttt e e e e e e e e s asebaeeeeeeeessnnsrrenaeens 43

6 Input, data manipulation and output teMPIatescceeriiiieeei i 45
6.1 Generate template (BENEratE.PY) .cccueee ittt et e e e et e e e 45

6.1.1 | =] (o1 1Y S PR 48

6.2 Recode template (FECOUE.PY) .uveieiiiiiieeciiee ettt et e e et e e e e ree e e e abae e e eaeeeas 48
6.2.1 EXEICISE 3 oot 50

6.3 AverageAndCorrelation teMPIate.......cueei i 50
6.3.1 EXEICISE 4 oottt 52

6.4 D 1o (=T 0 o] = 1 o PSPPSRt 53
6.4.1 EXEICISE 5 oottt e e 55

7 Single level models of all flavours — A logistic regression examplecccccoeecveeeiccieeeccciee e, 56
7.1 Yo 1 N 58
7.2 o g =1 1= 59
7.3 Y oY =] OO PP PPRUPURUPPTUPPUPON 59
7.4 L= I TSP PP PPPROTO 61
7.4.1 EXEICISE B oottt 61

8 INcluding categoriCal PrediCtOrS. . ..uiii ettt e ettt e e e et e e e e ebe e e e e earee e e enraeas 63
9 MUILHEVEI MOEIS ..ttt ettt sttt et b e be e s bt e saee st e et s 68
9.1 A=Y 1Y Fo Yo I ¥= 0 Y o] = (TSRS 68
9.1.1 EXEICISE 7 oottt 73

9.2 NLEVEIMOA tEMPIATEeveiieeee e e et e e e e e st e e e e e aba e e e eabeeeeeeareeas 73
9.2.1 EXEICISE 8 it 79

10 Using the Preccode Method.............ooi ittt e et e e e ate e e e e aae e e e eanes 80
10.1 The 1LevelProbitRegression temMpPlate ... 80
10.2 preccode and deviancecode attribUtescoooceciiiiiiie e 83
11 Multilevel models with Random slopes and the inclusion of Wishart priors...........cccccveeeeneie. 86
11.1 Anexample With random SIOPES..........uuiiiiiiie e e e 86
11.2 Preccode fOr NLEVEIRS ...ttt ettt sttt sbe e st e e 91
O R o =T ol [RSOOSR 93

12 Improving mixing (1LevelBlock and 1LevelOrthogParam)........cccccoeeeieciieeeecieee e 94

I R - Y (Y <D= o Yo [P 94

12.2 The 1LeVvelBlock teMPIate....ccccuiei i e e 95
12.3 The 1LevelOrthogParam temMPlate.....ccccccieiiiiciii e e e 98
1231 EXErCiSE 10 cnueiiiiiiiiiiiieice ettt e 102
12.4 Multivariate Normal response MOdEISccoccviieiiiiiieiciieee et err e e s srree e e 102
12.5 The preccode function for this temMpPlatecceeeeeciiei i 105
13 (0101 o) -1 0] o] (I o] =Te T d o -3 RRR 111
13.1 The 1lLevelOutSampPred template — using the zxfd trick.......cccccoeciieieiiiieiece e, 111
1311 EXErCISE 11 oottt 113

14 REFEIENCES ..ttt et b e b e s bt e sae e et e et e e sbeesbeesaeesatesabeebeennes 114

Acknowledgements

The Stat-JR software is very much a team effort and is the result of work funded initially under three
ESRC grants: the LEMMA 2 and LEMMA 3 programme nodes (Grant: RES-576-25-0003 & Grant:RES-
576-25-0032) as part of the National Centre for Research Methods programme, and the e-STAT node
(Grant: RES-149-25-1084) as part of the Digital Social Research programme. The work then
continued with the ESRC grant ES/K007246/1 and more recently via further grants from the British
Academy and the ESRC NCRM.

We are therefore grateful to our funders for financial support to allow us to produce this software.

All nodes have many staff that, for brevity, we have not included in the list on the cover. We
acknowledge therefore the contributions of:

Fiona Steele, Rebecca Pillinger, Paul Clarke, Mark Lyons-Amos, Liz Washbrook, Sophie Pollard,
Robert French, Nikki Hicks, Mary Takahama and Hilary Browne from the LEMMA nodes at the Centre
for Multilevel Modelling.

David De Roure, Tao Guan, Alex Fraser, Toni Price, Mac McDonald, lan Plewis, Mark Tranmer, Pierre
Walthery, Paul Lambert, Emma Housley, Kristina Lupton and Antonina Timofejeva from the e-STAT
node.

Thank you also to Rhiannon Moore who has assisted in updating the screen shots for version 1.06.

A final acknowledgement to Jon Rasbash who was instrumental in the concept and initial work of
this project. We miss you and hope that the finished product is worthy of your initials.

WIJB November 2018.

Vi

1 About Stat-JR

1.1 Stat-JR: software for scaling statistical heights.
The use of statistical modelling by researchers in all disciplines is growing in prominence. There is an
increase in the availability and complexity of data sources, and an increase in the sophistication of
statistical methods that can be used. For the novice practitioner of statistical modelling it can seem
like you are stuck at the bottom of a mountain, and current statistical software allows you to
progress slowly up certain specific paths depending on the software used. Our aim in the Stat-JR
package is to assist practitioners in making their initial steps up the mountain, but also to cater for
more advanced practitioners who have already journeyed high up the path, but want to assist their
novice colleagues in making their ascent as well.

One issue with complex statistical modelling is that using the latest techniques can involve having to
learn new pieces of software. This is a little like taking a particular path up a mountain with one
piece of software, spotting a nearby area of interest on the mountainside (e.g. a different type of
statistical model), and then having to descend again and take another path, with another piece of
software, all the way up again to eventually get there, when ideally you’d just jump across! In Stat-
JR we aim to circumvent this problem via our interoperability features so that the same user
interface can sit on top of several software packages thus removing the need to learn multiple
packages. To aid understanding, the interface will allow the curious user to look at the syntax files
for each package to learn directly how each package fits their specific problem.

To complete the picture, the final group of users to be targeted by Stat-JR is the statistical algorithm
writers. These individuals are experts at creating new algorithms for fitting new models, or better
algorithms for existing models, and can be viewed as sitting high on the peaks with limited links to
the applied researchers who might benefit from their expertise. Stat-JR will build links by
incorporating tools to allow this group to connect their algorithmic code to the interface through
template-writing, and hence allow it to be exposed to practitioners. They can also share their code
with other algorithm developers, and compare their algorithms with other algorithms for the same
problem. A template is a pre-specified form that has to be completed for each task: some run
models, others plot graphs, or provide summary statistics; we supply a number of commonly used
templates and advanced users can use their own — see the Advanced User’s Guide. It is the use of
templates that allows a building block, modular approach to analysis and model specification.

At the outset it is worth stressing that there a number of other features of the software that should
persuade you to adopt it, in addition to interoperability. The first is flexibility — it is possible to fit a
very large and growing number of different types of model. Second, we have paid particular
attention to speed of estimation and therefore in comparison tests, we have found that the package
compares well with alternatives. Third it is possible to embed the software’s templates inside an e-
book which is exceedingly helpful for training and learning, and also for replication. Fourth, it
provides a very powerful, yet easy to use environment for accessing state-of-the-art Markov Chain
Monte Carlo procedures for calculating model estimates and functions of model estimates, via eStat
engine. The eStat engine is a newly-developed estimation engine with the advantage of being
transparent in that all the algebra, and even the program code, is available for inspection.

Many of the ideas within the Stat-JR system were the brainchild of Jon Rasbash (hence the “JR” in

Stat-JR). Sadly, Jon died suddenly just as we began developing the system, and so we dedicate this
software to his memory. We hope that you enjoy using Stat-JR and are inspired to become part of
the Stat-JR community: either through the creation of your own templates that can be shared with
others, or simply by providing feedback on existing templates.

Happy Modelling,

The Stat-JR team.

1.2 About the Advanced User’s Guide
This Advanced Guide is meant to complement the Beginner’s Guide to Stat-JR’s TREE interface and
we recommend that users read that guide first to get an idea of how the Stat-JR software works. A
major component of the Stat-JR package is the use of (often user-written) templates. Templates are
pieces of computer code (written in the Python language (Rossum); see https://www.python.org/)

that perform a specific task. Many of the templates are used to fit a specific family of statistical
models although there are other templates that perform data input, data manipulation, graphical
output, and so on.

In this document it is our aim to give users who intend to write their own templates, or more
generally are interested in how the Stat-JR system works, more details about how to write templates
and to some degree how the system fits together. We will do this by showing the code for several of
the templates we have written and giving a detailed explanation of what each function and even in
places each line of code does.

An initial question posed by potential template writers has been what language are templates
written in and when told ‘Python’ then ask whether we are providing an introductory chapter on this
language. We are not specifically writing an introductory chapter on Python (good books include
Hetland (Hetland, 2005) and Lutz and Ascher (Lutz & Ascher, 2005), as well as the many online
resources available) as it has a vast language and we will mainly be interested in specific aspects of
the language, some of which are non-standard and specific to Stat-JR. In fact many of the functions
that make up a template in Stat-JR are designed to create text blocks in other languages, for
example C++ (Stroustrup, 2013), BUGS or any of the other macro languages associated with the
software packages supported via inter-operability. This is not to say that reading up on Python is
without merit and certainly Python experts will find writing templates initially easier than others
(though more because of their programming skills than their Python skills per se).

Our advice is therefore to work through this guide first and try the exercises and have a Python book
as a backstop for when you are stuck writing your own templates. We will now give instructions into
how to install all the software needed to run Stat-JR before moving on to our first example template.

https://www.python.org/

2 Installation instructions

Stat-JR has a dedicated website for requests for a copy of the software and which contains
instructions for installation. This is currently located at
http://www.bristol.ac.uk/cmm/software/statjr/index.html

To run the software:

Stat-JR runs in a web browser; whilst it will work in most web browsers we suggest not using
Internet Explorer, although it is hoped support for more browsers will be added in future. To start
Stat-JR, select the Stat-JR TREE link from the Centre for Multilevel Modelling suite on the start up
menu; this should bring up a web browser.

When you open TREE, this action starts a Command prompt window in the background to which
commands are printed out. This window is useful for viewing what the system is doing: for example,
on the machine on which | have run TREE | can see the following commands:

WARNING:root:Failed to load package GenStat_model (GenStat not found)
WARNING:root:Failed to load package Minitab_model (Minitab not found)
WARNING:root:Failed to load package Minitab_script (Minitab not found)
WARNING:root:Failed to load package SABRE (Sabre not found)
INFO:root:Trying to locate and open default web browser

The last line quoted here (although more lines will appear beneath it on start-up) indicates that Stat-
JR is locating the default web browser on your machine; once it has done so it will open that web
browser and display TREE’s welcome page. The lines such as “WARNING:root:Failed to load package
GenStat model (GenStat not found)” are not necessarily problematic but are warning you that the
Genstat (VSN International, 2015) statistical package — one of the third-party statistical packages
with which Stat-JR can interoperate — has not be found (where Stat-JR expects to find it if it is
installed) on your particular machine.

Stat-JR works best with either Chrome or Firefox, so if the default browser on your machine is
Internet Explorer it is best to open a different browser and copy the html path to it; this will be
something like localhost:52228 (although the number will likely differ each time you run Stat-JR).

TREE is short for Template Reading and Execution Environment and is an interface into Stat-JR that
allows the user to look at a single template and dataset at a time. There are also an eBook interface
(called DEEP), a Python command line interface, and a workflow interface called LEAF (Logging and
Execution of Analysis Flows), but in this manual we stick with the TREE interface.

http://www.bristol.ac.uk/cmm/software/statjr/index.html

3 A simple regression template example

3.1 Running a first template
We will firstly consider a very simple template that is included in the core model templates
distributed with Stat-JR which has the title Regression1. This template is used in the Beginner’s
Guide and perhaps before looking at the code it would be good to run the template again in the
TREE interface to see what it does. To do this start up the Stat-JR package as directed in Section 0. If
you refresh the screen and click on the About button to the top left you should be greeted by the
following display:

STAT-JR:TREE Version 1.0.6

© Centre for Multilevel Modelling, University of Bristol & Electronics and Computer Science, University of
Southampton, UK

Thank you for using our software. Stat-JR has been developed by a team based at the Universities of Bristol
and Southampton and funded by several grants from the UK Economics and Social Science Research council
(ESRC). For more information on the software, including downloadable manuals, please visit our webpages.

Citing Stat-JR

If you use Stat-JR in your research, then please cite it as:

Charlton, C.M.J., Michaelides, D.T., Parker, R.M.A, Cameron, B., Szmaragd, C., Yang, H., Zhang, Z., Frazer, AJ.,
Goldstein, H., Jones, K., Leckie, G, Moreau, L. and Browne, W.J. (2018) Stat-JR version 1.0.6. Centre for
Multilevel Modelling, University of Bristol & Electronics and Computer Science, University of Southampton,
UK.

Stat-JR system

The initials of Stat-JR are taken from those of the late Jon Rasbash, whose vision was instrumental to its
conception.

The Stat-JR software system has been primarily developed by Chris Charlton* and Danius Michaelides**, with
algebra system development by Bruce Cameron®, and with additional input from William Browne* and
Richard Parker*.

Core template development by Chris Charlton®, William Browne*, Richard Parker*, Camille Szmaragd* and
Zhengzheng Zhang*.

Stat-JR:TREE

The Stat-JR:TREE software interface was primarily developed by Chris Charlton* and Danius Michaelides™,
with additional input from Richard Parker* and William Browne™.

* Centre for Multilevel Modelling, University of Bristol, UK

** Electronics and Computer Science, University of Southampton, UK.

If you click on Close then the software will move from this information to the general working page.
Here you will see that the template Regression1 is the default template on start up and the default
dataset is called tutorial (see the Beginner’s Guide for more information on the dataset). The screen
will look as shown below:

Stat-JR:TREE

@Response:

@ECxplanatory variables: school
student

normexam
cons
standlrt
girl
schgend
avslrt
schav
vrband

@Current input string: {}

@Command: RunStat/R(template='Regression1’, dataset="tutorial', invars = {}, estoptions = {})

Here you will see a main pane which is looking for inputs for a response (a single select list) and
explanatory variables (a multiple select list). We will here select normexam as the response and cons
and standirt as the explanatory variables as shown below:

Stat-JR:TREE

@Response: normexam E

@ECxplanatory variables: school
student

normexam
girl

schgend

avslrt

schav

vrband o

cons
standlrt o
[Chreat cons as categorical
[Chreat standirt as categarical

Next

@current input string: {}

@Command: RunStatIR(template='Regression1’, dataset="tutorial', invars = {}, estoptions = {})

Next we click on the Next button and fill in the input boxes that appear as follows (NB the input
string is {'burnin’: '500', 'defaultsv': 'Yes', 'outdata’: 'out’, 'thinning': '1', 'nchains': '3', 'defaultalg':
'Yes', 'iterations’: '2000', 'y": 'normexam’, 'x': 'cons,standlrt’, 'seed’: '1', 'makepred": 'No'}; this can be
entered into the input string box via Template > Set Inputs to populate the input values as an
alternative to pointing and clicking through):

Stat-JR:TREE

@Response: Normexam remove
@Explanatory variables: cons,standlrt remove
Number of chains: 3 remove
Random Seed: 1 remove
Length of burnin: 500 remove
@Number of iterations: 2000 remove
Thinning: 1 remove
Use default algorithm settings: Yes remove
Generate prediction dataset: No remove
Use default starting values: Yes remove
@Name of output results: out

Next

‘1", ‘makepred’: ‘No'}

©@Command: RunStatJR(template="Regression1’, dataset="tutorial’, invars = {'y": ‘normexam’, 'x": ‘cons,standIrt’}, estoptions = {"bumnin: ‘500", ‘defaultsv" ‘Yes’,

Note that when all boxes on the screen are filled in, clicking the Next button will show further inputs
if there are any. Here we have given a name of the object/dataset where the results are to be
stored. The other inputs are for the MCMC estimation methods we are using. When you click Next
again the software will perform some procedures in the background and after a short while the
screen will expand to include a lower pane with an accompanying pull down list in which various
objects generated by Stat-JR can be selected and displayed thus:

Stat-JR:TREE

@Name of output results: out remove

‘cons,standlrt’, 'seed’: *1", ‘makepred’: "No’}

@Command: RunStatlR(template="Regression1’, dataset="tutorial’, invars = {’y": 'normexam’, "x: ‘cons,standlrt’}, estoptions = {burnin’: ‘500, ‘defaultsv: "Yes’,

equation.tex E

2
normexam; ~ N(u;, c%)

Popout

u; = Bycons; + ff, standlrt;
By 1
g w1

7~ T(0.001,0.001)
a?=1/t

The pull-down list contains several objects including the model code which looks a bit like WinBUGS
(Lunn, Thomas, Best, & Spiegelhalter, 2000) code which the system uses to create code that will fit
the model. Currently a nicely formatted mathematical description of the model (in LaTeX code) is
shown in the pane and named equation.tex. Objects can be displayed in their own tab by clicking on
the word Popout to the right of the pull-down list:

Stat-JR:TREE

normexam; ~ N(y,, o%)
u; = Bycons; + f, standlrt;
By
B 1
T~ I'(0.001,0.001)

ol=1/t

Back in the first Stat-JR tab there is a green Run button above the output pane. If we click this button
then after a short while the model will run. There is a counter in the bar at the top of the tab which
indicates when Stat-JR is working (coloured blue) or ready (coloured green) and how long the
execution took. The first time a model is run the code will need compiling which will take a while.
When the execution has finished we will have more objects to choose from in the pull-down list
including the results (ModelResults) which we show popped out below:

Stat-JR:TREE

Results
Parameters:
parameter mean sd ESS variable
tau 1.541609950742 0.0340065114631 5799
beta_0 -0.00127835184871 0.0125770014327 5960 cons
beta_1 0.594959154334 0.012745358164 6129 standIrt
sigma2 0.648987956705 0.0143068971085 5784
sigma 0.805548947358 0.00887975878981 5789
deviance 9763.48848831784 2.433023996009 6061
Model:
Statistic Value
Dbar 9763.48848831784
D(thetabar) 9760.509788970701
pD 2.978699347139
DIC 9766.467187664979

This screen contains summary statistics for five parameters (in fact sigma, sigma2 and tau are all
functions of each other). We can also look at diagnostic plots for the parameters e.g. beta_0.svg:

Stat-JR:TREE

beta_0
0.06 30 T T
0.04 5. 25
s =
g 002 o 20f
[a
£ 0.0 T 15t
< =
[l a
T -0.02 qE., 10
-0.04 -
—0.06 L L 0 . n .
0 500 1000 1500 2000 -0.06 —0.04 =0.02 0.00 0.02 0.04 0.
stored update parameter value
1.0 T 1.0 T T T T T
0.8 1 08}
0.6 w 0.6
¢ g
< 0.4 2 04l
0.2 1 0.2
0.0 hame oy ieaua - 0.0
0 20 40 60 80 100 120 0 2 4 6 8 10 1
Lag Lag
0.00025 T 1.0 7t T
0.00020 | 1 08| 1
w 0.00015 0 06|
0 4
Q [G]
= 0.00010 | o 04
0.00005 | 1 0z}
0.00000

L 0.0
0 2000040000 60000 8000010000Q20000 0
updates

I I L L
200 400 600 800 1000

start iteration

06

The purpose of this document is not to go into details about what these figures mean — interested
readers can look at the accompanying Beginner’s guide for such information. Instead we want to

teach you here how to write a similar template yourself.

3.2 Opening the bonnet and looking at the code
The operations that we have here performed in fitting our first model are shared between the user-
written template Regression1 and other code that is generic to all templates and which we will
discuss in more detail later.

So our next stage is to look at the source Python file for Regressionl. All templates are stored in the
templates subdirectory under the base directory and have the extension .py and so if we open
Regression1.py (in Wordpad/Notepad and not Python) we will see the following:

Copyright (c) 2017, University of Bristol and University of
Southampton.

from EStat.Templating import Template
class Regressionl (Template) :

'A model template for fitting 1 level Normal multiple regression
model in eStat only.'

__version = '1.0.0"

tags = ['Model', 'l-Level', 'Normal']
engines = ['eStat']

inputs = ''"!'

y = DataVector ('Response:

)

x = DataMatrix ('Explanatory variables: ', allow cat = True
)
beta = ParamVector (parents=[x], as_scalar=True)
tau = ParamScalar ()
sigma = ParamScalar (modelled = False)
sigma?2 = ParamScalar (modelled = False)
deviance = ParamScalar (modelled = False)
T
model = '"''
model {

for (1 in 1l:length(${y})) {
${y}[1] ~ dnorm(mu[i], tau)
mul[i] <- ${mmult (x, 'beta', 'i')}

=

Priors
% for i1 in range (0, x.ncols()):
beta ${i} ~ dflat()

Q.

% endfor

tau ~ dgamma (0.001000, 0.001000)
sigma2 <- 1 / tau
sigma <- 1 / sgrt(tau)

latex = r''""

\begin{aligned}

\mbox{${y}} i & \sim \mbox{N} (\mu i, \sigma”2) \\
\mu i & =

S{mmulttex(x, r'\beta', '"i")} \\
$for i in range (0, len(x)):
\beta ${i} & \propto 1 \\
%endfor
\tau & \sim \Gamma (0.001,0.001) \\
\sigma~2 & = 1 / \tau
\end{aligned}

L]

We will now describe in some detail what this code does. The first line (after the initial copyright
statement) here is simply importing information needed by the template and is generic to many
templates. We then have a class statement which defines a class Regression1 which is a subclass of a
generic Template class. There is then a sentence known as a descriptor that describes what the
template does. For those unfamiliar with the terminology we are using think of a class as being a
definition of a type of object, for example we might have a class of rectangles where each rectangle
might be described by two attributes, length and width. Then an instance of the class which we
might call Dave will have these values instantiated e.g. Dave’s length is 3 and width is 1.

We might think of the subclass of rectangles the squares which again have the two attributes length
and width. We could state that class Square (Rectangle): in which case we know that as squares are
a subclass of rectangles they have a length and width but we would now redefine the attribute width
within the squares definition to equal length.

This terminology is what is used in what is called object orientated programming.

In the definition here five attributes (tags, engines, inputs, model, and latex) are then defined as
being parts of a Regression1 class although there will be other attributes that are generic to the
template class and are defined elsewhere.

Briefly:

e The _version__ attribute identifies which version of this file this is. It is useful for debugging
as when a bug is fixed and a new version created we update the version number.

e The tags attribute identifies the template as belonging to the tag groups ‘Model’, ‘1-Level’,
and ‘Normal’ and this is used in the web interface to decide which templates to show in
specific template lists.

o The engines attribute identifies which estimation and or graphical engines can be used with
this template (in this case just the built-in ‘eStat’ estimation engine) which is used by Stat-JR
to decide which estimation options to offer. This attribute is how, along with additional
attributes, we allow Stat-JR to interoperate with other software.

10

o

e The inputs attribute is a text string (hence the starting and ending “’) which consists of a list
of the inputs in this template.

e The model attribute is a text string that will produce the model code we saw in the web
interface for this template.

e The latex attribute is a text string that will produce a piece of LaTeX code which is converted
into the nice mathematics we saw in the web interface. We will next look at the last three

attributes in more detail.

3.2.1 Inputs
When this template has been selected in the web interface it will firstly have its inputs interrogated
and start creating an instance of a model object. Stat-JR has a list of object types that can be thought
of as the building blocks of a model object. Statements like

y = DataVector ('Response: '

)

can be thought of as defining the components that make up a model object, so here we are building
a model object that contains a data vector called y. The text in the brackets is used by the web
interface as a piece of text to place on the screen alongside the appropriate input device (in the case
of a data vector a single select list) and the second help string is help text that appears if you hover
over the input in the browser (we’ve greyed this out just to make the remaining code more salient).

Stat-JR’s in-house eStat engine (and some of the other estimation engines with which Stat-JR
interoperates, such as JAGS (Plummer, 2003), OpenBUGS (Lunn, Spiegelhalter, Thomas, & Best,
2009), R_nimble (de Valpine, Paciorek, Turek, Anderson-Bergman, & Temple Lang, 2016) and
WinBUGS (Lunn, Thomas, Best, & Spiegelhalter, 2000)) distinguish between Data objects which
require user inputs and Parameters (Param) which just need to be declared. This template therefore
has 7 components (2 pieces of data and 5 parameters) that make up the model. The DataMatrix
declaration for x will correspond to the multiple-select list that we saw when running the template.
Here we see that this declaration takes a couple of arguments:

x = DataMatrix ('Explanatory variables: ', allow cat = True

In this version of Stat-JR we have implemented code to deal with categorical predictor variables and
so the allow_cat argument tells Stat-JR that elements of x might be treated as categorical variables.
The help argument contains a rather long text string that will appear on the screen if we hover over x
with the mouse.

11

3.2.2 Model
The model attribute gives a definition (as a text string) of an instance of a model set up using this

template. The definition is in a language that very much resembles the language used by the
WinBUGS (Lunn et al., 2000) package to specify models (with some minor differences) and will be
used in Stat-JR to create code to run the model using the eStat engine. The definition can be shown
on the screen in the objects pane under the label model.txt so you can for example see the
definition for the model we fitted to the tutorial dataset earlier by selecting this object from the pull
down list. As the text is specific to the inputs given, the definition is a text string containing some
quantities that depend on inputs. These are integrated into the text string via the S symbol for
substitutions, through conditional and looping computation achieved via % commands and through
the calling of external functions. The model code for this template uses all three devices, and so we
will here go through stage by stage the instance of model shown in the earlier screen shots.

We start with the raw code:
model = '"!
model {
for (i in 1:length(${y})) {
${y}[i] ~ dnorm(mu[i], tau)
mul[i] <- ${mmult(x, 'beta', 'i')}

}

Priors

% for i in range (0, x.ncols()):
beta ${i} ~ dflat()

% endfor

tau ~ dgamma (0.001000, 0.001000)
sigma2 <- 1 / tau

sigma <- 1 / sqgrt(tau)

Now we can substitute normexam for ${y} as this is the column we chose for y thus:

model = '""!

model {
for (i in 1l:length(normexam)) {
normexam[i] ~ dnorm(mu([i], tau)
mul[i] <- ${mmult(x, 'beta', 'i')}

}

Priors

% for i in range(0, x.ncols()):
beta${i} ~ dflat()

% endfor

tau ~ dgamma (0.001000, 0.001000)
sigma2 <- 1 / tau

sigma <- 1 / sqrt(tau)

Next we can evaluate the for loop with, in our example x having 2 columns:
model = '"!
model {
for (i in 1l:length(normexam)) {
normexam[i] ~ dnorm(mu([i], tau)

12

muli] <- ${mmult(x, 'beta', 'i')}

}

Priors

betal ~ dflat ()

betal ~ dflat()

tau ~ dgamma (0.001000, 0.001000)
sigma2 <- 1 / tau

sigma <- 1 / sqrt(tau)

Finally the function mmult is a function written separately and is used to create the products of the x
variables and their associated betas with appropriate indexing. When run we get:

model = '""!

model {
for (i in l:length(normexam)) {
normexam[i] ~ dnorm(mu([i], tau)
mul[i] <- cons[i]*betal + standlrt[i]*betal

}

Priors

betal ~ dflat()

betal ~ dflat ()

tau ~ dgamma (0.001000, 0.001000)
sigma2 <- 1 / tau

sigma <- 1 / sqgrt(tau)

This is identical to the code we see under model.txt in the TREE interface and is one way of
displaying the model we wish to fit. Another way is to write the model in mathematical form using
the LaTeX language and this can also be shown in the web output in the pull down list under
equation.tex as we saw earlier. Basically we are using a program called MathJax (Cervone, Sorge,
Lawson-Perfect, & Krautzberger, 2017) which will display LaTeX code in a nice format embedded
within a webpage. The attribute that is used for creating this code is latex.

3.2.3 Latex
If you select equation.tex in the pull down list click for the bottom pane then the equations will

appear in LaTeX format. If you then right click in the pane and select Show Maths as TeX commands

option you will get a window popping up that shows the LaTeX source:

13

é MathJax Equation Source - Mozilla Firefox \;li-

@ localhost:62403/run/ e Y 1:? =
“bpegin{aligned}

‘\mbox{normexam} i & “\sim ‘\mbox{N} (‘mu_i, ‘=sigma"~Z)

o i & =

\EEE&_{G}\meK{GDnS}_{i} + ‘beta {1}\mbox{standlrc} {i} \
‘beta 0 & ‘propto 1 A\
“beta 1 & \propto 1 A\
“tau & “gim \Gamma (0.001,0.001) %%
“eigma®~2 & = 1 / “\taum
“end{aligned}

This code is created via the latex function and we will now look at how we get from /atex to this
source for our example. The generic code is as follows:

latex = r'"'
\begin{aligned}

\mbox{S{y}} 1 & \sim \mbox{N} (\mu_ i, \sigma”2) \\
\mu i & =

S{mmulttex(x, r'\beta', 'i')} \\
$for i in range (0, len(x)):
\beta ${i} & \propto 1 \\
%$endfor
\tau & \sim \Gamma (0.001,0.001) \\
\sigma®2 & = 1 / \tau
\end{aligned}

We have three steps as with the model function, firstly we will substitute normexam for ${y}

latex = r'"'
\begin{aligned}

\mbox{normexam} i & \sim \mbox{N} (\mu_ i, \sigma”2) \\
\mu_ i & =

S{mmulttex(x, r'\beta', 'i')} \\
%$for i in range (0, len(x)):
\beta ${i} & \propto 1 \\
%$endfor
\tau & \sim \Gamma (0.001,0.001) \\
\sigma”2 & = 1 / \tau
\end{aligned}

Next we can evaluate the for loop with, in our example x having 2 columns:

latex = r'"'
\begin{aligned}
\mbox {normexam} i & \sim \mbox{N} (\mu_ i, \sigma”2) \\
\mu i & =
S{mmulttex(x, r'\beta', 'i')} \\
\beta 0 & \propto 1 \\
\beta 1 & \propto 1 \\
\tau & \sim \Gamma (0.001,0.001) \\
\sigma®2 & = 1 / \tau

14

\end{aligned}

and finally we have the step to expand a function — this time called mmulttex :

latex = r'"!
\begin{aligned}
\mbox {normexam} i & \sim \mbox{N} (\mu i, \sigma”2) \\
\mu i & =
\beta O\mbox{cons} {i} + \beta {1}\mbox{standlrt} {i}
\beta 0 & \propto 1 \\
\beta 1 & \propto 1 \\
\tau & \sim \Gamma (0.001,0.001) \\
\sigma”2 & = 1 / \tau
\end{aligned}

3.2.4 Some points to note
You will notice that the string object created in /atex has an r before the “’ and that similarly there is
an r inside the mmulttex function call before the ‘. Basically the triple quotes are used in place of
guotes to allow the use of single quotes within the actual expression. The r is used to let the
computer know that the expression in the quotes is a raw string and so for example although the \
character is often used as a control character, in a raw string it will be treated simply as a \ and
passed through to the LaTeX reading software. This avoids the use of lots of double \ for each \. One
debugging tip is that lines often finish with a double slash to denote a new line in LaTeX. It is
important to add a space after the double slash in the text file as otherwise it will be concatenated
onto the next line.

Some of you will know LaTeX and so the code in the source window will be familiar. It is however not
essential to write a latex function for your own templates as the code is purely decorative. We will
not give a crash course on LaTeX here but essentially the aligned environment is used to write a set
of mathematical equations with the & sign denoting the place where the lines are lined up
horizontally and the double slashes denoting new lines. LaTeX uses the \ preceding terms to denote
special characters e.g. \beta gives a Greek lowercase beta. The aligned environment is for
mathematics and so if we wish to write words in normal font we enclose them in a \mbox. With this
basic knowledge you should be able to compare the source code and the maths it produces and thus
see what each of the special characters is.

3.3 Writing your own first template
We haven’t at this stage explained how the model function is used to create code to fit the model.
This is done by the Stat-JR system’s eStat engine using generic code that is common to all templates
and which we will discuss a bit more later. It is enough for now to realise that to write some basic
templates simply requires writing code similar to that seen here and the Stat-JR system will do the
rest of the hard work for you. We will now test your understanding by getting you to construct your
own first template:

15

3.3.1 Exercise 1
It is best when starting writing templates to start from a template that works and modify it to
confirm you understand what is going on. You will therefore now take the Regression1 template and
construct a template for an even simpler model — a simple linear regression. To do this in the
template directory copy the file Regression1.py to LinReg.py. It is also sensible to change the
classname in the template.

For a linear regression we want a template with two inputs y and x — only this time x is a vector
rather than a matrix i.e. there is only one predictor plus a constant. Try changing the text to ask
specifically for a Y variable and an X variable for the inputs. You will need to change inputs a little.
Try also then simplifying the model and latex functions — you should be able to get away without
needing the mmult/mmulttex functions.

In fact mu[i] should be something like alpha + beta*x][i], though if you use alpha and beta they will
both need declaring as ParamScalars in the inputs function.

When you think you have the template correctly written save it and reload templates in Stat-JR (via
the Debug menu) and test it out. If it is saved in the templates directory it will be automatically
picked up. It should give similar results to Regression1 for the example shown earlier.

16

4 Running templates with the eStat engine

4.1 Algebra and Code Generation
In section 3 we have seen the code required to create a template that fits a simple model using the
built-in eStat estimation engine. We have however hidden away many of the details. In this section
we will expose a few more details, including a little section on the algebra system. Let us start by
returning to the same example and show a few more screens that we have not yet exposed.

We will begin however by switching a few of the settings so that we can easier see what is going on.
To do this look at the black bar at the top of the screen and you will see the word Settings. Click on
Settings and you will be greeted by a window that pops up (part of which is shown below) where
you will need to scroll down and change the inputs to look as follows:

Settings

EStat

Create standalone code ¥

Maximum number of processors to use

10

eStat executable

A\ \eStat\bin\Release\eStat.exe
Include unmonitored values in results [
Optimise generated code [
a-b->a+(-b)¥
(@a+b)+c->a+b+c™

(a/b)->a*b -1

Here we have switched on standalone code and also switched off optimisation. The Settings screen
contains the locations of various files used by Stat-JR, the pathnames to all third-party software one
might use with Stat-JR and specific eStat settings which we have modified here. Scroll to the bottom
of the screen and click on the Set button when you have made the changes which will take you back
to the welcome screen. Now click Begin as before and using Regressionl as the template and
tutorial (Goldstein, et al., 1993) as the dataset set up the inputs as follows:

Dataset: tutorial; Template: Regression1; Input string: {'burnin’: '500', 'defaultsv': 'Yes', 'outdata:
‘out’, 'thinning': '1', 'nchains': '3', 'defaultalg’: 'Yes', 'iterations': '2000', 'y': 'normexam’, 'x":
‘cons,standirt’, 'seed": '1', 'makepred': 'No'}

17

Stat-JR:TREE

@Response: normexam remove
@Explanatory variables: cons,standirt remove
Number of chains: 3 remove
Random Seed: 1 remove
Length of burnin: 500 remove
@Number of iterations: 2000 remove
Thinning: 1 remove
Use default algorithm settings: Yes remove
Generate prediction dataset: No remove
Use default starting values: Yes remove
@Name of output results: out

Next

Now clicking on Next we can choose other options from the pull-down list so firstly choose
algorithm.tex from the list and pop it out into a new tab.

Stat-JR:TREE

LaTeX version of algorithm

Conditional posterior for tau for Gibbs sampling

L
- i

~ .WDl lengt mexam 1000 + 2= eta_0 X cons; ~ beta_1 X standlry;)
+ beta 0 .~ beta_ 1 % standl;)
(. 0.5 % h(normexam), 0.001000 j

2

Deviance Function

lengthmormexam)

x| T,
dmin:e:ZX((=2

Conditional posterior for beta_0 for Gibbs sampling

2
(normexam; — beta 0 % cons; — beta_1 X standlrg;))))

S £+ 0.5 % (In (x) = In (z)) % length(.) + 0.346573590279973 % length(.

B I ———— R
beta_0 ~ N| % cons;?

[plmehnormeam)
Lo

Conditional posterior for beta_1 for Gibbs sampling

o (Zlir:gth&nurme\'azm standlr; (normesass, — bata_0 % cons,)) lengthmormexam) ‘
beta_1 ~ N| — standlry;

- VX

\ (3

lengthinormexam) B
standlet; i
=1 \

Deterministic formula for parameter sigma

Deterministic formula for parameter sigma2

Basically this window shows a nicely-presented result of what is returned from the algebra system
when it is given the model description constructed by the model method. We will look at the
algebra system in a little more detail later on, but for now you will see that three of the parameters
(beta0, betal and tau) have posterior distributions that require sampling from a conditional
distribution using a method called Gibbs sampling whilst two (sigma and sigma2) are simply
calculated as deterministic functions of the other parameters. Finally a formula for the deviance
function is also returned. In fact the algebra system returns a series of files (in xml format), one for
each parameter and we can also view these (in nicely presented form) for example tau.xml

18

Stat-JR:TREE

Use Gibbs sampling from conditional posterior for tau:

0.001 + 0.5 x length(normexam), 0.001000 + ~1=2

(length(nnrmexam)(normexami ~beta_0xconsj—beta_1x standlrti]z)
T~T
2

0.001 + 0.5 x length(normexam), 0.001000 + —1=2

(llength(nurmexam)(normexami —beta_0xconsj-beta_1x standlrti]z)
T~
2

Here we get the same line repeated twice as the second line shows the posterior after optimisation
(which here we have switched off). Stat-JR takes these files and converts each of them into the C++
programming language so if we look at the file modelcode.cpp we will see the actual C++ code
constructed below (note we will not go into detail as to how this is achieved):

Stat-JR:TREE

Model iteration code

Py_BEGIN_ALLOW_THREADS;
std::vector<double®> tmp_y;
tmp_y.push_back(const_cast<double *>(normexam));
RectMatrix mat_y(tmp_y, 4859);
std::vector<double®> tmp_x;
tmp_x.push_back(const_castedouble *>(cons));
tmp_x.push_back(const_cast<double *>(standlrt));
RectMatrix mat_x(tmp_x, 4859);
std: rvector<double*> tmp_beta;
tmp_beta.push_back(beta);
RectMatrix mat_beta(tmp beta, 2);
double &beta_@ = beta[8];
double &beta_1 = beta[1];
static std::unordered_map<std::string, SimpleRandemGenerator> rngstate;
if (runstate = @) {
rngstate.try emplace(rngid, SimpleRandomGenerator());
}
auto &rng = rngstate[rngid];
if (runstate == @) {
rng.set_seed(seed);
rng.start();
}
for (int iter = @; iter < numiter; iter++) {
int iterind = @;
if (runstate = 3) iterind = floor((start_iteration + iter) / thinning);
// Update tau
// This code was generated by the Stat-JR package (copyright 2812 University of Bristol and University of Southampton).

{

double sum@=e;
double csum@=8;
for(int i=8; 1<4059; i++) {
double ysum@ = pow(({(normexam[i]-(beta_@*cons[i]))-(beta_1*standlrt[i])),2.8) - csume;
double tsum@ = sumd + ysum@;
csum@ = (tsum@ - sumd) - ysum@;
sum@ = tsum@;

tau = dgamma((@.801+(8.5%4859)), (.801000+(sume/2)));

Here after some code that is required for passing the variables back and fore from Python to C++ we
see the step for tau. This is similar to that given in the algebra. One difference is that the length of
normexam has its value (4059) substituted in. The code also uses a technique called Kahan
summation (Kahan, 1965) and so what would have been the line

sum0 = pow (((normexam[i]- (betalO*cons[i]))-(betal*standlrt[i])),2);
is expanded to the following:
double ysum0 = pow (((normexam[i]- (betaO*cons[i])) - (betal*standlrt([i])),2) -

csumO0;
double tsum0 = sum0 + ysumO;

csum0 = (tsum0 - sum0O) - ysumO;
sum0 = tsumO;

to deal with potential rounding issues.

If you scroll down you will see similar code to perform the steps for the other parameters and the
deviance. There are further C++ files which contain supporting routines (supportcode.cpp — note this
used to contain random number generators but they are now included via a library instead), perform
the DIC calculation (dic.cpp) and set up proposal distributions via adaptation when using Metropolis
Hastings (Hastings, 1970) sampling but not in this example (adapt.cpp).

When run in the usual way, i.e. without switching settings to run as standalone, each of these pieces
of C code is compiled separately and Python code within Stat-JR pieces everything together. If, as we
have done, we choose run as standalone and now click on Run then the software does as it suggests
and creates standalone C++ files. In the current version of Stat-JR we have included parallel
processing and so only one standalone file is constructed, engine.cpp, which contains the starting
values for all three chains. If we look at engine.cpp in a new tab we see the following:

Stat-JR:TREE

Standalone engine code

// This code was generated by the Stat-JR package (copyright 212 University of Bristol and University of Southampton).

#include <vector>
#include <random>
#include <iostream>
#include <sstream>
#include <fstream>
#include <string>
#include <limits>
#include <chrono>

#include "rng.h"

#include "statlib.h”
#include "thread_pool.h”

// Initialise input data

const double normexam[] = {@.26132446527431@8,08.13406679934233093,-1.7238824367523193,0.9675859805921814,8.5443409085273743,1. 7345899163246

const double standlrt[] = {@.6198592646598816,8.28580196380615234, -1.364575743675232,0.20580196380615234,8. 3711848662662506, 2. 189436912536
struct starting_values {

double beta[2];

double deviance;

double sigma;

double sigma2;
double tau;

This code contains everything and if you scroll down to near the bottom you will find the code to

update the parameters:

20

Stat-JR:-TREE

// Update tau
// This code was generated by the Stat-IR package (copyright 2812 University of Bristol and University of Southampton).

{
double sum@=g;
double csumd=0;
for(int i-8; i<4859; i++) {
double ysume = pow(((nermexam[i]-(beta_8*cons[i]))-(beta_1*standlrt[i])),2.8) - csum@;
double tsumd = sum@ + ysum@;
csum@ = (tsum@ - sum@) - ysumd;
sumd = tsumd;
H
tau = dgamma((®.8@1+(8.5%4859)), (©.001008+(sum8/2)));
H

// Update deviance
// This code was generated by the Stat-IR package (copyright 2812 University of Bristol and University of Southampton).

{
double sum@=e;
double csumd=8;
for(int i=8; i<4859; i++) {
double ysum@ = pow(((normexam[i]-(beta_8*cons[i]))-(beta_1*standlrt[i])),2.) - csume;
double tsumd = sum@ + ysum@;
csum@ = (tsum@ - sum@) - ysumd;
sumd = tsumd;
H
deviance = (2*(((tau*sum@)/2)+(8.5%(log(3.14159265)-log(tau))*4859)+(@.346573590279973%4859)));
H

// Update beta @
// This code was generated by the Stat-IR package (copyright 2812 University of Bristol and University of Southampton).

{

If you view the rest of this C++ code in detail you will see that there is a chunk at the top that is
common to all models but the rest of the code is mostly model-specific. If you return to the Settings
window and switch back on optimisation and switch off Create standalone code under the EStat
heading and press Set, then repeating the model setup (you can do this via Templates > Set Inputs,
and selecting the last model run under History, and then pressing Use) you can fit the model and
view the code in modelcode.cpp:

21

Stat-JR:TREE

Model iteration code

Py_BEGIN_ALLOW_THREADS;
std::vector<double®> tmp_y;
tmp_y.push_back(const_cast<double *>(normexam));
RectMatrix mat_y(tmp_y, 4859);
std::vector<double*> tmp_x;
tmp_x.push_back(const_cast<double *>(cons));
tmp_x.push_back(const_cast<double *>(standlrt));
RectMatrix mat_x(tmp_x, 4859);
std::vector<double®> tmp_beta;
tmp_beta.push_back(beta);
RectMatrix mat_beta(tmp_beta, 2);
double &beta 8 = beta[e];
double &beta 1 = beta[1];
static std::unordered_map<std::string, SimpleRandomGenerator> rngstate;
if (runstate == @) {
rngstate.try_emplace(rngid, SimpleRandomGenerator());
}
aute &ng = rngstate[rngid];
if (runstate = @) {
rng.set_seed(seed);
rng.start();
}
for (int iter = @; iter < numiter; itert+) {
int iterind = @;
if (runstate == 3) iterind = fleor((start_iteration + iter) / thinning);
// Update tau
// This code was generated by the Stat-JR package (copyright 2812 University of Bristol and University of Southampten).

{

tau = dgamma(2029.581, (8.801+((((9.924751985818%beta_8)+((-4764.25262396) *beta_1)+(pow(beta_0,2.8)*4859.8)+((beta_@*beta 1)*14.6956619

// Update beta @
/¢ This code was generated by the Stat-JR package (copyright 2812 University of Bristol and University of Southampton).

{

Here the code is much harder to link to the algebra system as the data has been included into the
model steps and any constants have thus been evaluated. You might like to compare the code for
the tau step and see if you can spot the links, for example 2029.501 is 4059/2 + 0.001. Our advice is
that if you are interested in understanding the C++ code and the algorithm generally then it is
probably easier to switch off optimisation whereas if you want the code to run faster then switch it
on. We will revisit the C++ code in later sections when we introduce the use of the preccode method.

We will next look at how the algebra system converts the model statements into a set of steps in
more detail.

4.2 The algebraic software system
The algebra system that we have developed for the Stat-JR system (with main developer Bruce
Cameron) will take a BUGS-like model file and produce output xml format files for each parameter.
This will consist of their full conditional posterior distribution either as a known distribution with
formula or as an unknown distribution function. In version 1.0 of the software we integrated the
algebra system with the main software allowing us to view some of the intermediate files that show
how the algebra system works. If you have run the model that we saw above with the Regression1
template then the intermediate algebra system steps are included as xml format files.

If we select node_beta_0.xml from the pull-down list and pop it out we get the following:

22

Stat-JR:TREE

XML Qutput
Dimension

Child GNEs

Parent GNEs

Imm Parents SS
Imm Parents DS
Imm Parents MS
Imm Children SS
Imm Children DS
Imm Children MS
Parents via subs
Parents via msubs
Children via subs
Children via msubs
Coparents via subs
Coparents via msubs
Statement

With subs

Prior

scalar
beta_, ®
beta_, (@)
[none]
[none]
[none]
[none]

u,

[none]
[none]
[none]
normexam
normexam
beta_; T
beta_; T

beta_, ~ dflat()
beta_q ~ dflat ()
pbetay) = é
L

1
o

...and if we scroll to the bottom of the window we see the further algebraic processing:

Likelihood

Posterior

Log posterior

Distribution

Match

Match

Sampling parameter

Sampling parameter

Sampling distribution

length (normexam)

Jgexp (— G){normexami — (cons; beta_; + standlrt; beta_l)]z)

i=1

length (normexam)
,'::J(l:\et.;LU |1mrmexam,heta,l,r) o p(betafu) lgl p(nﬂrmexal‘ﬂl ‘ beta,o.hetafl,r)

i=1
2

length (normexam) 2 2
1 length { normexam)) cons;) beta_,
S exp (r(z[: B cons[(lmrmexam[—beta_; standlrt[)) beta ; —

length (normexam)

exp (r(zgi"fm (normexam) cons;(normexam, —beta_, standlrr,) beta_, — o(Tym s cons,; 2) beta_, 2,/2)

@

1 h
{pn (“"'m"m}c.m,z)m_oz)
2

length
exp (r(zlinlg((normexam) cons.l.(nm"mexamf —beta_; standlrt[)) beta_; —

(Zlengrh (normexam)

2 z
i=1 cons;) beta_,

length (normexam)
(X

1
i1 consi(normexami —beta_; standlrti)) beta ;, —

2

dnorm

length
A= rz[i"f (rormexam) consf(nﬂrmexamf —beta standlrt[]

. 7(Tzlle:nlg\'h(nﬂrmexam}cuns!_z)

2

length normexam
Z 2t (}cunsi(normexaml—heta_tstandh‘tf)

p= i
length { normexam) 2
2o cons;
i=1
length (normexam,
=g o8 ()conslz

length (normexam
xne]cuns,.(.mmexmn!.—hm_l standlst;) rzls"gthcmme“m) coms. 2
Tlhi=1 i
T2!engm(m:rmexam] i

beta ; ~ dnnrm(

Cﬂl’lsl— 2

The program decides which lines in the model specification involve the parameter beta0. It then

finds the prior and likelihood parts of the model for this parameter before merging them together to

23

find the posterior and log posterior as a product of distributions. It then attempts to match the
distribution to known statistical distributions and here spots that the posterior for beta0 is a normal
distribution. Finally it gives the conditional posterior distribution in terms of other objects in the
model. We can view betal via node_beta_1.xml and see similarly a Normal posterior:

Stat-JR:TREE

length (normexam)

Likelihood iy Jgexp (— G){normexami — (cons, beta_, + standlrt, beta,lj)z)

length (nermexam)
Posterior p(beta_, | normexam, beta_,7) & p(beta_,) AL p(nurmexamE ‘ beta_p, beta_;, 7)

i=1
2

length (normexam) 2 2
1 length 7| standlrt, © | beta_
o —exp T(Z-E:“g (nurmexam)standh't (normexam, — beta_ cons,)) beta_, — (Z i) &
- i=1 i i 0 i 1

normexam
() tandlrt,?) beta_, * /)

exp (T(Elsng[h (normexam)

length
i, standlrt; [normexam[—beta_g cons;) | beta_, — 1(2521

o

length { normexam)
length (normexam) dl b b X standirt, ®) beta_,
o« exp|t(T0F stan, rti(normexam! — beta_ cons[)) eta_; — P

T(Zlength (normexam) 2

B
length (normexam) iy standlre,) beta_,

Log posterior (¥, =7

standlrt[(normexam[— beta_, consl.)) beta_, — 5

Distribution dnorm

length (normexam)
i1

Match A= standlrt, (normexaml — beta_g consl)

TE:e:nlgm(nurmexam)smndlrtlz
Match B = — - e—

length
TZ ength (normexam)

o s[andlrt—(nnrmexam —beta_, cons)
. _ Tz, i i i
Sampling parameter p =

length
TE;E:"F E““mexam)standlrtiz
length (normexam)

Sampling parameter T=T1Y, _7 stand]rt}.2

length { normexam)

T2 standlrt;| normexam; —beta_, cons; 1 h
Sampling distribution beta ; ~ dnorm i ol ! = [),rzlinlg[(rormexam) o it 2
Tz!ingth(narmexam] = i

standlre,®

Finally tau the precision has a Gamma posterior distribution with calculations shown in
node_tau.xml:

24

Stat-JR:TREE

length (nermexam)

Likelihood :El ﬁexp (— G)(normexami - (cm’lsl beta_g + standlrt; beta_l))z)

length (normexam)

Posterior p(7|normexam, beta_y, beta_,) & p(7) p(normexam, |beta_y, beta_, 7)

i=1

(v length (normexam) 2
- exp(—U‘UuluUUr)exp(_([ZFL (normesam; —beta o cons; —beta_y standlrt;) Jr o stesgth (sormesaim)

70.959 Z

(Z !E_ngth (normexam) (

2
exp (—(n.aomow normexam; —beta_, cons; - beta_, standlrr;));z)r)

;0.999—o.slength normexam])

length (normexam 2
Exp(—(u.oomow—(Zi:lgt (J(nurmexsmi—beta_ocunsl—beta_lstandlﬂl)),‘z)r)

r0.999—oslength (normexam)

Log posterior 0.001000 + === B

length (normexam
(Z,, g J(nurmexami—beta_o cons; —beta_; standlrt;

2
))T —(0.999 — 0.5length (normexam)) In ¢

Distribution dgamma

Zleng[h(nnrmexam)
Match A = —0.001000 — ==2

z
(nurmexam[—beta_, cons; —beta_, stand]rtf]

2

Match B = —0.999 + 0.5length (normexam)

length (normexam| 2
> et)(normexamf ~ beta_p cons; —beta_; standlrt;)

Sampling parameter u = 0.001000 + ==+ B

Sampling parameter 1 = 0.001 + 0.5length (normexam)

zlength(normexam)
Sampling distribution 7 ~ dgamma (0.001 + 0.5length (normexam), 0.001000 4 ==2

2
(nurmexamE —beta_g cons; —beta_, standlrtl))
F]

The algebraic processing software then saves these three final distributions in XML file format
(beta_0.xml, beta_1.xml and tau.xml) so that they can be read in later when we create code to fit
the model. These files are then used to generate the C++ code to fit the model via a code generator
as explained earlier.

25

5 Including Interoperability

We have now seen that the Stat-JR package has its own new algebra system and estimation engine,
known as eStat as illustrated in the last section. Another aspect of the package is its ability to
interface with other software packages and in particular (but not exclusively) their estimation
engines. This feature doesn’t, however, come for free and translator methods that are often
template-specific need writing to achieve interoperability. The work here can be broken down into
generic work that is built into the Stat-JR software and includes interfacing with the external
software and managing the output received, and other work such as construction of data and script
files for the external package that may be template-specific and thus written by the template-writer
or generic as well.

In this section we will describe the (generic) Python code that is written to support interoperability
and found in the packages subdirectory of Stat-JR. We will return to the regression modelling
template and take a look at how we can include interoperability via an adapted template
(Regression2.py). We will here describe work on three of the software packages that have been
considered for interoperability, namely WinBUGS (Lunn, Thomas, Best, & Spiegelhalter, 2000),
MLwiN (Charlton, Rasbash, Browne, Healy, & Cameron, 2017), and R (R Core Team, 2016) but first
we will delve a little further into the workings of the eStat engine and look at the file eStat.py.

5.1 eStat.py
When running a model in Stat-JR with a specific estimation engine an object is constructed of a
unique class related to that engine. These objects are what pull together inputs and data, perform
the estimation and store the results. The files for the various engines are found in the packages
subdirectory which also contains equivalent files for use with templates not related to model
estimation. The object of type eSTAT is defined in the file eStat.py and you will see if you access this
code that it is rather long and complicated. We will not try and go through everything as this would
only be useful for the most expert Python coders. There are, however, some commonalities across
engines and so we will give very brief indications of what certain methods do in the template. Note
that only some of these are externally referenced (Methodinput, init, run and runmore) whilst
others are called internally as they do parts of the work of the externally-referenced attributes:

e The MethodInput method is present in each engine and contains the engine’s specific
estimation method inputs that we saw when running the Regression1 template earlier
(Number of chains, Random Seed, etc.).

e The init method is what is called after the estimation method inputs have been answered by
the user and the Next button is pressed. It calls lots of other methods to perform the
various tasks here including getting the algorithm from the algebra system and constructing
the code for running the model.

e The applydata method is used with eStat to construct starting values for parameters in the
model

e The compilemodel method is used to call the algebra system and get back algebraic steps
for each parameter.

e The calcconsts method is what is run with eStat when optimisation is switched on to pull out
terms in the algebra that are purely data and evaluate them.

26

e The run method is used to run the current model with the prescribed estimation settings
and is called when the Run button is pressed.

e The runmore method is used when the More button has been pressed for further iterations.

e The genCPP method is used to generate the C++ code for the standalone engine.

e The runCPP method is used to run the estimation algorithm when standalone C++ code is
selected.

e The saveresults method brings together the (potentially multi-chain) output and constructs
the ModelResults and output chains objects.

e The dic method constructs code if required to calculate the DIC diagnostic for the model.

With regard to engine classes in general we would expect to find a MethodInput method, an init
method, a run method and often a saveresults method but also some engine-specific methods. The
MethodInput method always contains any additional engine-specific inputs that are displayed on the
screen. The init method contains the Python code to be run upon pressing the Next button, but prior
to pressing the Run button, and the run method contains the Python code to be run after pressing
the Run button. The saveresults method, where present, is usually called from the run method. If the
estimation method allows more iterations (typically packages using MCMC estimation) then there
will be a runmore method that is called after pressing the More button. We will now look at a
second template that contains further interoperability.

5.2 Regression2.py
In this section we will consider a second template — Regression2 that extends the first template by
including the option to fit the same model in a variety of packages. If you look at the code in the
Python file you will see that this template has identical code for the attributes defined in
Regression1 but in addition has methods to allow the user to call other programs. We will begin
however by looking at the engines attribute:

engines = ['eStat', 'WinBUGS', 'OpenBUGS', 'JAGS' , 'MLwiN MCMC',
'"MLwiN IGLS', 'R MCMCglmm', 'R glm', 'R nimble', 'Stata model',
'SPSS model', 'PSPP model', 'SAS model', 'Minitab model', 'SABRE',
'"MATLAB script', 'Octave script', 'GenStat model', 'gretl model’,
'Python PyMC']

Here we see that this template offers very many software packages to be used. For several packages
there is simply one engine whereas for MLwiN and R there are more, as these packages have both
classical (ML) and Bayesian (MCMC) engines built-in. If you scroll down the file you will see
additional attributes:

e mlnscript

e rscript

e statascript

e spssscript

e Dpsppscript

e sasscript

e minitabscript
e sabrescript

e matlabscript
e genstatscript
e gretlscript

27

e pymcscript

Each of these methods is used to produce scripts or parts of scripts for the corresponding package,
and the main point to take home here is that although some template-specific coding is required,
the code required is generally short functions (and in the case of WinBUGS (Lunn, Thomas, Best, &
Spiegelhalter, 2000), OpenBUGS (Lunn, Spiegelhalter, Thomas, & Best, 2009) and JAGS (Plummer,
2003) non-existent) and so the bulk of the work, at least for this template, is done by the generic
code within the package files for the engines.

5.3 WinBUGS and Winbugsscript.py
We will begin by looking at the WinBUGS package (Lunn, Thomas, Best, & Spiegelhalter, 2000) as the
model code we have been creating for the Stat-JR engine has many similarities with BUGS code. We
will begin by running the template and viewing the output. It should be noted that in order to run
the WinBUGS engine Stat-JR needs to be able to find it. Stat-JR has a file of settings, settings.cfg
which it will have placed in a .statjr directory under your Users directory. This file contains amongst
other things directory names for each package. For example on my machine | have:

[WinBUGS]
executable = C:\WinBUGS14\WinBUGS14.exe

If you wish to use this option you need to either install WinBUGS in this directory or change these
paths to point to WinBUGS on your machine. This can either be done by editing the file or by going
to the Settings screen we looked at earlier and changing the file there. If you edit the file itself you
will need to restart the TREE program or select Debug > Reload packages so that it uses these
settings and then select Regression2.py from the template choices and tutorial for the dataset. Next
select the following inputs:

Dataset: tutorial; Template: Regression2; Input string: {'Engine’: 'WinBUGS', 'burnin’: '500"',

'defaultsv': 'Yes', 'outdata’: 'outwinbugs’, ‘thinning': '1', 'nchains’: '2', 'iterations': '2500', 'y
'normexam’, 'x': 'cons,standirt’, 'seed": '1'}

28

Stat-JR:TREE St

@Response: Normexam remove
@Explanatory variables: cons,standlrt remove
Choose estimation engine: WinBUGS remove
Number of chains: 2 remove

Random Seed: 1 remove

Length of burnin: 500 remove

Number of iterations: 2500 remove
Thinning: 1 remove

Name of output results: outwinbugs remove

®VYes
CNo

Use default starting values:

Clicking on Next will result in Stat-JR constructing all the files it needs to fit the model in WinBUGS
and these can be found under the pull-down list. There will be model code (model.txt) and the
mathematical representation (equation.txt) as we saw for Regression1 with the eStat engine apart
from that this model code has been modified slightly to be in line with standard WinBUGS code, in
this case length(normexam) has been replaced with 4059 in code. (Note that this template also
supports the eStat estimation engine). We can look at the other input files required by WinBUGS for
example here is the file containing initial values for chain 1:

Stat-JR:TREE

inits1.txt E

Popout

list(
beta_1 = @.1,
tau = 0.1,
beta_@ = @.1
)

There is also a data file and a script file. If we next click on Run you will see a WinBUGS window
appear on your toolbar, and in the background, whilst WinBUGS is fitting the model. When it finishes
it will disappear and the list of files in the pull-down list will lengthen; so, for example, if we select
tau.svg and pop it out we will get the following output in the browser:

29

Stat-JR:TREE

tau

1.70 . - T 12
1.65 5. 10
. =
T 160 o8
a @
£ 1.55 T &
jud @
8 1.50 g 4
145} > 2p
1.40 L . L 0 1 . . .
0 500 1000 1500 2000 2500 1.40 145 150 1.55 160 1.65 1.70
stored update parameter value
1.0 1.0
0.8 0.8
0.6 w 0.6
g g
< 04 & 04
0.2 0.2
0.0 baan et o 2 e e 0.0 PR P— .
0 20 40 60 80 100 120 0 2 4 6 8 10 12
Lag Lag
0.0007 — W~
0.0006 0.8
0.0005 -
w a 06
$ 0.0004 | - g
= @ 04
0.0003
0.0002 - 1 0.2
0.0001

L . N 0.0 . L . . .
0 20000 40000 60000 80000 100000 0 200 400 600 800 1000 1200 1400
updates start iteration

As we chose 2 chains you will also observe a green and blue output for both the chains and kernel
density plots. If you look at ModelResults you will notice that we get results for each parameter
(including the deviance and some reordering of the output). We now need to see how the
connection to WinBUGS was achieved. Interestingly, for the Regression2 template, you will not find
any additional code to run WinBUGS within the template itself apart from putting WinBUGS in the
engines list. This means that all the code is generic and not template-specific and will be found in the
WinBUGS.py file within the packages directory.

As mentioned in the last section these engine files give class definitions for classes that will perform
the interoperability work for specific packages, and the file WinBUGS.py gives the class definition for
the WinBUGSScript class. This class has, as expected, MethodInput, init and run methods and, as
WinBUGS supports running further MCMC iterations, there is also a runmore method. The
MethodInput method is fairly self explanatory and contains the various additional estimation
method inputs required by WinBUGS along with some code to allow the user to specify their own
starting values if they wish. The init method is split into two main parts written in two methods:
PrepareWBugsinputs which is used to create, in turn, the three files that are needed to fit a model in
WinBUGS, namely the data, initial values and model files, and also WriteScript which creates the
script file that WinBUGS uses to perform the model-fitting and extraction of results, etc.

The PrepareWBugsinputs method has code that will construct the model and data files for BUGS as
well as a series of initial value files. In many simple model scenarios, including the regression model
we have considered, the WinBUGS model file will, aside from simple substitutions, be identical to
the input file for the eStat algebra system and so the chunk of code dealing with model construction
is fairly simple and simply involves copying the model.txt file and making the substitutions.

30

If you are interested in writing templates that either only use WinBUGS or are for models where the
code for WinBUGS and eStat diverges then it is possible to write methods within the template to
construct the required model, data and inits files. These methods are named bugsmodel, bugsdata
and bugsinits respectively. The bugsmodel method should resemble to some degree the model
method used for eStat, whilst the bugsdata and bugsinits methods will generally consist of
commands to pull out or construct the various objects that make up the data and initial values.

For example in the 1LevelMVNormal template there are lines like:

data['M'] M

...and...
data['R'] = Rmat

...which tell Stat-JR that there are two data objects that need adding to the WinBUGS output file.
Stat-JR can evaluate that M is an integer and R is a matrix from how they have been constructed in
Python, and there is code within PrepareWBugsinputs to write these out correctly into the data file.
For initial values there is a similar construction with the data[] construction replaced with an inits[]
construction. Note that if you wish to write your own bugsdata and/or bugsinit methods then all
data and/or parameters requiring initial values must be defined in the method.

For examples of template with their own WinBUGS functions you might look at 1LevelMVNormal or
CapRecap. The template 1LevelMVNormal fits a multivariate response model and as discussed later
in the manual the eStat engine has an unusual way of fitting such models and so for WinBUGS we
have files for bugsmodel and bugsdata to create these files in a more standard use of the WinBUGS
language. We do not have a bugsinit methods as the generic code works OK for creating the initial
values here. The template CapRecap fits a capture-recapture model which involves multinomial
distributions where again WinBUGS and eStat diverge. Here there is code to create all three required
files, however the reason for the bugsinit attribute is primarily because we want to have a specific
pattern of starting values.

The WriteScript function is totally generic as it creates the script file to be run in WinBUGS and this,
at least at present, is consistent across templates.
The run function which is run when the Run button is pressed is fairly short:

def run(self):
self.eng.run('script.txt"')

try:
self.saveresults()

except:
logging.error ('There was a problem running the model')

The command:

self.eng.run('script.txt')

31

...actually runs WinBUGS.

The last command:

self.saveresults()

..both extracts the numbers from the text files returned from WinBUGS and constructs the
ModelResults object that can be viewed.

We have limited this section to a broad description of the purposes of specific functions used in the
interoperability and how an advanced user, if required, might write their own methods for their
template. Stat-JR also supports OpenBUGS (Lunn, Spiegelhalter, Thomas, & Best, 2009) and JAGS
(Plummer, 2003) which are, in terms of input files, similar to WinBUGS. There are differences in their
script files and so the files OpenBUGS.py and JAGS.py have similar but slightly differing code to
account for this. JAGS also has a slightly different format for data and initial values files which
JAGS.py takes care of. If you are writing your own bugsmodel, bugsdata and bugsinit methods then
these will also be used to create the model code, data and initial values in OpenBUGS and JAGS so
you will not need to repeat the work. We next look at MLwiN.

5.4 MLwiIN
MLwiN (Charlton, Rasbash, Browne, Healy, & Cameron, 2017) is another package with MCMC
functionality but which can also fit multilevel models using classical statistical methods. For the
Regression2 template in Stat-JR we offer the option of fitting models in MLwiN using either
approach. Having seen how WinBUGS links into Stat-JR we will now show the similarities and
differences in how MLwiN links in. The first observation is that MLwiN doesn’t use a model
description language like Stat-JR or WinBUGS. It is also more restrictive in terms of which models it
can fit which means that it will not be available for all templates but many of the templates we have
written thus far fit models that MLwiN can also fit. Although MLwiN has a GUI user interface which
is typically how users will use it, it also has a macro language and it is this language that we have to
make use of when writing interoperability code for Stat-JR. So as with WinBUGS we need to tell Stat-
JR where to find MLwiN and this is found in the settings.cfg file, for example:

[MLwiN]
executable = C:\Program Files\MLwiN v3.02\mlnscript.exe

Let us demonstrate using MLwiN and MCMC for the tutorial dataset and Regression2 template. Here
select the template and dataset and next choose inputs as follows:

32

Dataset: tutorial, Template: Regression2; Input string: {'Engine": 'MLwiN_MCMC', 'burnin’: '500',
'outdata’: 'outmlwin’, 'thinning': '1', 'nchains': '3', 'defaultalg': 'Yes', 'iterations': '2000', 'y':

'normexam’, 'x': 'cons,standirt’, 'seed": '1'}

Stat-JR:TREE Sta

@Response:

@Explanatory variables:

Choose estimation engine:

Number of chains:

Random Seed:

Length of burnin:

Number of iterations:

Thinning:

Use default algorithm settings:

Name of output results:

normexam remove

cons,standlrt remove

MLWiN_MCMC remove

3 remove

1 remove

500 remove

2000 remove

1 remove

Yes remove

outmlwin

The first thing to note is that the two approaches for MLwiN have their own engine name, and we
will see later that they have their own python files in the package directory. A further thing to note is
that MLwiN normally only offers single chains for MCMC. However if you run it from Stat-JR you can
get the illusion of multiple chains as Stat-JR will run MLwiN several times (in parallel), once for each
chain. Currently each chain has the same initial values but different random number seed but in the
future we hope to allow different starting values as well. Clicking on the Next button we see the

following:

33

Stat-JR:TREE

datafile.dta (-]
normexam cons standirt _levres _id
1 0.28132447 1 061905926 1.0 1~
2 0.13408879 1 0.20580196 1.0 2
3 -1.7238824 1 -1.3845757 1.0 3
4 0.9675886 1 0.20580196 1.0 4
5 0.5443409 1 0.37110487 1.0 5
3 1.7348992 1 2189437 1.0]
T 1.039608 1 -1.1188214 1.0 T
8 -0.12908488 1 -1.0339699 1.0 8
9 -0.93937767 1 -0.5380812 1.0 9
10 -1.2194855 1 -1.4472272 1.0 10
" 2.408892 1 24373913 1.0 "
12 0.61072858 1 21087855 1.0 12
13 -1.8388887 1 0.04049904 1.0 13
14 -0.12908488 1 1.1976194 1.0 14
15 22021 1 2520043 1.0 15
16 1.2408332 1 1.1149681 1.0 18
17 1.7348992 1 1.0323168 1.0 17
18 1.3101424 1 0.7843822 1.0 18
19 -0.8230507 1 -1.1188214 1.0 19
20 1.039608 1 -1.1992729 1.0 20
21 -1.0290888 1 -0.37275827 1.0 2
22 -1.2194855 1 -1.3845757 1.0 22
23 0.3280722 1 -0.9513184 1.0 23/
24 -0.49278083 1 -2.3563933 1.0 24
25 1.9003352 1 -0.04215242 1.0 25
26 0.8965657 1 0.37110487 1.0 28
pay 0.073536366 1 1.1149681 1.0 27 -
[View 1-30 of 4,059

Here we see the dataset file which contains only the columns in the data that are involved in the
modelling in MLwiN. The list of objects has been populated by many MLwiN script files and we will
look at one of these now, so select initscript0.mac and the screen will look as follows:

Stat-JR:TREE

initscript0.mac E

INIT 5 1eeee 156@ 158 38
NOTE input data file
RSTA ‘datafile.dta’

WNOTE Set up the model

RESP "normexam”
IDEN 1 "_id"
ADDT "_levres”
SETV 1 "_levres"”
FPAR © "_levres™
ADDT "cons"

ADDT "standlrt”

METH 1
BATCH 1
START

This is the script that is run first in MLwiN and sets up the required model and runs it (using IGLS first
to generate initial values). If we look in the file Regression2.py we can find the attribute minscript
which is as follows:

mlnscript = """

RESP "${y}"

IDEN 1 " id"

ADDT " levres"

SETV 1 " levres"

FPAR 0 " levres"

% for 1 in range(len(x)):
ADDT "${x[i]}"

34

You should be able to see that, for our inputs, if we were to expand out this Python code we would
get the second section of code that appears within initscript0.mac. This code essentially sets up the
model in MLwiN ready to be fitted. The package file MLwin_MCMC.py will therefore take the code
that appears in minscript in the template and place it in the initscript macros (note there is one
initscript for each chain). Stat-JR will also construct 3 further macros for each chain: burninscript,
runscript and resultsscript. As MLwiN works by building up the model (as performed in initscript)
these further scripts perform the burnin iterations, main run iterations and results extraction
respectively and are generic. They only depend on the estimation method inputs, i.e. length of
burnin, number of iterations, thinning, etc., and each chain has a different random seed set.

Clicking on Run will fire off the three instances of MLwiN and bring back the output
as follows (after changing the output list to show ModelResults):

Stat-JR:TREE

Parameters:
parameter mean sd ESS variable
deviance 9763.486009631592 2442775481596 6225
beta2 -0.00122328271387 0.0125588134387 6751 cons
beta3 0.59505016039 0.0125637974876 5953 standIrt
sigmai_1 0.648910145097 0.014529925453 6694 var(_levres)
Model:
Statistic Value
Dbar 9763.486009631612
D(thetabar) 9760.510895133681
pD 2975114497933
DIC 9766.461124129546

Apart from the speed of estimation (which is much quicker than Stat-JR and WinBUGS) the results
are very similar. Note that we have some slightly different numbering with MLwiN. MLwiN requires
being told that there is a constant variance at level 1 and to do this we create a constant column (of
ones), named _levres, which is made random at level 1 to represent this constant variance. The
fixed effects are then numbered from 2 rather than 0. We could, as an alternative run, run the
model via IGLS instead of MCMC by clicking on Choose Estimation Engine and choosing the
following and clicking Next:

Dataset: tutorial; Template: Regression2; Input string: {'y": 'normexam’, 'x": 'cons,standirt’, 'Engine":
'MLWIN_IGLS', 'defaultalg': 'Yes'}

35

Stat-JR:TREE

@Response: normexam remave
@¢txplanatory variables: cons,standirt remove
Choose estimation engine: MLWIN_IGLS remave
Use default algorithm settings: Yes remove

Note that as the non-MCMC engines do not create a datafile of the output that question is not
asked. Clicking on Run you get almost instantaneous answers if you choose ModelResults:

Stat-JR:TREE

Results
Parameters:
parameter variable mean se
beta2 cons -0.00119111914973 0.0126391831622
beta3 standlrt 0.595056780156 0.0127269561056
sigmai_1 var(_levres) 0.648418837627 0.0143933237957
Model:
Statistic Value
converged 1.0
iterations 2.0
2*LogLikelihood 9760.509436476153

You will notice here that the results produced are simply point estimates and standard errors as the
method doesn’t construct chains. We also do not see the plots that we get with MCMC methods. As
we mentioned earlier there are two engines and hence two files in the packages directory:
MLwiN_MCMC.py and MLwiN_IGLS.py. We will discuss briefly MLwiN_MCMC.py which is currently,
apart from eStat.py and an associated eStat engine (CustomC), the biggest file in the directory.

As usual the file defines a class, this time for an MLwWiNMCMC object. The class has the usual
MethodInput, init and run (and runmore) methods. The init method will construct the dataset and
script files for running in MLwiN. In fact there are attributes within the code for each of the script
files and you will see the code for the init_script abbreviated below:

init_script = '"!

INIT 5 10000 1500 150 30
NOTE input data file
RSTA 'datafile.dta'

NOTE Set up the model
S{userscript}
METH 1

BATCH 1
START

36

STOR "modelstate${chainnum}.wsz"

Here the script written within the template gets inserted where we see $ {userscript}, and you
will also see that chain number gets inserted in the last line of the macro. The run method simply
runs MLwiN using the constructed datasets and macro files, and then calls the saveresults method
which creates the ModelResults object. Again we omit details of precisely how these code sections
work as they are generic code and not template-specific. The MLwiN_IGLS.py file has a similar form
to MLwiN_MCMC.py except the macros are slightly shorter and the objects produced in the
saveresults methods are different. We will leave MLwiN here and move onto another package with
some functionality for the use of both MCMC and classical estimation methods: R.

5.5 R
R (R Core Team, 2016) is a general purpose statistics programme that consists of a framework of
interlinking statistical commands that are known as packages. The R installation consists of a base
package containing many of the standard statistical operations and to this can be added user-written
packages. For our Regression2 template we will utilise the g/im function when performing classical
inference. For MCMC methods we use the MCMCglmm package (Hadfield, 2010), a user-defined
function that can fit many models using MCMC!. As with the earlier programs we need to include
details of the location of R in settings.cfg on our machine prior to running webtest. On my machine
this is as follows:

[R]
executable = C:\Program Files\R\R-3.5.1\bin\x64\R.exe

We can again first run the Regression2 template to see what it returns when we choose R, so select
Regression2 as the template and tutorial as the dataset and then input the following:

U

cons,standlrt’, 'Engine’:

(R

Dataset: tutorial, Template: Regression2; Input string: {'y": 'normexam’, 'x":

1 1
R_gIm'}
Stat-JR:TREE Startagain Dataset~ (tutorial) Template ~ (Regression2’ eBook ™ About Debug ~
@Response: normexam remove
@Etxplanatory variables: cons,standirt remove
Choose estimation engine: Rglm remove

Clicking on Run will fire off R and then give the following output if we choose ggNorm.svg from the
output list:

1 Although we have recently added support for the nimble (de Valpine, Paciorek, Turek, Anderson-Bergman, &
Temple Lang, 2016) package in R too, although nimble has an additional depencency on Rtools.

37

Stat-JR:TREE

qqNorm.svg E

Normal Q-Q

820"
20
ol
)

Std. deviance resid.

T T T
-2 0 2

Theoretical Quantiles
glm(formula)

Here we see a quantile-quantile plot, which is one of the outputs from R produced from the script
sent to R. We can select ModelResults in the output list to get the following:

Stat-JR:TREE

ModelResults E Popout
Results
Parameters:
parameter est se
cons -0.00119111914973 0.0126422981796
standirt 0.595056780156 0.0127300927553
Model:
Statistic Value
deviance 2631.932061928951
nulldeviance 4049.433025806798
aic 9766.509376513333
converged 1
iter 2

Here you will see that as the method is maximum likelihood we get only estimates and standard
errors and the AIC statistic. It is also possible to view the full log file from R and a plot of residuals
against fitted values in the output pane as this is also created by the R script. If we wish to look at
the script itself we can select script.R from the output list and pop it out as follows:

38

TREE

Script to run model

local({r <- getOption("repos"); r["CRAN"] <- "http://cran.r-project.org”; options(repos = r)})
#adAaAAAAAAAAAAAAAA A AA A AAFAAA

Note that when Stat-JR interoperates with R, it sets the working

directory to wherever the user's temporary files are stored, i.e.

workdir = tempdir(). The data to be modelled, this script, and the

files exported from R, are all saved there.

FAA A A A A A A A A A A A A A AT HEEEE

o oW B H W

test to see if foreign package is already installed, if not, then install it
if (!require(foreign)) {

install.packages("foreign")

library(foreign)

read *.dta file (Stata format) into R data frame (requires foreign):
mydata<-read.dta("datafile.dta”)
print summary of the data

summary (mydata)

#adAaAAAAAAAAAAA A A A AAGAAGAASA
Below we specify the model formula, formatted as y ~ x1 + %2 + ...

Since Stat-JR assumes users have included the intercept in their list
of explanatory variables, -1 removes the intercept which the glm

function otherwise adds by default.

FAAAAH A A A A A A A A A A A A AT ES

formula <- normexam ~ cons + standlrt - 1

fit the model using the glm function, specifying the formula, data, and distribution (with identity link) in its arguments
myModel <- glm(formula, data = mydata, family = gaussian(identity))

print summary of the model fit

summary (myModel)

FAAAAH A A A A A A A A A A A A AT ES
Objects of class glm have several residual plots available (can

Here we find some heavily commented R code. We can see the call to g/im near the bottom of the
window and this is followed by some code to generate the two plots that appear in the output list.
If we wish to instead use MCMC estimation we could, for example, do so by providing the following
inputs:

Dataset: tutorial, Template: Regression2; Input string: {'Engine': 'R_MCMCglmm’, 'burnin’: '1000',

'outdata’: 'outR’, 'thinning': '1", 'iterations': '5000', 'y": 'normexam’, 'x": 'cons,standirt’, 'seed': '1'}

@Response: Normexam remove
@Explanatory variables: cons,standlrt remove
Choose estimation engine: R_MCMCglmm remove
Random Seed: 1 remove
Length of burnin: 1000 remove
Number of iterations: 5000 remove
Thinning: 1 remove
Name of output results: outR

Next

39

Clicking on Next and then Run will give the following upon running and selecting ModelResults from
the output list:

Stat-JR:TREE

ModelResults E Popout
Results
Parameters:
parameter mean sd ESS
cons -0.00137723072367 0.0124091391668 4943
standirt 0.595484308437 0.0128012344608 5286
sigma_2 0.649047335707 0.0145284234669 4471
Model:
Statistic Value
DIC 9766.486799872408

It should be noted that MCMCglmm is a single chain package and so Stat-JR does not give the option
for multiple chains here although in theory R could be called several times to give parallel chains as
we did for MLwiN. It also only gives the actual DIC estimate and not pD. Let us now look at how
interoperability is performed in the code. At present R interoperability is possibly the opposite
extreme to MLwiN interoperability. In the packages directory there are files for each R package; here
we are interested in R_glm.py and R_MCMCglmm.py which are quite short files defining classes for
each object. Then, in the Regression2 template file, there is a longer attribute rscript which is used to
construct the R script for model-fitting, with Python conditional statements to split up the code for
glm and for MCMCglmm.

Looking firstly at R_gim.py, it has a MethodInput method but this doesn’t have any additional inputs
as they are not required for this package. The inits method code begins as follows:

def init(self):
self.WriteData ()

Here we see a call to the WriteData method that constructs the data file that needs to be sent to R.
Then we begin to construct the script file for R:

script = """

<% from EStat.Utils import Rmmult %>\\

local ({r <- getOption("repos"); r["CRAN"] <- "http://cran.r-project.org"; options(repos = r)})
EAE A A N A N N N SN N N N I AN SN N N AN N N A SN N AN N A N

Note that when Stat-JR interoperates with R, it sets the working

directory to wherever the user's temporary files are stored, i.e.

workdir = tempdir (). The data to be modelled, this script, and the

files exported from R, are all saved there.

L I A A A A A A A A AR 2NN R A AR AR A A A A

HH= 3 = W

test to see if foreign package is already installed, if not, then install it
if (!require(foreign)) {

install.packages ("foreign")

library (foreign)

}

read *.dta file (Stata format) into R data frame (requires foreign):
mydata<-read.dta ("datafile.dta")

40

print summary of the data

summary (mydata)
T

which here initially involves loading up the data and installing the R packages required if they are not
already present. Next is the call to the template specific code via the rscript attribute as shown
below:

script += self.template.rscript

Here the substitutions into the template specific code are made and it is added to the script file.
Finally some more generic code to interrogate the output produced by R and create datafiles to be
used as output objects in Stat-JR is written.

script += """
EE A A N N N N N N N N NS I N N N N A N N N N N N
Here an empty list called 'stats' is created, to which various
components of the model just fitted are added. If you are fitting this
model yourself in R, you can of course access these components directly
yourself, rather than necessarily copying them to a list for export.
R A A A A N A N A AN N N N A N N N AN N AN AN N AN AN A N
create an empty list called 'stats'
stats <- list()
add (residual) deviance to 'stats'
stats$deviance <- myModel$deviance
add null deviance to 'stats'
stats$nulldeviance <- myModel$null.deviance
add Akaike information criterion to 'stats'
stats$aic <- myModel$aic
add convergence status (logical TRUE / FALSE) to 'stats'
stats$converged <- myModel$converged
add number of iterations taken to fit the model to 'stats'
stats$iter <- myModelS$iter

A N N N A AR 2 2N 2N A 2N 2 B AN AN A A A N A A N N N N N N N N N A
A variety of parameters / model fit statistics are saved to the
working directory as *.dta files; Stat-JR imports these and
translates them into its own format for presentation to the user.

2 N N N A A 2 2N AN 2E 2 A AN AN AN A A A N A A N N N N N N N N A

H= H o H

save 'stats' as 'stats.dta'

write.dta (data.frame (stats), file="stats.dta")

create 'estimates.dta', consisting of the coefficient estimates on one row,
and their standard errors on another

write.dta (data.frame (rbind (myModel$coefficients, sqgrt(diag(vcov (myModel))))),
file="estimates.dta")

save the residuals as 'residuals.dta'

write.dta (data.frame (myModel$residuals), file="residuals.dta")

Looking at the template specific code in the template Regression2 we see the following code at the
beginning of the method:

rscript = ''"'

R E R EF R E R E RS
Here we specify the model formula, formatted as y ~ x1 + x2 +

Since Stat-JR assumes users have included the intercept in their list
of explanatory variables, -1 removes the intercept which the glm

function otherwise adds by default.

#

L I A A A A N A A AR 2NN A AR AN A A A

formula <- ${y} ~ ${Rmmult(x)} - 1

This first line here (after the comment) simply defines the formula for the model which is common
to both estimation methods and then the code goes on to specific code for the glm package.

41

% if Rpackage == 'glm':

fit the model using the glm function, specifying the formula, data, and distribution (with
identity link) in its arguments

myModel <- glm(formula, data = mydata, family = gaussian(identity))

print summary of the model fit

summary (myModel)

LR N I N A B BN Ak 2N BN AR A K B BN A 2 IR 2 Bk B B EE R A N A A
Objects of class glm have several residual plots available (can
view them all via e.g. plot(myModel)), here we export the first two.

L N N N N N N N A A N A A A AR A A A A A

open a scalable vector graphics device called 'ResivsFitted.svg'
svg ("ResivsFitted.svg")

request a plot of the residuals vs fitted values

plot (myModel, 1)

close the device

dev.off ()

open a scalable vector graphics device called 'ggNorm.svg'
svg ("ggNorm.svg")

request a Q-Q plot

plot (myModel, 2)

close the device

dev.off ()

o

% endif

This second chunk is the code specific to the glm engine and consists of the call to that function
followed by calls to a summary function and two plotting functions. There is then a large chunk of
code specific for the MCMCglmm function which essentially runs that code and then the script is
returned. So we should now see how the full script file for R is formed and what needs to be placed
in the template.

The run method (within R_g/m.py) that is executed when the Run button is pressed is, in this case,
very short and basically consists of a command to run the script followed by a call to the saveresults
method.

def run(self):
self.eng.run('script.R")

try:
self.saveresults ()
except:
logging.error ('There was a problem running the model')

The saveresults method itself is also reasonably short and creates the ModelResults object. Here it
involves interrogation of the two output files from R, estimates.dta and stats.dta, to extract the
appropriate numbers for the ModelResults object.

def saveresults(self):
results = ModelOutput ()

dta = self.eng.outputs['estimates.dta']
for var in dta.variables.keys():
results.add (var, 'est', dta.variables[var]['data'][0])
results.add (var, 'se', dta.variables[var]['data'][1l])
statsdta = self.eng.outputs['stats.dta']
for stat in statsdta.variables.keys():

results.add ('model', stat, statsdta.variables[stat]['data'][0])

self.eng.outputs['ModelResults'] = results

It then continues to create separate .dta files and objects for parameters and fit.

42

The R_MCMCglmm.py file performs the equivalent operations when this engine is called from Stat-
JR and the same methods are present. The code is slightly more involved and in this case the
MethodInputs method has inputs to tell R how long to run MCMC for. There are also other
differences in the functions to account for the method being MCMC and hence returning chains to
be summarised. These methods are, however, similar to those for MLwiN and WinBUGS and we will
not detail them here.

Finally here we should point out that there are R-specific templates that perform other functions.
For example PlotsViaR.py allows the user to use the R /attice (Sarkar, 2008) graphical functions from
within Stat-JR. These templates generally have a very simple structure: the engine attribute is set to
R_script, the inputs attribute gives all the inputs required by the template and the rscript attribute is
used to construct a script file to be used in R to perform the required operations. There is therefore
a file in the packages directory named R_Script.py which handles such templates. It has a very simple
structure and contains the usual methods we have become familiar with when looking at the files in
this directory. It basically contains code to construct the data file for R, call the template code to
construct the script and then run the script and store the output objects. We will give no further
details here but finish by mentioning the other packages supported by Stat-JR.

5.6 Other packages
For our Regression2 template you will see that we also offer interoperability with other packages:
GenStat (VSN International, 2015), Gretl (Cottrell & Lucchetti, 2007), Stata (StataCorp, 2017), Matlab
(The MathWorks, Inc., 2017), Minitab (Minitab, Inc., 2017), PSPP (Free Software Foundation, 2017),
PyMC (Salvatier, Wiecki, & Fonnesbeck, 2016), SABRE (Barry, Francis, & Davies , 1989), SAS (SAS
Institute Inc., 2011) and SPSS (IBM Corp., 2017). Each of these packages will have a Python file in the
packages directory which deals with getting the data in the correct format for the package, calling
the template-specific code for the package and interrogating the output files received back by Stat-
JR from the package. Some packages will have two Python files in the packages directory, for
example for Stata we have files Stata_model.py and Stata_script.py, and here the distinction is
between calls from templates that fit models and thus need to create a ModelResults object and
templates that use other functionality e.g. graphs from within the package.

For our Regression2 template you will see that for most packages the code is quite short, for
example for Stata, we have:

statascript = '"'
local family gaussian
local link identity

glm ${y} \\

% for p in x:

${p} \\

% endfor

, family ("family') link(link") \\
##always remove the intercept

noconstant

produce diagnostic plots
predict yhat, mu
predict ehat, response

43

predict rhat, response standardized
scatter ehat yhat

graph export "ResivsFitted.png", replace
egen rank=rank (rhat)

gen nscore=invnormal(rank/(_N+l))
scatter rhat nscore

graph export "QQ Plot.png", replace

Here the code not only fits a model but also produces two plots.

This ends our whirlwind description of the interoperability features in the Stat-JR program. The
interoperability features are still a work in progress and although they are present in many of the
templates that we will describe in later sections we will not be going into details on this aspect of
these templates. The interested reader can look at these templates and see how they perform
interoperability and try writing their own interoperability code for their own templates.

44

6 Input, data manipulation and output templates

The Stat-JR system does not simply consist of templates for fitting models to datasets. There are, in
addition, templates that allow the user to input their own datasets, manipulate and summarise
datasets and plot features of datasets. In many ways these templates are much simpler to write and
understand. We will here look at a few examples of the templates along with their code and explain
how they fit into the TREE interface.

6.1 Generate template (generate.py)
Our first template to look at is used for generating columns to add to a dataset. These columns can
be constants, sequences, repeated sequences or random numbers. As this template doesn’t have
any exciting outputs we will not see much happen after execution. Let’s look at an example of
adding a vector of uniform random numbers to the tutorial dataset.

We firstly choose the Generate template from the template list on the main window and press the
Use button. The template will look as follows:

Stat-JR:TREE Start again Dataset = (tuteriall Template ~ (Generate' eBook ™

Output column name:

Type of number to generate: E

@Current input string: {}

@Command: RunStat)R(template='Generate', dataset="tutorial’, invars = {}, estoptions = {})

Now we select random for the output column name and choose Uniform Random for the type. After
clicking Next we are asked for a name of output results, and here if we enter tutorial the new
column will be appended onto the dataset and the tutorial dataset (in memory) will have an
additional column. If we choose a new name then a new dataset containing all the columns from
tutorial along with this new column will be formed (in memory) and tutorial will persist without the
new column.

Pressing Next will finish the inputs and Pressing Run will run the template and the Run button will
then disappear. If we then select tutorial from the pull-down list we will see:

Dataset: tutorial, Template: Generate; Input string: {'type": 'Uniform Random’', 'outdata’: 'tutorial’,
'outcol’: 'random'}

45

Stat-JR:TREE

Output column name: random remove
Type of number to generate: Uniform Random remove
Name of output dataset: tutorial remove

Download Make workflow

@Current input string: {'type": 'Uniform Random’, ‘outdata’: 'tutorial’, 'outcol’: ‘random’}

@Command: RunStat/R(template='Generate’, dataset="tutorial’, invars = {'outcol’: 'random’, ‘outdata"; tutorial’, 'type": 'Uniform Random’}, estoptions = {})

tutorial E Popout
tutorial a
school |student normexe| cons |standit| gil |schgenc| avsit | schav |vrband | random
1 1 1026132+ 1 0.61905¢ 1 1/0.18817¢ 2 1041702 ~
2 1 2 0.13408¢ 1 0.20880° 1 1/0.18817¢ 2 2 072032
3 1 3 172388 1 -1.38457 0 1/0.18817¢ 2 3 0.000114
4 1 4 0.96758¢ 1 0.20880° 1 1/0.18817¢ 2 2 030233
5 1 5 0.54434(10371104 1 1/0.18817¢ 2 2 0.14675¢
6 1 6§ 1.73489¢ 12189431 0 1/0.18817¢ 2 1 0.09233¢
7 1 7 1.03960¢ 1111862 0 1/0.18817¢ 2 3 0.18626(
8 1 8 -0.12908 1-1.0339% 0 1/0.18817¢ 2 2 0.34558(

Here you can see a new column labelled random to the right of the dataset (you can pop this out
into another tab if it is not clear).

Examining the code it is first worth noting that the template has
engines = ['Python script']

This tells Stat-JR that this template is not a model template and therefore needs to be treated
differently. The template has an inputs attribute as shown below:

inputs = '"!'
outcol = Text ('Output column name: ')
type = Text ('Type of number to generate: ', ['Uniform Random', 'Binomial

Random', 'Chi Squared Random', 'Exponential Random', 'Gamma Random',
'Normal Random', 'Poisson Random', 'Constant', 'Sequence', 'Repeated
sequence'])

if type == 'Binomial Random':

prob = Text ('Probability')

numtrials = Integer ('Number of Trials')
if type == 'Chi Squared Random':

degreefree = Integer ('Degrees of Freedom')
if type == 'Gamma Random':

shape = Text ('Shape')

if type == 'Poisson Random':
exp = Text ('Expectation')

if type == 'Constant':
value = Text ('Value')
if type == 'Sequence':

start = Integer('Starting Value')

46

step = Integer ('Step')

if type == 'Repeated sequence':
max = Integer ('Maximum number')
repeats = Integer ('Repeats per block')

outdata=Text ('Name of output dataset: ')

Here we see that there are two main inputs, a name for the column to add (outcol) and a type of
column to generate. Depending on the type there may be additional inputs and these are catered for
through a set of “if” statements in Python. So for example if we want a constant column we will have
an additional attribute, value which gives the value of the constant. Note that the length of the
vector is controlled by the lengths of the columns already in the dataset, as a dataset is currently
restricted to be a set of columns of equal length.

As this template is not a model template there is no model or latex attributes; instead the
computations are performed within a method called pythonscript which basically performs the
required calculation in Python and adds the column to the output. The method code is as follows:

pythonscript =
import numpy

import EStat

from EStat.Templating import *
from EStat.DTAFile import DTAFile
retval = DTAFile()

retval.nobs = datafile.nobs

for k in datafile.variables.keys():

retval.addvariable (k, data = datafile.variables[k]['data'])

datalen = datafile.nobs

if type == 'Uniform Random':
outvar = numpy.random.uniform(size = datalen)
if type == 'Binomial Random':

outvar = numpy.random.binomial (float (numtrials), float (prob), size =
datalen)

if type == 'Chi Squared Random':

outvar = numpy.random.chisquare (float (degreefree), size = datalen)
if type == 'Exponential Random':

outvar = numpy.random.exponential (size = datalen)
if type == 'Gamma Random':

outvar = numpy.random.gamma (float (shape), size = datalen)
if type == 'Normal Random':

outvar = numpy.random.normal (size = datalen)
if type == 'Poisson Random':

outvar = numpy.random.poisson(float (exp), size = datalen)
if type == 'Constant':

outvar = numpy.ones (datalen) * float(value)
if type == 'Sequence':

outvar = numpy.arange (int (start), int(start) + (datalen * int(step)),
int (step))
if type == 'Repeated sequence':

47

outvar
int (repeats

= numpy.array(list (numpy.repeat (numpy.arange (1, int (max) + 1),
))
float (repeats

n
) * numpy.ceil (datalen / (float (max) *
)))) [0O:datalen]

retval.addvariable (str (outcol), data = outvar)
outputs[str (outdata)] = retval

Although the function is long this is mainly due to the many “if” statements to cope with each type
of vector to be generated. So, for example, if we wanted a vector of Uniform random numbers to be
stored in random then the only lines to be executed are:

retval = DTAFile ()
retval.nobs = datafile.nobs
for k in datafile.variables.keys():
retval.addvariable (k, data = datafile.variables[k]['data'])
datalen = datafile.nobs

outvar = numpy.random.uniform(size = datalen)
retval.addvariable (str (outcol), data = outvar)
outputs[str (outdata)] = retval

Here the code calculates the length of vector in the fifth line, uses the numpy random generator in
the next line to create the column of numbers in outvar. In the remaining lines we link the column
into the dataset and finally return the dataset to the output name we gave as an input.

6.1.1 Exercise 2
Try modifying this template so that it only offers the random number generators. Try expanding the
inputs so for example the Normal random generator will allow a mean and a variance, the Gamma
has a scale parameter and the exponential has a rate parameter.

6.2 Recode template (recode.py)
The Generate template allows the user to add new columns to their existing dataset. There are many
templates that expand or manipulate a dataset and we will here look at a second template, the
Recode template. The Recode template, as the name suggests, recodes values — in this case recoding
values within a certain range to a specific new value. This can be useful for creating categorical
values, although this might involve several repeated uses of the Recode template!

We will demonstrate this with the tutorial dataset and look at recoding the school gender (schgend)
column. In the original dataset schgend takes values 1 for a mixed school, 2 for a boys school and 3
for a girls school. We might want to recode this to take values 1 for mixed and 2 for single sex: i.e.
convert the 3s for girls’ schools to 2s. To do this first we select Recode from the template list and hit
the Use button. Next we select schgend from the list of columns and select the other inputs as
below:

Dataset: tutorial, Template: Recode; Input string: {'incol’: 'schgend’, 'newval’: '2', 'outdata’: "tutorial’,
'rangeend': '3’, 'rangestart’: '2'}

48

Stat-JR:TREE

Input column name: schgend remove
Start of range: 2 remove
End of range: 3 remove
New value: 2 remove
Name of output dataset: tutorial
Next

Clicking on Next and Run will run the template. Selecting View from the Dataset pull-down list at the
top of the screen and then clicking on the Summary tab shows a dataset summary:

Stat-JR:TREE

Dataset name: tutorial E

Unload Duplicate Download

Data Summary Add variable Delete variable Edit data label Edit value labels

tutorial -]
Name Count | Missing Min Max Mean Std Description ‘Value Labels’

school 4059 0 1 65 31.006651884700 18.936811072595

student 4059 0 1 198 38.699926090169 30.260690898312

normexam 4058 0 -3.6660717 36660914 -0.0001138071047 0.9383208092058

cons. 4058 0 1 1 10 00

standirt 4058 0 -2.9343535 3.0159516 0.0018102547663 0.9931017329838

girl 4058 0 0 1/ 0.6001473196600 0.4398677517630

schgend 4058 0 1 2 1.4656319290465 0.4388174372442

avsirt 4058 0 -0.75596046 063765585 0.0018102472478 0.3148314944142

schav 4058 0 1 3 2.1271248076127 0.6529263155277

vrband 4058 0 1 3 1.8430647942343 0.6307845323865

@, Page [T Jof2 e w1 View 1-100f 11,

Here we see that schgend now goes from 1 to 2 as expected. Let us now look at the code for this
template. As with Generate this template has an inputs and a pythonscript attribute. These are both
quite short:

inputs = """

incol = DataVector ('Input column name: ')
rangestart = Text ('Start of range: ')
rangeend = Text ('End of range: ')

newval = Text ('New value: ")

outdata=Text ('Name of output dataset: ')

Here the inputs attribute contains the five inputs that we saw when running the template. Next the
pythonscript attribute:

pythonscript = '"'
import numpy
import numexpr

import EStat

from EStat.Templating import *
from EStat.DTAFile import DTAFile
retval = DTAFile()

retval.nobs = datafile.nobs

for k in datafile.variables.keys():

49

retval.addvariable (k, data = datafile.variables[k]['data'])

Copy data into numpy array for processing
var = numpy.array(datafile.variables[incol]['data'l])

var [(var >= float(rangestart)) & (var <= float(rangeend))] = float (newval)
retval.addvariable (incol, data = wvar)

outputs[str (outdata)] = retval

After some importing lines, the pythonscript attribute firstly copies the original column to the object
var and then performs the recoding by finding the values in the original column within the correct
range and then replacing them with the newval. Note the >= and <= operators mean that the range
is inclusive of its end points. Finally when var is modified it is then linked back to the input column
and the dataset is returned.

6.2.1 Exercise 3
This template applies the recoding by copying the recoded column over itself. As an exercise, try
modifying the template so that it will place the recoded column into a new location i.e. have another
name that is where to output the column to. Note the code for Generate should help here.

6.3 AverageAndCorrelation template
Another template that one might consider using prior to fitting a model is the
AverageAndCorrelation template. This template will give either some summary statistics (including
the averages) for a series of columns or the correlation matrix for a set of columns.

The template has a very short inputs attribute:

inputs = """
op = Text ('Operation: ', ['averages', 'correlation'])
vars = DataMatrix('Variables: ')

Here op allows the user to choose between averages and correlations whilst vars stores which
columns to perform the operation on. This template again uses the pythonscript attribute but this
time creates an output called table which will give the averages or correlations in tabular form.

The code for pythonscript is as follows:

pythonscript = ''"'
import numpy
import numpy.ma
import EStat
from EStat.Templating import *

tabout = TabularOutput ()

if op == 'averages':
tabout.column headings = ['name', 'count', 'mean',K6 'sd']
for i in range (0, len(vars)):
var = datafile.variables[vars[i]]['data']

tabout.add row(vars[i], [len(var), var.mean(), var.std()])

if op == 'correlation':

50

invars = numpy.ma.row_stack([datafile.variables[var]['data'] for var in
vars])
corrs = numpy.corrcoef (invars)
tabout.column headings = ['name']
for j in range (0, len(vars)):
tabout.column headings.append(vars([]J])

for i in range (0, len(vars)):
row = []
for j in range (0, len(vars)):
row.append (corrs[i, J])
tabout.add row(vars([i], row)

outputs['table'] = tabout

You will see here separate chunks of code for averages and correlations. The average code basically
initialises a table output with column heading and then loops through the columns in vars setting
each in turn as a numpy masked array (the format in which all columns are currently stored in Stat-
JR) stored in var. An array of text strings are then constructed and added to the tabular output,
tabout, and here we are utilising the len function to get the number of data items and the built in
numpy functions mean and std to get the mean and standard deviation respectively.

The correlation code is slightly longer, we here firstly need to construct the data as a matrix invars
from which we can construct the correlations (corrs) by a call to the numpy.corrcoef function. Then
we again format the output nicely into tabout.

The line outputs['table'] = tabout createsthe table object which is then included in the
output object list. If we consider using this template with the tutorial dataset we first need to select
it from the template list and select Use to get the default screen:

Stat-JR:TREE Start again Dataset i emplate ~ (AverageAndCorrelation’ cBook ~

Operation: E

Variables: school
student
normexam
cons
standlrt
girl
schgend
avsirt
schav
vrband
random

@Current input string: {}

@Command: RunStat)R(template="AverageAndCorrelation’, dataset="tutorial', invars = {}, estoptions = {})

We can now try this with some of the variables and in turn averages and correlation. Here is an
example of averages — note we select table from the objects list:

Dataset: tutorial, Template: AverageAndCorrelation; Input string: {'vars':
‘avsirt,standirt,girl,normexam’, 'op': 'averages'}

51

Stat-JR:TREE tutorial AverageAndCorrelation Ready (0s)

Operation: averages remove

Variables: avslrt,standirt,gir,normexam remove

Download Make workflow

@Current input string: {'vars’: ‘avslrt,standirt,girl,normexam’, ‘op’: ‘averages’}

@Command: RunStatJR(template="AverageAndCorrelation’, dataset="tutorial', invars = {'vars": ‘avslrt,standIrt,girl,ncrmexam’, ‘op": ‘averages’}, estoptions = {})

table E Popout
name count mean sd
avslrt 4059 0.00181024724787 0.314831494414
standirt 4059 0.00181025476637 0.993101732984
girl 4059 0.60014781966 0.489867751763
normexam 4059 -0.000113907104703 0.998820809206

...and the correlations for the same four variables:

Dataset: tutorial, Template: AverageAndCorrelation; Input string: {'vars':
‘avsirt,standirt,girl,normexam’, ‘op': ‘correlation'}

Stat-JR:TREE tuterial AverageAndCorrelation Ready (0s)
Operation: correlation remave
Variables: avslrt,standlrt,girl,normexam remove

Download Make workflow

@Current input string: {'vars" "avslrt,standlrt,girl,normexam’, "op": ‘correlation’}

@Command: RunStat/R(template="AverageAndCorrelation’, dataset="tutorial’, invars = {'vars" 'avslrt,standIrt,gir,normexam’, 'op": 'correlation’}, estoptions = {})

table E Popout
name avslrt standirt girl normexam
avsirt 1.0 0.317018374232 0.0407055371049 0.287936526679
standirt 0.317018374232 1.0 0.053210872887 0.591649587344
girl 0.0407055371049 0.053210872887 1.0 0.114602445574
normexam 0.287936526679 0.591649587344 0.114602445574 0.0
6.3.1 Exercise 4

Why not try and add the option to this template to give the standard error of the mean and also to
allow the template to output both averages and correlations together for the same variables.
Remember to rename the template first!

52

6.4 XYPlot template
Our final template in our whistle-stop tour of non-model templates is a graphing template. Python
has excellent graphing facilities and so we have created a few very basic graphing templates that
demonstrate some of these facilities. The xyplot template basically allows the user to plot one or
more Y variables against an X variable on the same plot.

The template has an inputs attribute as shown below:

inputs = ''"'
yaxis = DataMatrix ('Y values: ')
xaxis = DataVector ('X values: ')

Here we have two inputs, the various Y variables and the corresponding X variable to plot against.
For a graph template we once again use the pythonscript attribute but this time the method
constructs an object called graphxy which is in fact a .svg image file and is constructed by a function
called ImageOutput.

The pythonscript code is as follows:
pythonscript = '"'
from io import BytesIO

from matplotlib.figure import Figure
import matplotlib.lines as lines
from matplotlib.backends.backend agg import FigureCanvasAgg

import EStat
from EStat.Templating import *

fig = Figure(figsize = (8, 6))
ax = fig.add subplot (100 + 10 + 1, xlabel = str(xaxis))
for n in yaxis:
#Here put a space in before label so works if variable name begins with
underscore...

#ax.plot (datafile.variables[xaxis] ['data'l,
datafile.variables[n] ['data'], 'x', label = n)
ax.plot (datafile.variables[xaxis] ['data'],

datafile.variables[n] ['data'], 'x', label =
#ax.legend ()

'+ n)

#Shrink current axis by 20 percent:
box = ax.get position()
ax.set position([box.x0, box.y0, box.width * 0.75, box.height])

#fput legend to right of current axis

#numpoints reduces number of markers in legend to 1 from default of 2

leg = ax.legend(loc = 'center left', prop = {'size':10}, bbox to anchor =
(1, 0.5), numpoints = 1)

#request semi-transparent legend (in case of any overlap with plotting
area) :

leg.get frame().set alpha(0.5)

canvas = FigureCanvasAgg (fig)
buf = BytesIO()

canvas.print figure (buf, dpi=80, format='svg')

buf.seek (0)

53

outputs['graphxy.svg'] = ImageOutput (buf.getvalue())
buf.close()

Here we have to firstly import lots of Python libraries in order to call the graphics functions. The
function we are using is the Figure function from the matplotlib package. We then make a blank plot
sticking on the axes labels before looping over the y variables and plotting their points. The ‘X’ is the
symbol to be plotted for each plot. The last six lines are used to store the plotted figure as a .svg file.
To see this template in action we will pick it from the template pull down list (along with the tutorial
dataset) and we will be greeted by the following in the browser:

Stat-JR:TREE

Y values: school
student
normexam
cons
standlrt
girl
schgend
avsirt
schav
vrband
random »

X values: E

@Current input string: {}

@Command: RunStatJR(template="XYPlot', dataset="tutorial’, invars = {}, estoptions = {})

Perhaps the simplest plot here would be to plot normexam against standlrt which you can try
yourself. Here we illustrate instead the use of more than one y variable by making the following
selections:

I

Dataset: tutorial, Template: XYPlot; Input string: {'xaxis': 'school’, 'yaxis': 'avsirt,standlrt'}

Stat-JR:TREE star

Y values: avslrt,standirt remove

X values: school remove

@Current input string: {'xaxis": ‘school’, ‘yaxis': ‘avsirt,standlrt’}

@Command: RunStat)R(template="XYPlot', dataset="tutorial', invars = {’xaxis": 'school', 'yaxis": ‘avslrt,standirt}, estoptions = {})

script.py E

Popout

Clicking on the Run button and choosing to popout graphxy.svg gives the following graph:

54

Stat-JR:TREE

% avslrt
* standirt

70

Here we see plotted the actual intake scores for each pupil against school number in green and the
school average in blue.

6.4.1 Exercise 5
Simplify this template to only allow a single y variable. Try adding a main title to the graph and
varying the symbol and colours — maybe make this an option for the user to choose. Remember to
rename the template before you start!

55

7 Single level models of all flavours - A logistic regression

example
We have so far met two model templates: Regression1, which could be used to fit normal response
multiple regression models in the Stat-JR built-in MCMC engine eStat, and Regression2, which
allowed the same models to be fitted in other statistics packages. We will now look at a
generalisation of these templates, 1LevelMod that allows other response types including Binomial
and Poisson responses. This template will illustrate the use of conditional statements within the
inputs and model functions.

We will begin by looking at the template in action in Stat-JR. The template should be able to fit all
the models that Regression1 fits and so you could test the earlier regressions but here we will look at
a logistic regression. So from the main menu headings we need to set the template to be 1LevelMod
and the dataset to be bang, our example binary response dataset taken from the 1988 Bangladeshi
Fertility Survey and analysed in (Browne, MCMC Estimation in MLwiN, v2.36, 2016). Clicking on Use
gives the following output in the browser:

Stat-JR:TREE Start again Dataset ~ (bang) Template ~ (1levelMod cBook ™
@Response: E
Specify distribution: E

@current input string: {}

@Command: RunStatIR(template="1LevelMod’, dataset="bang’, invars = {}, estoptions = {}})

We will now set up the various inputs and the screen will look as follows:

56

Dataset: bang; Template: 1LevelMod; Input string: {'"Engine’: 'eStat’, 'burnin’: '500', 'D": 'Binomial’,

(AP R}

'outdata’: 'out’, 'n':

cons’, 'nchains': '3', 'thinning': '1', 'link': 'logit’, 'defaultalg': 'Yes', 'iterations’:

'2000', 'y": 'use’, 'x": 'cons,age’, 'makepred': 'No', 'seed": '1', 'defaultsv': 'Yes'}

Stat-JR:TREE

@Response:

Specify distribution:

@0Denominator:

Specify link function:

@Explanatory variables:

Choose estimation engine:

Number of chains:

Random Seed:

Length of burnin:

@Number of iterations:

Thinning:

Use default algorithm settings:

Generate prediction dataset:

Use default starting values:

@Name of output results:

use remove

Binomial remaove

€ons remove

logit remave

consage remove

eStat remave

3 remove

T remave

500 remove

2000 remove

1 remove

Yes remave

No remave

Yes remove

Next

We are here fitting a logistic regression to the response variable which is whether the women in

Bangladesh in the dataset use contraception or not. We are regressing this against age and using the
Stat-JR built-in MCMC engine with some default settings for estimation.

If we click on Next, equation.tex will display the model:

Stat-JR:TREE

equation.tex E

Popout

use; ~ Binomial(cons;, i)

logit(m;) = B cons; + B age,

By o1
Byt

We will next click on Run to run the model and then get the following results by selecting

ModelResults from the objects list:

Stat-JR:-TREE S ain Dataset e e E Ready (315)

ModelResults E Popout
Results
Parameters:
parameter mean sd ESS variable
beta 0 -0.410701702733 0.0384173614069 1390 cons
beta_1 0.0120500531917 0.00427390926192 1428 age
deviance 3846.609021168352 2.0631647580842 1305
Model:
Statistic Value
Dbar 3846.609021168352
D(thetabar) 3844.579024871756
pD 2.0299962965955
DIC 3848.639017464947

Here we see that the age coefficient is positive and significant meaning that older women are more
likely to use contraceptives. We now want to look at the template to see what the code looks like.
We will only concern ourselves with the Stat-JR built-in engine here and so will not look at how the
template works with interoperability as this will be an extension of the code for Regression2 in
Section 0.

7.1 Inputs
The code for inputs is as follows:

inputs = """
y = DataVector ('Response: '
)
D = Text('Specify distribution: ', ['Normal', 'Binomial', 'Poisson',
Binomial'])
if D == '"Binomial':
n = DataVector ('Denominator:

'-ve

)
link = Text ('Specify link function: ', ['logit', 'probit', 'cloglog'])
if D == 'Poisson':
link = Text (value = 'ln')
offset = Boolean('Is there an offset: '
)
if offset:
n = DataVector ('Offset: ')
if D == '"-ve Binomial':
offset = Boolean('Is there an offset: ')
if offset:
n = DataVector ('Offset: ')

x = DataMatrix ('Explanatory variables: ', allow_cat = True

58

if D == '"Normal':

tau = ParamScalar ()

sigma = ParamScalar (modelled = False)

sigma2 = ParamScalar (modelled = False)
if == '-ve Binomial':

alpha = ParamScalar ()

rho = ParamVector (parents = [y])
beta = ParamVector (parents = [x], as_scalar = True)
deviance = ParamScalar (modelled = False)

Compared to Regression1 you will see that we have introduced an input D for distribution and that
we introduce conditional statements (“if” statements). The distribution D is defined as a Text input
and you will see that there are a limited number of choices given as a second argument to the
statement. The TREE program will treat this as a pull-down list input with the limited number of
choices populating the list.

As we saw in our example when fitting a Binomial model we introduce additional inputs n —the
denominator column and /ink a Text based input to indicate the link function. We also see that for
non-normal models there is no level 1 variance and so the quantities tau, sigma and sigma2 are not
included.

7.2 Engines
This template allows many estimation engines as shown below:
engines = ['eStat', 'WinBUGS', 'OpenBUGS', 'JAGS', 'MLwiN MCMC',

'MLwiN IGLS', 'R _glm', 'R MCMCglmm', 'R MCMCpack', ‘R nimble’,
'Stata model', 'SPSS model', 'SAS model', 'R INLA', 'R RStan']

when we originally wrote Stat-JR each template had its own inputs for these engines defined in a
Methodinput function but now these are generic inputs and so simply by including an engine here,
Stat-JR knows which inputs to use.

7.3 Model
The model attribute now also contains conditional statements as shown below:
model = ''"!
model {
for (i in 1l:length(S${y})) {
S{y}r[i]l ~ \\
$ if D == '"Normal':

dnorm(mufi], tau)
muli] <- \\

$ endif

% 1if D == 'Binomial':
doin(p[i], ${n}[i])

${link} (p[i]) <= \\

$ endif

$ 1f D == 'Poisson':
dpois(p[i])

${link} (p[i]) <= \\
% if offset:
${n}[i] + \\

59

o\

endif

endif

if D == '"-ve Binomial':

dpois(p[i])

[1] <= rho[i] * exp (\\

if offset:

AR

endif

endif

if == '-ve Binomial':

S{mmult (x, 'beta', 'i')})
rho[i] ~ dgamma (alpha, alpha)
% else:

S{mmult (x, 'beta', 'i')}
% endif

o\

o\

oo 'g K

+

${n}[1]

o° oo

o

}

Priors

% for i1 in range(0, x.ncols()):
beta ${i} ~ dflat()

% endfor

% if D == 'Normal':

tau ~ dgamma (0.001000, 0.001000)
sigma <- 1 / sqgrt(tau)

sigma2 <- 1 / tau

% endif

% if D == '-ve Binomial':
alpha ~ dlnorm(0, 0.001)
% endif

Basically in the model code, conditional statements are started by a %if and the code to be
conditionally executed is ended by a %endif. The conditional statements can be hierarchical for
example the line

$ 1f offset:

is within another %if statement and now the %endif will correspond to the latest %if. In our
example we have D == ‘Binomial’ and so the code simplifies to:

model = '""!

model {
for (i in 1l:length(S${y})) {
S{y}[il ~ \\
doin(p[i], ${n}[i])
${link} (p[i]) <= \\
S{mmult (x, 'beta', 'i')}
}
Priors
% for i in range(0, x.ncols()):
beta ${i} ~ dflat()
% endfor

60

and as we demonstrated for Regression1 we can fill in the $ calls and unwind the %for loop and the
Smmult function to get the code we can view in the model.txt output object.

7.4 LaTeX

Finally the latex method now also contains conditional statements.
latex = r'"'

\begin{aligned}
$if == 'Normal':

\mbox{${y}} 1 & \sim \mbox{N} (\mu_ i, \sigma”2) \\
\mu i & =
%endif
%$if D == 'Binomial':

\mbox{${y}} 1 & \sim \mbox{Binomial} (\mbox{${n}} i, \pi i) \\
\mbox{${link}} (\pi i) & =
$endif
%if D == 'Poisson':
\mbox{S{y}} 1 & \sim \mbox{Poisson} (\pi i) \\
\mbox{${link}} (\pi i) & =
$if offset:
\mbox{${n}} i +
$endif
$endif
S{mmulttex(x, r'\beta', 'i')} \\
%1f str(Engine) in ['eStat', 'WinBUGS', 'OpenBUGS', 'JAGS' , ‘R _nimble’,
'MLwiN MCMC', 'R _MCMCglmm']:
%$for i in range (0, len(x)):
\beta {${i}} & \propto 1 \\
$endfor
$if == "Normal':
\tau & \sim \Gamma (0.001,0.001) \\
\sigma”2 & = 1 / \tau
$endif
$endif
\end{aligned}

and as with the model function we achieve conditional operations via the %if and %endif pairs. Again
for our example we can strip out the conditionals to get:

latex = r''"'!
\begin{aligned}
\mbox{S{y}} 1 & \sim \mbox{Binomial} (\mbox{${n}} i, \pi i) \\
\mbox{${link}} (\pi i) & =
S{mmulttex (x, r'\beta', 'i")} \\
$for i in range (0, len(x)):
\beta {${i}} & \propto 1 \\
%endfor
\end{aligned}

If you look at the code you will see other functions for the various other software packages but we
will not discuss these here.

7.4.1 Exercise 6
Convert the more general 1LevelMod template into a specific logistic regression template. To do this
copy 1LevelMod.py to 1Levellogit.py and simply remove the conditional statements and additional

61

options so that the template only allows the user to fit logistic regression models. You can check the
template works by attempting the example given in the section with your new template.

62

8 Including categorical predictors

Originally in Stat-JR all predictor variables were assumed to be continuous and so if a predictor was
categorical, for example school gender in the tutoral dataset, we would need some method to
transform the original form to a series of dummy variables. To this end several templates were
created that performed this transformation as part of the template in an attribute called
preparedata. We will look at an example of this in a minute with the 1LevelCatRef template which
allows the user to specify variables as categorical and to specify which category is the reference. In
later versions of Stat-JR functionality was built in to allow the user to specify that an input might be
categorical and so, for example, in the inputs in 1LevelMod you will see the line:

x = DataMatrix ('Explanatory variables: ', allow _cat = True

which tells Stat-JR to ask for each element of x whether it is categorical or not; then, within each
package file, there is code to construct the dummy variables. This method is restricted in that it
always chooses the first category to be the reference. We will here look at an alternative template
that has built in functionality for constructing these categorical variables within the template. This
template is called 1LevelCatRef and we will first look at its inputs attribute to see how it gets the user
to input the model structure before demonstrating its use on the tutorial dataset.

The inputs code is as follows:
inputs = '"!'

y = DataVector ('Response: '

)

D = Text ('Specify distribution: ', ['Normal', 'Binomial', 'Poisson'])
if D == '"Binomial':
n = DataVector ('Denominator: '

)

link = Text ('Specify link function: ', ['logit', 'probit', 'cloglog'])
if D == 'Poisson':

link = Text (value = 'ln')

offset = Boolean('Is there an offset: '

)
if offset:
n = DataVector ('Offset: ')

x = DataMatrix ('Explanatory variables: '

)
for var in x:
context[var + ' cat'] = Boolean('Is ' + var + ' categorical? ',
default=False)

63

if context[var + ' cat']:

context[var + ' ref'] = Integer('Reference Category: '
)

origx = Text(value = [])
if D == '"Normal':

tau = ParamScalar ()

sigma = ParamScalar (modelled = False)

sigma?2 = ParamScalar (modelled = False)
beta = ParamVector (parents = [x], as_scalar=True)
deviance = ParamScalar (modelled = False)

This code section is much the same as that in ILevelMod (aside from not doing negative binomial) up
to the point that x is input. We next see a “for” loop that includes the use of the context statement
which is used to construct attribute names that are a combination of text and variable names. If, for
example, x contains the three variable list [‘cons’,’standIrt’,’schgend’] then the context statements
will create 3 variables ‘cons_cat’, ‘standlIrt_cat’ and ‘schgend_cat’ which will store the text strings
‘ves’ or ‘no’ depending on whether the variables are categorical or not. If ‘yes’ then a further context
statement is used to construct a variable to house the reference category for that variable. The line

origx = Text (value = [])

will be used to store the original x variables prior to manipulating the categorical variables. By
setting its value in the assignment we will not get an input widget appearing in the browser.

Let us demonstrate fitting this model: choose 1LevelCatRef from the template list and tutorial as the
dataset. Note if you have previously used the recode template on this dataset, on the main menu
click on Debug > Reload datasets to get back the original tutorial dataset. Firstly we will choose the
inputs as follows:

64

Dataset: tutorial, Template: 1LevelCatRef; Input string: {'defaultsv': 'Yes', 'schgend_ref": '1', 'D":
'Normal', 'schgend_cat': 'Yes', 'nchains': ‘3", 'defaultalg': 'Yes', 'iterations': '2000', 'outdata’: 'tutout’,
'seed': '1', 'standlrt_cat': 'No', 'Engine’: 'eStat’, 'burnin’: '500', 'thinning': '1', 'y': 'normexam’, 'x':

‘cons,standirt,schgend’, 'cons_cat': 'No', ‘'makepred': 'No'}

Stat-JRTREE st
@Response: NOrMexam remaove
Specify distribution: Normal remove
@Explanatory variables: cons,standlrt,schgend remove
Is cons categorical? Mo remave
Is standirt categorical? Mo remave
Is schgend categorical? Yes remove
@Reference Category: 1 remove
Choose estimation engine: estat remove
Mumber of chains: 3 remove
Random Seed: 1 remove
Length of burnin: 500 remove
@Number of iterations: 2000 remove
Thinning: 1 remove
Use default algorithm settings: Yes remove
Generate prediction dataset: Mo remave
Use default starting values: Ves remove
@Name of output results: tutout

Next

Next we click on the Next button and we will be able to look at the equation for the model:

Stat-JR:TREE Sta

Popout

equation.tex E

normexam; ~ N(u,, o%)
p; = Bycons; + B, standlrt; + f,schgend_2, + ff;schgend 3,
By o1
Byl
Byl
Byl
7~ T(0.001,0.001)

ol=1/1

Here we see that in the maths that the expression for the linear predictor has two terms to
represent two of the possible categories for school gender (schgend 2 and schgend_3).

The important attribute here is preparedata. The preparedata attribute allows for template specific
data manipulations to be executed prior to the model run. In this case the code is as overleaf:

preparedata = ''"'

mydata = data['datafile']
for var in x:

65

origx.name.append(var) # Save user's original selection

del x[:]
X.orignames = []
for var in origx.name:

if context[var + ' cat']:
unigvals = list(set (mydata.variables|[var]['data'].compressed()))
unigvals.sort ()
unigvals.remove (int (context[var + ' ref']))

for i in unigvals:
if int (1)<0:

lab = 'neg'+str(abs (int(i)))
else
lab = str(int(i))
mydata.addvariable(var + ' ' + lab, data =
(mydata.variables[var]['data'][:] == 1) .astype(float))
xX.name.append(var + ' ' + lab)
(

x.orignames.append(var)
else:
TODO: fix this
X .name.append (var)
x.orignames.append (var)
beta.ncols = len(x)

This code firstly retains the named predictor variables in origx by copying the contents of x to origx
and then deleting them from x. Then the code loops over the variables via the second for statement
and conditionally (the “if” statement) on a particular variable being categorical does some
processing.

The lines
unigvals = list (set (mydata.variables|[var]['data'].compressed()))
unigvals.sort ()
unigvals.remove (int (context[var + ' ref']))

firstly find all unique values in the categorical predictor which are then stored in unigvals. We then
sort these into ascending order before removing the user defined reference category as it will play
the role as the base category in the model. We then have a second loop over this list of unigvals
where we create the dummy variables. The lines

mydata.addvariable(var + ' ' + lab, data =
(mydata.variables[var] ['data'][:] == 1) .astype(float))
x.name.append(var + ' ' + lab)

firstly construct an array which takes value 1 if the original variable has value i or 0 otherwise. This
newly constructed predictor variable is then appended to the new variable list. If the variable is not
categorical it is simply added to this new variable list itself. We finally adjust the length of beta to
account for the expansion of the categorical variables and return the new dataset.

This preparedata method is run before the model and latex attributes and so these are similar to
those we saw in 1LevelMod. To continue running the example we can press the Run button and then
select the ModelResults object from the list to get the following results:

66

Stat-JR:TREE » i e 7 [1levelCatRef ©

ModelResults E Popout
Results
Parameters:
parameter mean sd ESS variable
tau 1.5692622008%4 0.0345825873237 6854
beta_0 -0.0957604037338 0.0169644449491 2175 cons
beta 1 0.59418498653 0.0127518971538 5820 standlrt
beta_2 0.11667656935 0.0395283789139 3614 schgend
beta 3 0.235413834131 0.0268427475791 2375 schgend
sigma2 0.637551909719 0.0140628885717 6869
sigma 0.798419950681 0.00880295820815 6865
deviance 9692.102086663124 3.0665911479559 4947
Model:
Statistic Value
Dbar 9692.102086663126
D(thetabar) 9687.129926364645
pD 4972160298481
DIC 9697.0742469616071

This completes this section and is the last single level model we will meet for a while. Another
extension would be to allow the inclusion of interactions into the model. This has been done in the
template 1Levelinteractions (which is available from the template repository but not part of the core
release). Here the modifications are done in the inputs and model/latex methods as no new
predictor variables are created. Instead the model code includes multiplications between the
variables. We will leave you to try out this template as an exercise.

67

9 Multilevel models

Our next step is to move onto templates for models for more complex data structures. In this section
we look at multilevel modelling templates — templates that allow random effects to account for
clustering in the data. We will look at two templates of increasing complexity, firstly a template for
fitting models that have 2 levels i.e. 1 higher level of clustering and then secondly a more general
template that will fit models with any number of levels clustering whether nested or crossed. Note
here that these templates allow only random intercepts in the models we are fitting.

9.1 2LevelMod template
We will begin our investigation of 2LevelMod by looking at its inputs attribute. Note that here and
later we have stripped out the help text from some of the inputs for readability:

inputs = ''"!'
y = DataVector ('Response: ')
L2ID = IDVector('Level 2 ID: ')

D = Text('specify distribution: ', ['Normal', 'Poisson', 'Binomial'])
if D == 'Binomial':
n = DataVector ('Denominator: ')

link = Text ('Specify link function: ', ['logit', 'probit', 'cloglog'])
if D == 'Poisson':
link = Text (value = 'ln')
offset = Boolean('Is there an offset: ')
if offset:
n = DataVector ('Offset: ')
if D == '"-ve Binomial':
offset = Boolean('Is there an offset: ')
if offset:
n = DataVector ('Offset: ')

x = DataMatrix ('Explanatory variables: ', allow cat = True)
storeresid = Boolean('Store level 2 residuals?')

if == 'Normal':
tau = ParamScalar()
sigma?2 = ParamScalar (modelled = False)
if D == '-ve Binomial':
alpha = ParamScalar ()
rho = ParamVector (parents = [y])
beta = ParamVector (parents=[x], as_scalar=True)

if storeresid:
u = ParamVector (parents=[L2ID], as_scalar=False)
else:
u = ParamVector (parents=[L2ID], as_scalar=False, monitor=False)
tau u ParamScalar ()
sigma2 u ParamScalar (modelled False)
deviance = ParamScalar (modelled = False)

If you compare this with the inputs function for 1LevelMod you will see we have added 2 additional
inputs: L2ID to allow the user to input the column containing the level 2 identifiers and storeresid, a
Boolean indicator of whether to store the level 2 residuals or not. We also have three additional

68

parameters u, tau_u and sigma2_u (to represent the level 2 residuals, their precision and variance
respectiviely) that have been included. We can try out an example of these inputs by selecting the
template 2LevelMod and the dataset tutorial and applying the following inputs:

69

Dataset: tutorial; Template: 2LevelMod; Input string: {'Engine’: 'eStat’, 'L2ID'": 'school’, 'burnin’: '500',
'D': 'Normal', 'outdata’: 'tutout’, 'storeresid': 'No', 'thinning': '1', 'nchains': '3', 'defaultalg’: 'Yes',

'iterations’: '2000', 'y': 'normexam’, 'x': 'cons,standirt’, 'makepred': 'No', 'seed’: '1', 'defaultsv': 'Yes'}

Stat-JR:TREE

©Response:

@Level 2 ID:

Specify distribution:

@Explanatory variables:

Store level 2 residuals?

Choose estimation engine:

Number of chains:

Random Seed:

Length of burnin:

@Mumber of iterations:

Thinning:

Use default algorithm settings:

normexam remove

school remave

Normal remove

cons,standlrt remove

No remove

eStat remove

3 remave

T remove

500 remove

2000 remaove

1 remove

Yes remave

Generate prediction dataset: No remove

Use default starting values: Yes remove

@Name of output results: tutout
Next

Clicking on Next we will see equation.tex in the bottom pane:

Stat-JR:TREE

equation.tex E

normexam; ~ N(u;, 0%)

u; = fycons; + B, standlrt; + u,
Uschoolp ™ N(0,07)
Bpeel
By el
T~ I(0.001,0.001)
gl=1/t
7, ~ [(0.001,0.001)

si=1/m

schooli)

Here we see a mathematical representation of the model created in latex. Let’s look next at model:

model = '"'
model {
for (i in 1l:length(S${y})) {
S{y}[il ~ \\
% 1if D == '"Normal':
dnorm(mu[i], tau)
muli] <= \\

70

% endif

% if D == 'Binomial':
1, ${n}[i])

${link} (p[i]) <= \\

% endif

% if D == 'Poisson':
dpois(p[i])

{link} (p[i]) <= \\
if offset:

AR

endif

endif

if == '-ve Binomial':

dbin(p[1i

oo Ur H

+

${n}[1]

o° oo

o\

dpois (pl

JR——
~

i] <= rho[i] * exp(\\

if offset:

AR

endif

endif

if == '-ve Binomial':

${mmult (x, 'beta', 'i')} + ul[S$S{L2ID}[i]1])
rho[i] ~ dgamma (alpha, alpha)
% else:

S{mmult (x, 'beta', 'i')} + ul[${L2ID}[i]]
% endif

oo 'g

+

${n}[1]

o° oo

o©

}

for (j in 1l:length(u)) |
ulj] ~ dnorm(0, tau u)

}

Priors
% for i in range(0, x.ncols()):
beta ${i} ~ dflat()

[

% endfor

% if D == 'Normal':

tau ~ dgamma (0.001000, 0.001000)
sigma2 <- 1 / tau

[

% endif

tau u ~ dgamma (0.001000, 0.001000)
sigma2 u <- 1 / tau u

$ 1f D == '"-ve Binomial':
alpha ~ dlnorm(0, 0.001)
% endif

The code has become quite long mainly due to the conditional statements for the different
distribution types. We see that theterm u[${1.21D} [1]] has been appended to the linear
predictor where L2ID is inserted for a particular model. The chunk of code

for (j in 1l:length(u)) {
ul[j] ~ dnorm(0, tau u)
}

then gives the random effect distribution and finally the chunk

tau u ~ dgamma (0.001000, 0.001000)

71

sigma2 u <- 1 / tau u

gives a prior distribution for the variance of the random effects. The latex function is adapted in very
similar ways and so for brevity we omit this code here. We will finish off this template by running it
and looking at ModelResults (in a new tab). If we do this we only get results for the variables that
have had their chains stored:

Stat-JR:TREE Sta

ModelResults E Popout
Results
Parameters:
parameter mean sd ESS variable
sigma2_u 0.097038288567 0.0202790981815 3109
tau 1.767200644422 0.0396319573944 6240
deviance 9208.784400791064 11.943453653672 5549
beta 0 0.00254149956589 0.0399530738962 319 cons
beta_1 0.563428180775 0.0124864567817 4829 standlrt
tau u 10.74722600344 2.207139596557 3105
sigma2 0566151195557 0.0126922164147 6211
Model:
Statistic Value
Dbar 9208.784400791064
D(thetabar) 9148.958639137034
pD 59.82576165403
DIC 9268.610162445095

Basically although we didn’t store chains for each of the 65 random effects u we can store summary
statistics for them but by default we do not display them unless we change the output options on
the settings screen. As usual we also can get the MCMC plots e.g. for beta_0.svg:

72

Stat-JR:TREE

beta_0
0.15
0.10
.“Lj 0.05
T 0.00
£
g -0.05
o -0.10
-0.15
-0.20 L L
0 500 1000 1500 2000
stored update
1.0
0.8
w 06
o]
< 04
0.2
0.0 . . L
0 20 40 60 80 100 120
Lag
0.0035
0.0030
0.0025 -
w
& v.0020}
=
0.0015
0.0010 [
0.0005 L L n
0 20000 40000 60000 800001000020000
updates
9.1.1 Exercise 7

kernel density

PACF

BGRD

1 L
.250.260.150.160.09.000.050.100.150.20

parameter value

0.8

0.6

0.4}

0.2

0.0
0

1.0
0.8
0.6
0.4

0.2

n
200

400 600
start iteration

800 1000

Try adapting this template so that it allows the user to incorporate interactions.

9.2

NLevelMod template
The NlevelMod template, as the name suggests, extends the 2LevelMod template to an unlimited
number (input by the user) of levels of clustering. Note that these clusters can be either nested or

cross-classified. We will once again start by looking at the inputs attribute to see how it differs from
2LevelMod (again we’ve removed the help text):

inputs = '"!'
NumLevs = Integer ('Number of classifications: ')
for i in range (0, int (NumLevs)):

selstr = 'Classification ' + str(i + 1) + ': '

IDVector (selstr)

context['C' + str(i + 1)]
DataVector ('Response: ')
Text ('Specify distribution: ', ['Normal',
'Binomial’':

DataVector ('Denominator:

y:
D
if

'Binomial', 'Poisson'])

p—])
Text ('Specify link function: ', ['logit',
'Poisson':
link Text (value = '1ln')
offset Boolean('Is there an offset:
if offset:
n DataVector ('Offset:
'-ve Binomial':
offset Boolean('Is there an offset:
if offset:

n DataVector ('Offset: ')
DataMatrix ('Explanatory variables: ', allow cat
Boolean ('Store residuals?')

n
link

'probit', 'cloglog'])

if D

")

")

if ==

")

X True)

storeresid

73

if D == '-ve Binomial':

alpha = ParamScalar ()

rho = ParamVector (parents = [y])
beta = ParamVector (parents=[x], as_scalar=True)
if D == 'Normal':

tau = ParamScalar()

sigma2 = ParamScalar (modelled = False)

for i in range (0, int (NumLevs)):
if storeresid:

context['u' + str(i + 1)] = ParamVector (parents=[context['C' +
str(i + 1)]], as_scalar=False)
else:
context['u' + str(i + 1)] = ParamVector (parents=[context['C' +
str(i + 1)]], as_scalar=False, monitor=False)
context['tau u' + str(i + 1)] = ParamScalar()
context['sigmaZ2 u' + str(i + 1)] = ParamScalar (modelled = False)
deviance = ParamScalar (modelled = False)

Here we have needed to replace the code for inputting the level 2 identifier with code to input the
number of classifications (levels of clustering) and then we have looped over the number of
classifications constructing both the names of the columns that contain the classification vectors
(which will labelled C1, C2 ...) and, towards the bottom of the code, the new parameters associated
with each classification (ul, tau_ul and sigma2_ul etc). To achieve these inputs we have used the
context command to construct attribute names by concatenating strings and also a simple string
concatenation to create selstr which contains the question associated with inputting each
classification name. The rest of the code is similar to before. It should be noted that a 2 level model
in this template has 1 classification as we are not considering level 1 here.

We can consider using this template on a cross-classified example with two higher classifications.
This example is a dataset from Fife in Scotland (Paterson, 1991) where we are looking at the impact
of both primary school and secondary school on the attainment of children at age 16. To do this
select the template NLevelMod from the template list and the dataset xc from the dataset list. Select
the inputs as shown:

Dataset: xc; Template: NLevelMod; Input string: {'D": 'Normal', 'storeresid': 'No', 'nchains': '3’,
'defaultalg’: 'Yes', 'iterations': '2000', 'C2": 'sid', 'outdata’: 'out’, 'NumlLevs': '2', 'seed’: '1’, 'defaultsv':
'Yes', 'Engine’: 'eStat’, 'burnin’: '500', 'thinning': '1', 'y': 'attain’, x': 'cons,vrq’, 'C1': 'pid', 'makepred":
'‘No'}

74

Stat-JR:TREE

equation.tex

@Mumber of classifications:

Classification 1:
Classification 2:

@Response:

Specify distribution:
@Explanatory variables:

Store residuals?

Chaose estimation engine:
Number of chains:

Random Seed:

Length of burnin:

@Number of iterations:
Thinning:

Use default algarithm settings:
Generate prediction dataset:
Use default starting values:

@Name of output results:

N

attain; ~ N(u,, 0%)

Popout

u, = fycons; + B vrq, +u

(2)
Hpidig
@ 2
Usidgy N(0.o35)
Byl
Bl

~N(0,07;)

NLevelMod

@
pidg

7~ T(0.001,0.001)

o?=1/t

T, ~ 7(0.001,0.001)

05 =1/Ty

T, ~ T(0.001,0.001)

0l =1/,

level model and 2LevelMod.

&)
+ usid[[]

2 remove

pid remove

sid remove

attain remove

Normal remove

onsvrg remove

No remove

eStat remave

3 remove

1 remove

500 remave

2000 remove

1 remove

Yes remove

No remove

Yes remove

Mext

75

Clicking on the Next button will display the mathematical formulation of the model (equation.tex) in
the pull-down list:

Ready (5s)

If we select model.txt from the list we can see the model code. It is similar to that we had for the 2-

Stat-JR:TREE xc NlevelMod Ready (55)

model.txt E

Popout

model {
for (i1 in 1:length(attain)) {
attain[i] ~ dnorm(mu[i], tau)
mu[i] <- cons[i] * beta_@ + vrq[i] * beta_1 + ul[pid[i]] + u2[sid[i]]

for (i1 in 1:length(ul)) {
ul[il] ~ dnorm(©, tau_ul)

for (i2 in 1:length(u2)) {
u2[i2] ~ dnorm(®, tau_u2)

Priors

beta_@ ~ dflat()

beta_1 ~ dflat()

tau ~ dgamma(©.061860, ©6.801608)
sigma2 <- 1 / tau

tau_ul ~ dgamma(6.881666, ©.601668)
sigma2_ul <- 1 / tau_ul

tau_u2 ~ dgamma(6.881606, ©.601668)
sigma2_u2 <- 1 / tau_u2

The model code is created by the model attribute and here we see the code:

model = '""!
<% numlevs = int (NumLevs) %>
model {

for (i in l:length(${y})) {
S{y}[i]l ~ \\
$ 1f D == '"Normal':
dnorm(mu[i], tau)
mul[i] <- \\

% endif

% if D == 'Binomial':
dbin(p[i], ${n}[i])

${link} (p[1i]) <= \\

% endif

% if D == 'Poisson':
dpois(p[i])

i
${link} (p[i]) <-
$ 1f offset:
${n}[i] + \\
endif
endif
$ if == '-ve Binomial':
dpois(p[i])
[i] <= rho[i] * exp (\\
if offset:
A
endif
endif
${mmult (x, 'beta', 'i')} \\
for i in range (0, numlevs):
+ uS{i + 1} [$S{context['C'" + str(i + 1)]1}[1]1]1 \\
endfor
if D == '-ve Binomial':

oe 'O

Ur
—~—
=}
—
[
+

o° oo

o

o° oo

76

rho[i] ~ dgamma (alpha, alpha)

Q

% endif

}

for i in range (0, numlevs):
for (i${i + 1} in 1l:length(u${i + 1})) {
us{i + 1}[iS{i + 1}] ~ dnorm(0, tau u${i + 1})

endfor

H

Priors

% for i in range(0, x.ncols()):
beta ${i} ~ dflat()

% endfor

% if D == 'Normal':

tau ~ dgamma (0.001000, 0.001000)
sigma2 <- 1 / tau

% endif

% for i in range (0, numlevs):

tau u${i + 1} ~ dgamma(0.001000, 0.001000)
sigma2 u${i + 1} <= 1 / tau us${i + 1}

% endfor

$ 1f D == '"-ve Binomial':
alpha ~ dlnorm(0, 0.001)
% endif

Here we introduce the use of local variable numlevs. Basically the model attribute is a text string
with substitutions. Then if we wish to include a Python statement, whilst inside the text string, we
place it within a <% and a %>. In this case we set a value to numlevs and then use it as a looping
upper bound later in the code. You will see that the rest of the code contains many of the features
we have discussed in earlier examples. You do however have to be careful as the code is such a
mixture of WinBUGS like model code and Python code. For example if we consider the chunk:

o)

% for i in range (0, numlevs) :
for (i${i + 1} in 1l:length(u${i + 1})) {
u${i + 1}[i${1i + 1}] ~ dnorm(0, tau u${i + 1})

with our cross-classified model. Here we are using j in both the model code we are constructing and
as a python variable. So numlevels in our example is 2 and so the outside %for (Python) can be
expanded out and the i substitutions made and we get:

for (il in 1l:length(ul)) {
ul[il] ~ dnorm(0, tau ul)
}
for (i2 in 1l:length(u2)) {
u2[i2] ~ dnorm(0, tau u2)
}

as we see in the browser. Once again the /latex function which creates the LaTeX output will have
similar substitutions via Python but we will not describe this in detail here.

77

Clicking on Run will run the model and the output contains information for all the parameters but
not the residuals as we didn’t ask to store them and the usual MCMC plots are available.
Interestingly the ESS values for beta_0 and beta_1 are poor and if we look at the object beta_0.svg

We see the following:

Stat-JR:TREE

beta 0

|
N}
=
IS

=
(™!

parameter
kernel density

=

o

© 2 9o 9o o9
o N B 3 ®

. . A .
500 1000 1500 2000 12 -10 -8 -6 -4 -2 0
stored update parameter value

1.0

08}

0.6

PACF

0.4}

0.2}

Lag Lag

MCSE
BGRD

0.2 . L . " n
0 20000 40000 60000 80000100000120000 0 200 400 600 800 1000
updates start iteration

Clearly in this case the 500 burnin was not long enough and convergence has not been achieved. If
we modify the burnin to 2000 and main run to 5000 we get the following:

Dataset: xc; Template: NLevelMod; Input string: {'D": 'Normal', 'storeresid': 'No', 'nchains': '3’,
'defaultalg’: 'Yes', 'iterations’: '5000', 'C2": 'sid', 'outdata’: 'out’, 'NumlLevs': '2', 'seed': '1', 'defaultsv':
'Yes', 'Engine’: 'eStat’, 'burnin': '2000', 'thinning': '1', 'y': 'attain’, 'x': 'cons,vrq’, 'C1'": 'pid', 'makepred':
'‘No'}

78

Stat-JR:TREE

parameter
1
o
o
=

0.040
0.035
0.030
W 0.025
2 0.020
0.015
0.010
0.005

beta_0

kernel dens

. .
2000 3000 4000 5000
stored update

PACF

BGRD

L ! |
5000010000@5000@0000@5000B00000

updates

ity

141

1.0F
0.8
0.6
04|
0.2+

0.

1.0

0.8

0.6

0.4

0 1 L
-11.5 -11.0 -10.5 =-10.0

parameter value

-9.5

-9.0

T T T

I L L
1000 1500 2000

start iteration

2500

There are several other N level modelling templates included with the software that you can also

look at. We will describe one further such template (NLevelRS) which allows random slopes in

section 11. This template will need to utilise the preccode feature and so we will first explain this

with a simpler 1 level example.

9.2.1

Exercise 8

Try adapting this template to allow interactions between predictors calling your new templates

nlevelint.

79

10 Using the Preccode method

One of the aims of the Stat-JR system is to allow other estimation engines aside from our built-in
MCMC engine to be used with templates. We saw in section 0 details of how the system can interact
with third-party software. In this section (and in fact the following three sections) we will see how
through the inclusion of additional C++ code the user can increase the set of models and methods
that can be fitted using the built-in eStat engine. At present the methods we describe are partly to
advance the modelling but also partly to cover current limitations in the algebra system which may
eventually be rectified. As the names suggest the preccode function will involve writing C++ code and
so some knowledge of the C/C++ languages would be useful. The examples given here will however
allow the user with some modification to use similar chunks of code for their examples. We begin in
this chapter with a simple example of a 1 level probit regression model.

10.1 The 1LevelProbitRegression template
We have seen already that the 1LevelMod template can be used to fit binary response models and
we have demonstrated a logistic regression model for the bang dataset. A probit regression is similar
to a logistic regression but uses a different link function. One interesting feature of a probit
regression is that the link function is the inverse normal distribution cdf. This means that we can
interpret the model using latent variables in an interesting way.

Imagine that you had a variable which was a continuous measurement but that we can only observe
a binary indicator as to whether the variable was above or below a threshold, for example in
education we might have a mark in an exam but the student is only told whether they pass or fail. If
we model the pass/fail indicators using a probit regression then this is equivalent to assuming the
unobserved (latent) continuous measure follows a normal distribution (with threshold 0 and
variance 1).

We can use this fact in our modelling when we use MCMC by generating the latent continuous
variables as part of the algorithm. Then having generated the latent variables we have a normal
response model for these variables which is easy to fit. The 1LevelProbitRegression template
therefore fits a probit regression using this technique and we will add the step to update the
continuous response variables via the preccode methods.

We will start as usual by looking at the inputs attribute which is quite short (again, omitting the help
text):

inputs = """
v = DataVector ('Response: ')
y = ParamVector (parents=[v], as scalar=False, customstep=True,
monitor=False)

x = DataMatrix ('Explanatory variables: ', allow _cat = True)
beta = ParamVector (parents=[x], as_scalar=True)
deviance = ParamScalar (customstep=True)

Here you will see that the column containing the 0/1 response is actually stored as v in this template
as we will use y to be the underlying continuous response. As y is latent it is defined as a
Paramvector rather than data, and the parents term links the lengths of the two vectors together

80

which basically ensures that the continuous response vector y is the same length as the observed
binary response vector v. The argument customstep=True tells Stat-JR that this parameter will have
it’s own C code step and the monitor=False argument tells Stat-JR not to store a chain for each
element of y. As always it helps to demonstrate the template with an example so we will fit a probit
regression model (equivalent to the logistic regression in section 7) to the Bangladeshi dataset.
Select 1LevelProbitRegression from the template list and bang from the dataset list and then fill in
the template as shown below:

Dataset: bang; Template: 1LevelProbitRegression; Input string: {'burnin’: '500', 'defaultsv': 'Yes’,
‘thinning': '1’,

U

nchains': ‘3", 'defaultalg': 'Yes', 'iterations': '2000', 'v': 'use’, 'outdata’: 'out’, 'x":

'cons,age’, 'seed": '1', 'makepred': 'No'}

Stat-JR:TREE emplate ~ (ilevelProbitRegression’ ©
@Response: use remove
@Explanatory variables: cons,age remove
Number of chains: 3 remove
Random Seed: 1 remove
Length of burnin: 500 remove
@Number of iterations: 2000 remove
Thinning: 1 remove
Use default algorithm settings: Yes remove
Generate prediction dataset: No remove
Use default starting values: Yes remove
@Name of output results: out

Next

Clicking on the Next button, equation.tex will appear in the output pane and we see the model
described mathematically:

Stat-JR:TREE sta

equation.tex E

Popout

use; ~ N(u;, 1)
where use; > 0 if use; = 1
and use;
H; = Pocons; + B age,
By 1

Byl

< 0ifuse, =0

81

Here you see how use” is the latent continuous variable written as y in the model code. If we look at
model.txt (below) we see that the model code is really just fitting a normal model as if we already
know the values of y.

Stat-JR:TREE Start again

model.bxt E

Popout

model{
for (i in 1:length(use)) {
y[i] ~ dnorm(mu[i],1.8)
mu[i] <- cons[i] * beta_® + age[i] * beta_1
Priors
beta_® ~ dflat()
beta_1 ~ dflat()

If we look at the model attribute we can see that clearly.
model = '''
model {
for (i in 1l:length(${v})) {
y[i] ~ dnorm(mu([i],1.0)
mul[i] <- ${mmult(x, 'beta', 'i'")}
Priors
% for i in range (0, x.ncols()):
beta ${i} ~ dflat()

o)

% endfor

Here the code is fairly straight-forward so the interesting thing is how we actually include a step for y
to make this the correct model. You will recall that y will need a custom step and will not be monitored.
To see this in practice we will continue our example and press the Run button. When finished if you
select ModelResults then the results will look as follows:

82

Stat-JR:-TREE Start again Dataset emplate ~ ({levelProbitRegression’ cBook

ModelResults E Popout
Results
Parameters:
parameter mean sd ESS variable
beta_0 -0.258985721812 0.0239119026417 2770 cons
beta_1 0.00759034568215 0.00262156649463 2663 age
deviance 3846.425343849193 1.962766724882 4866
Model:
Statistic Value
Dbar 3846.425343849193
D(thetabar) 3844.431572015837
pD 1.993771833356
DIC 3848.419115682549

We see that the model has run and got reasonable ESS values and has returned a DIC value. To see
how this happened we need to look at the preccode and deviancecode attributes

10.2 preccode and deviancecode attributes
We have seen that the code works but we need now to look and see how the step for updating the
latent y variable is incorporated into the code. This is done via the preccode attribute which for this
template looks as follows:

preccode = ''"'
<3!
def mmult (names, var, index):
out = ""
count = 0

for name in names:
if count > 0:
out += ' + !
out += 'double(' + name + '[' + index + ']) * ' 4+ var + ' ' +
str (count)
count += 1
return out

oe
\

double mean;
for(int i=0;i<length(y);i++)

{
mean = ${mmult(x, 'beta', 'i")};
if(${v}i[i] <= 0)
y[i] = dtnormal (mean,1,2,0,0);
else
y[i] dtnormal (mean,1,1,0,0);
}

This function could have been even shorter except we need to include in here a definition for the
mmult function that is used to construct the linear predictor, this time as C++ code.

83

The actual C++ code is the chunk

double mean;
for (int 1i=0;i<length(y) ;i++)
{
mean = ${mmult(x, 'beta', 'i')};
if(${v}i[i] <= 0)
y[i] = dtnormal (mean,1,2,0,0);
else
y[i] = dtnormal (mean,1,1,0,0);

Here we see that the code involves looping over all data points via a “for” loop and for each point
evaluating the mean value which is the linear predictor calculated via the substitution. Then
depending on the value of the binary response a call is made to the truncated normal random
number generator via the dtnormal function. Here dtnormal takes 5 arguments, the mean, the sd,
the type of truncation with 1 left truncation, 2 right truncation and 3 both, and finally the left and
right truncation values.

To see this in action choose modelcode.cpp from the list and choose to pop it out:

Stat-JR:TREE

Model iteration code

RunningStatVector y_results(2867, y_n, y_M, y_5);
Py_BEGIN_ALLOW_THREADS;
std::vector<double*> tmp_v;
tmp_v.push_back(const_cast<double *>(use)};
RectMatrix mat_v(tmp_v, 2867);
std::vector<double®> tmp_x;
tmp_x.push_back(const_cast<double *>(cons));
tmp_x.push_back(const_cast<double *>(age));
RectMatrix mat_x(tmp_x, 2867);
std::vector<double*> tmp_beta;
tmp_beta.push_back(beta);
RectMatrix mat_beta(tmp_beta, 2);
double &beta_@ = beta[@];
double &beta_1 = beta[1];
std::vector<double*> tmp_y;
tmp_y.push_back(y);
RectMatrix mat_y(tmp_y, 2867);
static std::unordered_map<std::string, SimpleRandomGenerator> rngstate;
if (runstate = @) {
rngstate.try_emplace(rngid, SimpleRandomGenerator());
}
auto &rng = rngstate[rngid];
if (runstate == @) {
rng.set_seed(seed);
rng.start();
}
for (int iter = @; iter < numiter; iter++) {
int iterind = @;
if (runstate = 3) iterind = floor((start_iteration + iter) / thinning);

deouble mean;

for(int i=8;1<2867;i++)

{
mean = double(cons[i]) * beta @ + double(age[i]) * beta 1;
if(use[i] <= @)

y[i] = dtnormal(mean,1,2,0,8);
else
y[i] = dtnormal(mean,1,1,8,8);

}
1/ Update beta_@
// This code was generated by the Stat-JR package (copyright 212 University of Bristol and University of Southampton).

Here we see that after some initial setup lines, the preccode chunk, as the name suggests appears
before the steps for other parameters (in this case beta_0). This is important as the y variable needs
initialising before the other parameters are updated and updating it first ensures y is positive when
use is 1 and negative when use is 0.

84

We have added in a step via preccode to enable the MCMC algorithm to work correctly. Of course
the model that the algebra system has been sent is the simpler normal model and so the deviance
for this model would be returned by it and thus as this is used to construct the DIC diagnostic then
we would get a model fit diagnostic for the wrong model. To rectify this the attribute deviancecode
can be used to overwrite the definition of the deviance. This attribute contains a piece of C++ code
for the deviance step. This code is then included in both the iteration loop and the DIC code and
thus the DIC diagnostic is calculated correctly. The code can be seen within the template but will not

be repeated here.

85

11 Multilevel models with Random slopes and the inclusion of
Wishart priors

One limitation of the algebra system in its current form is that it treats all parameters as scalars. This
means for example that for the Regressionl template, the set of beta parameters are all updated
individually through univariate normal steps. We will investigate the implications of this in section
12. In section 9 we introduced our first multilevel models all of which only had random intercepts.
To extend such models to include random slopes requires (assuming slopes and intercepts are
correlated) the use of a multivariate normal distribution for the random effects.

Multivariate normal distributions by their nature have vector and not scalar parameters and so our
model code diverges from standard WinBUGS model code here (and hence this is an example
template where template specific methods are required for WinBUGS). Our improvised model code
depends on the number of response variables i.e. we have bivariate, trivariate etc normal
distributions. We will see how these work in practice via the template NLevelRS. It should be noted
that we also have templates that completely circumvent the algebra system and simply write custom
C code. These templates have the postfix ‘cc’ at their end for example 1LevelModcc.

11.1 An example with random slopes
Firstly select NLevelRS from the template list and tutorial from the data list. Then choose the inputs
as follows:

86

Dataset: tutorial, Template: NLevelRS; Input string: {'Engine': 'eStat’, 'x1': 'cons,standlrt’, 'burnin':
'500', 'D": 'Normal', 'outdata’: 'outrs’, 'storeresid": 'No', 'makepred’: 'No', 'thinning': '1', 'nchains’: '3,
'defaultalg': 'Yes', 'iterations': '2000', 'y': 'normexam’, 'x': 'cons,standirt’, 'C1': 'school’, 'NumLevs': '1’,
'seed': '1', 'priors0": 'Uniform’, 'defaultsv': 'Yes'}

Stat-JR-TREE Start again Dataset

@Number of Classifications: 1 remove
Classification 1: school remave
@Response: normexam remove
Specify distribution: Hormal remove
@Explanatory variables: cons,standlrt remove
@Explanatory variables random at schoal classification: cons,standlrt remove
Store residuals? No remove
Priors (NB Uniform not supported by WinBUGS / OpenBUGS]: Uniform remove
Chaose estimation engine: estat remove
Number of chains: 3 remove
Random Seed: 1 remove
Length of burnin: 500 remave
@Number of iterations: 2000 remove
Thinning: 1 remove
Use default algarithm settings: Yes remave
Generate prediction dataset: No remove
Use default starting values: Yes remave
@Name of output results: outdata

Mext

You will see that there are lots of inputs here and correspondingly the inputs function for this
template is therefore quite long as we see below (omitting the help text):

inputs = """
NumLevs = Integer ('Number of Classifications: ')

for i in range (0, int (NumLevs)):
selstr = 'Classification ' + str(i + 1) + ':
context['C' + str(i + 1)] = IDVector(selstr)
y = DataVector ('Response: ')
D = Text('Specify distribution: ', ['Normal', 'Binomial', 'Poisson'])
if D == '"Binomial':
n = DataVector ('Denominator: ")
link = Text ('Specify link function: ', ['logit', 'probit', 'cloglog'l])
if D == 'Poisson':
link = Text (value = 'ln')
offset = Boolean('Is there an offset: ')
if offset:
n = DataVector ('Offset: ')
if D == '"-ve Binomial':
offset = Boolean('Is there an offset: ')
if offset:
n = DataVector ('Offset: ')
if D == 'Normal':

87

tau = ParamScalar ()
sigma = ParamScalar (modelled = False)
x = DataMatrix ('Explanatory variables: ', allow cat = True)

for i in range (0, int (NumLevs)):
context['x'+str(i+l)] = DataMatrix ('Explanatory variables random at ' +

context['C' + str(i + 1)] + ' classification: ', allow cat = True)

storeresid = Boolean('Store residuals?')

if D == '-ve Binomial':
alpha = ParamScalar ()
rho = ParamVector (parents = [y])
beta = ParamVector (parents=[x], as_scalar=True)

for i in range (0, int (NumLevs)):
for var in range (0, len(context['x'+str(i+l)])):
if storeresid:

context['u' + str(var) + ' ' + str(i)] =
ParamVector (parents=[context['C' + str(i + 1)]], as_scalar=False)
else:
context['u' + str(var) + ' ' + str(i)] =
ParamVector (parents=[context['C"' + str(i + 1)]], as_scalar=False,
monitor=False)
num = len(context['x'+str(i+l)])
if num ==
context['tau u0 '+str(i+l)] = ParamScalar()
context['sigma u0 '+str(i+l)] = ParamScalar (modelled = False)
else:
context['omega u'+str(i+l)] = ParamMatrix(modelled = False,
customstep=True)
context['omega u'+str(i+l)].size = num
context['d u'+str(i+l)] = ParamMatrix (customstep=True)
context['d u'+str(i+l)].size = num
context['priors' + str(i)] = Text('Priors (NB Uniform not supported
by WinBUGS / OpenBUGS): ', ['Uniform', 'Wishart'])
if context['priors' + str(i)] == 'Wishart':
context['R' + str(i)] = List ('R matrix: ")
context['v' + str(i)] = Integer ('Degrees of Freedom:')
deviance = ParamScalar (modelled = False)

The template is initially like the NLevelMod template but then has an additional section that is used
to input the variables that have random effects associated with them (at each level), and then any
priors at those levels are input. You will see that we use the context functionality to construct
variable names a lot and that there are different parameters for classifications where there is a
single random parameter and where there are more than one. In brief parameters beginning tau_u0
and sigma_u0 are the precision and variance of the random effects if there is a single set of random
effects; those beginning omega_u and d_u are the variance matrix and precision matrix if we have
multiple sets of random effects at a classification. Finally in this case there are two possible priors
and for the (informative) Wishart priors an estimate (beginning with R) and degrees of freedom
(beginning with v) parameter are required.

Having completed our inputs we now need to click on Next to see what the model looks like (as
shown by equation.tex):

88

Stat-JR:TREE tutorial NLevelRS Ready (5s)

equation.tex E

normexam; ~ N(u;, %)

Popout

2 2
u; = B,cons; + B standlrt; + uéls’mﬂmmcons[+ uilsjchmi[z-]standlrtl

2
u&:)cnoor(n N 0 a®
) o)

ul,zschaol[l)
P e«
Bo o<1
By o1
7 ~ I(0.001,0.001)

o?=1/t

Here we see the LateX code including the multivariate normal distribution for the random intercepts
and slopes. To see the model specification we choose model.txt from the list:

Stat-JR:TREE tutorial NLevelRS Ready (5s)

model.bd E

Popout

model {
for (i in 1:length(normexam)) {
normexam[i] ~ dnorm{mu[i], tau)
mu[i] <- cons[i] * beta_© + standlrt[i] * beta_1 + u@_©[school[i]] * cons[i]
+ ul_e[school[i]] * standlrt[i]

}

for(il in 1:length(ue_e)) {
dum_8[i1] ~ ddummy(dummy_8&[i1])
dummy_®[i1] ~ dnormal2a(ue_e[i1], ul_e[i1], @, ©, d_ul[e], d_ul[1], d_ul[2])
ue_B[i1] ~ dflat()
ul_B[i1] ~ dflat()

}
Priors

beta_@ ~ dflat()
beta_1 ~ dflat()

tau ~ dgamma(@.061060, ©.801800)
sigma <- 1 / sgrt(tau)

The multivariate normal distribution is written in the model code as follows:

for (il in 1l:length(u0 _0)) {
dum 0[il] ~ ddummy (dummy O0[il])
dummy O[il] ~ dnormal2a(u0 0f[il], ul Of4il], O, O, d ul[O],
d ul[l], d ul[2])
u0 0[il] ~ dflat()
ul 0[il] ~ dflat()

89

Basically the dnormal2a distribution has as its first two arguments the two responses. Next we get
the 2 means and then the 3 parameters that make up the precision matrix. As the algebra system
expects all parameters to appear on the left-hand side we complete our workaround for a
multivariate Normal distribution by including the two dflat statements which do not change the
posterior but mean that the u0_0[i1] and ul_0[i1] are regarded in the algebra system as parameters.
Note that the dummy_0 parameters are simply placeholders as each distribution needs a scalar left-
hand side. The definition of dnormal2a does not depend on the left hand side term. The dummy 0
parameters also appears on the right hand side in the ddummy statement and this is to trick the
algebra system into thinking that dummy_0 is truly a parameter so that the dnormal2a statement is
not considered part of the likelihood for calculating DIC etc.

The code for creating the model code is in model but doesn’t contain anything very new that needs
reporting here. The latex code might interest those trying to learn LateX as it contains a chunk to
produce the multivariate Normal line as follows:

\left (
\begin{array}{1l}

% for i in range (0, len(context['x'+str(lev+1l)])):
ur{(${lev + 2})} {${i},S{context['C' + str(lev + 1)]} (i)}

$ if 1 != len(context['x'+str(lev+l)]) -1:
AN\

% endif

% endfor

\end{array}

\right) & \sim \mbox{N}

\left[\left(

\begin{array}{1l}

% for i in range (0, len(context['x'+str(lev+1l)])):

0

$ 1f 1 !'= len(context['x'+str(lev+l)]) -1:
AN\

% endif

% endfor

\end{array}

\right), \Omega”{ (S{lev + 2})} {u} \right] \\

Here we use Python %ifs and %fors to allow conditional code and the array environment and \left
and \right (for big brackets) in LaTeX to deal with vectors and matrices. The actual code that is
produced can be looked at by right clicking on the LateX and selecting show source and selecting the
appropriate lines. It looks as follows:

\left (
\begin{array}{1l}
u™{(2)} {0,school (i)}
AN\

u™{(2)} {1,school(i)}
\end{array}

\right) & \sim \mbox{N}
\left[\left(
\begin{array} {1}

0

A

0

\end{array}

90

\right), \Omega”{(2)} {u} \right] \\

Looking at the model code we have not included a prior for d_ul and so here we again resort to
writing our own preccode chunk.

11.2 Preccode for NLevelRS
We will here look at the preccode in chunks. The preccode is being used to add a step for updating
the precision matrix d_ul and the corresponding variance matrix omega_ul. Looking at the start of
the code overleaf:

preccode = ''"

{
<% numlevs = int (NumLevs) $%$>\\
bool fail = false;
% for i1 in range (0, numlevs):
<% n = len(context['x"+str(i + 1)1) %>\\
$ if n > 1

std: :vector<double*> tmp_u${i};
% for 7 in range (0, n):
tmp u${i}.push back(u${j} ${i});
% endfor
RectMatrix mat u${i} (tmp us${i}, length(u0 ${i}));

SymMatrix sb${i + 1} = mat u${i}.T() * mat u${i};

This first section stores the number of levels (numlevs) for looping purposes and also within the loop
the number of random effects are constructed (as n) because for classifications with only 1 set of
random effects nothing needs doing as the algebra system has evaluated the posterior required. We
take the u’s and store them in a matrix so that we can do matrix arithmetic. We next construct a
matrix variable sb1 which initially stores the crossproduct matrix of the residuals before moving to
the next chunk of code:

% 1f context['priors' + str(i)] == 'Uniform':
int vw${i+1l} = length(u0 ${i})-${n + 1};
if (runstate == 0) {

oe

for j in range(0, n):
sb${i + 1} (S${j}, ${j}) += 0.0001;

endfor

}
endif
if context['priors' + str(i)] == 'Wishart':

int vw${i+1l} = length(u0 ${i}) + ${context['v' + str(i)]};
endif

o\°

oe

oe

o\°

oe

if context['priors' + str(i)] == 'Wishart':

AN
oe

import numpy
Rmat = numpy.empty([n, n])
count = 0
for j in range(0, n):
for k in range(0, j + 1):
Rmat[j, k] = float(context['R' + str(i)].name[count])
Rmat[k, j] = Rmat[j, k]
count += 1

91

o\°

>

% count = 0 %>

for j in range (0, n):

for k in range(j, n):

sbS{i+1} (${3j}, S${k}) += $S{str(Rmat[]j, k] * float(context['v' +

tr(i)1))};

endfor

endfor

endif

A

o

@)
@)

o\

o od° W

o

In this chunk of code we have different blocks of code depending on prior distribution types. For the
uniform prior we simply construct the degrees of freedom parameter (vw1), which equals the
number of higher level units minus the number of sets of random effects + 1. We also have some
code for the first iteration (runstate = 0) to avoid numerical problems as the residual starting values
may all be the same. For the Wishart prior we have to add the prior parameters to the sb1 and vw1
parameters. Next we have:

matrix sym invinplace(sb${i+1l});

mat d us${i + 1} = dwishart(vw${i+l}, sbS${i+l}, fail);
mat omega u${i + 1} = matrix sym inverse(mat d uS${i + 1}, fail);
$endif
%$endfor
}

In this last chunk of code we invert the sb1 parameter before drawing the new precision matrix
which we store in mat_d_ul and the inverse matrix to the vector mat_omega_ul. To see the code
that the preccode method generates for our example we can select modelcode.cpp and scroll down
a few lines as shown below:

Stat-JR:TREE

bool fail = false;

std::vector<double®> tmp_u®;

tmp_u®.push_back(ué_8);

tmp_u@.push_back(ul_8);

RectMatrix mat_ué(tmp_ue, 65);

SymMatrix sbl = mat_ue.T() * mat_ue;

// Note currently using a uniform prior for variance matrix
int wwl = 65-3;

if (runstate == 8) {

sb1(8,) += ©.8001;
sbi(1, 1) += 6.0001;

matrix_sym_invinplace(sb1);
mat_d_ul = dwishart(vwl, sbl, fail);
mat_omega_ul = matrix_sym_inverse(mat_d_ul, fail);

// Update tau

As the name preccode suggests the code appears before the other steps in the algorithm.
We can finally run the template by clicking on the Run button and selecting ModelResults from the
list. The results appear as follows:

92

NLevelRS

Results
Parameters:
parameter mean sd ESS variable
tau 1.805575507563 0.040464799021 5679
deviance 9110 786438318237 16 511959850021 3124
omega_u1_0 0.103137139003 0.0218054364048 3476
omega_u1_1 0.0204030514895 0.00832573816239 2102
omega_ui_2 0.0178496208087 0.00562541006368 1338
d_ul o 13.035260324468 3.71949904263 1613
d_ul_1 -17.0575242938216 9.274290797776 1034
d_ul_2 85.355442884246 33 061428667621 830
beta_0 0.0160153974719 0.0436616500328 224 cons
beta 1 0555220146801 0.0205266785366 890 standirt
sigma 074434443924 0.00833097971476 5675
Model:
statistic Value
Dbar 9110.786438318239
D(thetabar) 9025 203480310654
pD 94.582058007584
pic 0214.360306325823

and as usual we also get MCMC output graphs for the fixed effect parameters, variances and
precisions via the pulldown list.

11.2.1 Exercise 9
Try adapting the NLevelRS template so that it only allows one higher classification and compare your
results with the 2LevelRS template. This exercise will be in essence a merging of features of two
templates, 2LevelMod and NLevelRS and will test your understanding of the various chunks of code.

93

12 Improving mixing (1LevelBlock and 1LevelOrthogParam)

In this section we will return once again to our first template Regressionl but use it on a different
dataset, rats. This dataset consists of the weights of 30 laboratory rats at weekly intervals from 8
days old and here we will consider a regression looking at the impact on their final weight at 36 days
of their initial weight at 8 days old.

12.1 Rats example
We will set up a simple regression for this rather small dataset as follows:

Dataset: rats; Template: Regression1; Input string: {'burnin’: '500', 'defaultsv': 'Yes', 'outdata':
'ratsout’, 'thinning': '1', 'nchains': '3', 'defaultalg': 'Yes', 'iterations': '2000', 'y': 'y36°, 'x': ‘cons,y8’,
'seed’: '1', 'makepred’: 'No'}

Stat-JR:TREE

@Response: ¥36 remove
@¢txplanatory variables: consy8 remove
Number of chains: 3 remove
Random Seed: 1 remove
Length of burnin: 500 remove
@Number of iterations: 2000 remove
Thinning: 1 remove
Use default algorithm settings: Yes remove
Generate prediction dataset: No remove
Use default starting values: Yes remove
@Name of output results: ratsout
Next

We will then run the model by clicking the Next and Run buttons. If we look at the output and
change the pull down list to beta 1.svg and pop it out so that we have the MCMC plot for betal
visible we will see the following:

94

Stat-JR:TREE

> 20|
. =
T 0
k1 S 1s
£ °
oL o 1.0f
ool E
a2 051
04 . L 0.0 L
500 1000 1500 2000 0.2 0.4 06 0.8 1.0 1.2 14 1.6 1.8 2.0
stored update parameter value
1.0
0.8f
uw 0.6
]
<
a 0.4
0.2
0.0 " —
0 2 4 6 8 10 12
Lag Lag
0.07
0.06 |
0.05 F
A 0.04
Y o003}
0.02 |
0.01

0.00 L L 1 0.0 . L n 1
0 20000 40000 60000 80000100000 20000 0 200 400 600 800 1000

updates start iteration

In ModelResults we see that both the regression coefficients have very small effective sample sizes
(32 and 32 respectively) and the chains we observe in the graphs above are not mixing well. Aside
from being a small dataset a difference between the rats and the tutorial dataset is that the data
have not been centred. This means that the joint posterior distribution of beta0 and betal has a very
large correlation between the pair of parameters and so if we update them separately we will have
problems. We will look at two templates that will rectify this problem.

12.2 The 1LevelBlock template
Most MCMC algorithms implemented in software packages will update the parameters beta0 and
betal together in one multivariate normal block. As we have seen, the current algebra system in
Stat-JR does not produce multivariate posterior distributions. We can, however, work out the correct
posterior distribution by hand and plug this into the code via the preccode options we have seen
earlier. This is performed by the 1LevelBlock template. If you look at the template code you will see
it has an initial input in the inputs attributes as to whether or not to block the fixed effects and
conditional on this we let Stat-JR know whether beta is to be updated via a custom step.

mv = Boolean ('Use MVNormal update for beta?: ')
if mv:

beta = ParamVector (parents=[x], as scalar=True, customstep=True)
else:

beta = ParamVector (parents=[x], as_scalar=True)

This code is informing the code generator that customsteps are to be used for the beta parameters
when the block updating option (mv) is selected and that it should ignore whatever has been
returned from the algebra system for these steps. The preccode method then contains the code to

95

update the beta vector which has mean (in matrix form) (X™X)*X"y and variance (X'X)* times the
residual variance. The code which uses matrix classes is as follows:

preccode = ''"!
% if mv:

bool fail = false;
static RectMatrix xtxchol (${len(x)}, S${len(x)});
static RectMatrix mean(${len(x)}, 1);

// Setting up constant terms for beta step
if (runstate == 0) {
xtxchol = matrix cholesky(mat x.T() * mat x, false,
fail);
RectMatrix xty = mat x.T() * mat_y;
mean = matrix cholsolve (xtxchol, xty);

}

// Multivariate step for beta

DiagMatrix taudiag = identity(${len(x)}) / tau;
SymMatrix variance = matrix cholsolve (xtxchol, taudiag);
mat beta = dmultnormal (mean, variance, fail);

If we want to test this template we can choose it (along with rats) from the template list and set up
the inputs as follows:

Dataset: rats; Template: 1LevelBlock; Input string: {'‘Engine’: 'eStat’, 'burnin': '500', 'defaultsv': 'Yes',
‘outdata’: 'outblock’, 'thinning': '1', 'mv': 'Yes', 'nchains': '3', 'defaultalg': 'Yes', ‘iterations': '2000', 'y':
'v36', 'x': 'cons,y8’, 'seed’: '1', 'makepred': 'No'}

96

rats

©Response:

@Explanatory variables:

Use MVNormal update for beta?:

Choose estimation engine:

Number of chains:

Random Seed:

Length of burnin:

@Number of iterations:

Thinning:

Use default algorithm settings:

Generate prediction dataset:

Use default starting values:

@Name of output results:

1LevelBlock

¥36 remove

cons,yg

remove

Yes remove

eStat

remove

3 remove

1 remove

500

remave

2000

remove

1 remove

Yes remove

No remove

Yes remove

outblock

Next

Ready (7s)

Running the template by pressing the Next and Run buttons results in the following output. Note

here we have selected beta_1.svg for comparison with the Regression1 output.

Stat-JR:TREE

MCSE

2.5

beta 1

parameter

0.0

I
0 500 1000

stored update

1.0 T

2000

0.8

0.6

ACF

0.4

0.2

Sin & ai

0.0 .

0 20 40 60
Lag

0.0050

100 1

20

0.0045
0.0040
0.0035
0.0030
0.0025
0.0020
0.0015
0.0010
0.0005

. L . !
0 2000040000 60000 8000010000@ 20000
updates

kernel density

PACF

BGRD

.5

. .
0.0 05 10 15 20
parameter value

0.8

0.6

0.4}

02

0.0

10F

0.8

0.6

0.2}

400 600
start iteration

n
200 800

97

1000

We can see that the method has given much better mixing for betal. Looking at the ModelResults
the effective sample size values have increased from 32/32 to 5745/5780 for beta_0 and beta_1
respectively! We have in other templates (2LevelBlock and NLevelBlock) implemented similar block
updating of fixed effects for multilevel models. We will next look at an alternative method that has
the advantages of not needing to use preccode and also of being useful for non-normal response
models.

12.3 The 1LevelOrthogParam template
The alternative approach to blocking variables that are correlated is to reparameterise the
parameters to a configuration that are less correlated. We will achieve this by using an orthogonal
parameterisation for the fixed effects rather than the standard parameterisation.

The template we will use is called 1LevelOrthogParam and the inputs are very similar to the
1LevelMod template (as this approach also works for non-normal responses). The template does
have 2 additional inputs in inputs which are used to find out whether or not to use a transformed
parameterisation and if so whether to use an orthogonal or orthonormal parameterisation.

This can be seen in the following lines (omitting the help text):
useorthog = Boolean('Do you want to use orthogonal parameterisation?: ')

if useorthog:
orthtype = Text ('Type:', ['Orthogonal', 'Orthonormal'])

and the following lines are conditional on using the orthogonal parameterisation:

if useorthog:

betaort = ParamVector (parents=[x], as_scalar=True)

orthogmat = List(value = [])

#orthogmat = ParamVector ()

forthogmat.ncols = - (len(x) * len(x))

beta = ParamVector (parents=[x], as_scalar=True, modelled = False)
else:

beta = ParamVector (parents=[x], as scalar=True)

Here we add an additional vector of responses, betaort if the orthogonal parameterisation is to be
used and the standard beta vector is now not modelled but becomes deterministically calculated.
Let us try out the template on the rats example so choose 1LevelOrthogParam from the template list
and input the following:

Dataset: rats; Template: 1LevelOrthogParam; Input string: {'‘Engine’: 'eStat’, 'burnin': '500', 'D'":

'‘Normal', 'outdata’: 'outort’, 'thinning': '1', 'orthtype': 'Orthogonal’, 'nchains': '3', 'defaultalg': 'Yes’,
'iterations’: '2000', 'y': 'y36', 'x": 'cons,y8', 'makepred": ‘No', 'seed': '1’, 'useorthog': 'Yes', 'defaultsv':

98

'Yes'}

Stat-JR:TREE

©Response:

Specify distribution:

@Explanatory variables:

@00 you want to use orthogonal parameterisation?:

Type:

Choose estimation engine:

Number of chains:

Random Seed:

Length of burnin:

@Mumber of iterations:

Thinning:

Use default algorithm settings:

Generate prediction dataset:

Use default starting values:

@Mame of output results:

¥36 remove

Normal remaove

onsyé remove

Yes remave

Orthogonal remove

eStat remove

3 remave

T remove

500 remove

2000 remaove

1 remove

Yes remove

No remove

Yes remave

outort

Clicking on the Next button will give the following output for the model:

Stat-JR:TREE

equation.tex E

¥36, ~ N(u, 0%)

Popout

, = Byorthcons; + f;orthy8,

!
g1

B, = 1.0B; — 152.166666666666663

B, = 0.08; + 1.0B;
7~ T(0.001,0.001)

ol=1/t

The method of using an orthogonal parameterisation is mentioned in (Browne, Steele, Golalizadeh,

& Green, 2009) for non-normal examples and has also been implemented in MLwiN. For details on

how we construct orthogonal vectors we refer the reader to (Browne, Steele, Golalizadeh, & Green,

2009) but note that a function to do the procedure named orthog that is stored elsewhere is used in

this template. Here you will see that we fit a model with the parameters betaort placed in the linear

predictor along with data vectors orthcons and orthy8. These data vectors are constructed in the

preparedata attribute that we detail here:

preparedata = """

from EStat.stats.utils.orthog import orthog
import numpy
mydata = data['datafile']

if useorthog:

orth = numpy.zeros([len(mydata.variables[x[0]]['data']), len(x)])

for i in range (0, len(x)):

orth[:, 1] = mydata.variables[x[i]]['data']
if orthtype == 'Orthogonal':

(tmp, om) = orthog(orth)

orthogmat[:] = [str(i) for i1 in om.flat]

for n in range(0, len(x)):

mydata.addvariable ('orth' + x[n], data = numpy.array(tmpl[:,
.flatten())
if orthtype == 'Orthonormal':
(tmp, om) = numpy.linalg.gr (numpy.mat (orth))
orthogmat[:] = [str(i) for i1 in om.I.flat]

for n in range(0, len(x)):
mydata.addvariable('orth' + x[n], data = numpy.array(tmpl[:,

.flatten())

x[:] = ['orth' + n for n in x]

We begin by constructing a blank list ‘orthogmat’ and an empty matrix orth. We then implement the

orthogonalising algorithm by filling orth with the original x variable vectors and then calling the

orthog function. This results in tmp which is the matrix of orthogonal versions of the predictors and

om which is the matrix that performs the orthogonalisation. We store this as a vector in the object

‘orthogmat’. A slightly different routine is given if the user chooses Orthonormal instead here. The

columns of this tmp matrix are then placed in objects that have the string ‘orth” appended to the

front of the original x variables names. Finally the original x variable names are replaced with these

new orthogonal variable names before the data is returned. The model attribute then constructs the

model code:
model = ''"!
model {
for (i in l:length(${y})) {
S{y}[i]l ~ \\
$ 1f D == '"Normal':

dnorm(mufi], tau)

mul[i] <- \\

% endif

$ 1f D == '"Binomial':
doin(p[i], ${n}[i])

${link} (p[i]) <= \\

% endif

% if D == 'Poisson':
dpois(p[i])

${link} (p[i]) <= \\
% if offset:

${n}[i] + \\

100

% endif
% endif
%1f useorthog:
S{mmult (x, 'betaort', 'i')}
% else:
S{mmult (x, 'beta', 'i')}

% endif

}

Priors

% for i in range (0, beta.ncols):
%$1if useorthog:

betaort ${i} ~ dflat()
% else:

beta ${i} ~ dflat()
% endif

[

% endfor

% 1f useorthog:
<% count = 0%>

% for i in range (0, beta.ncols):
beta ${i} <- \\
% for j in range (0, beta.ncols):
${orthogmat [count]} * betaort S${j}\\

% if 7 == (beta.ncols - 1):

% else:

if float (orthogmat [count+1]) >= float (0.0)
+ \\

endif

% endif
<% count += 1 %>\\

o)

% endfor
Q

% endfor
% endif

o

oe

o)

$ 1f D == '"Normal':

tau ~ dgamma (0.001000, 0.001000)
sigma <- 1 / sqrt(tau)

sigma2 <- 1 / tau

% endif

Here we see that a different mmult function is performed for the orthogonal parameterisation and
priors are given for betaort rather than beta in this case. Finally code is given to allow us to recover
beta from betaort deterministically. We construct the product of the orthogmat terms and the
betaorts placing + signs between the terms unless the orthogmat term is negative.

We can run the model by clicking on the Run button and we will see the following results for beta_1
if we select beta_1.svg in the list:

101

Stat-JR:TREE

.
a
2
a
£
o
(]
(=3
=0.5 L L 0.0 L L
0 500 1000 1500 2000 -05 00 05 1.0 15 20 25
stored update parameter value
1.0 1.0
0.8 0.8
0.6 w 0.6
g g
< 04 & 04
0.2 02}
0.0 " e, — L 0.0 — M —
0 20 40 60 80 100 120 0 2 4 6 8 10 12
Lag Lag
0.0050 10—
0.0045 | o
0.0040 - 08}
0.0035
% 0.0030 o 06
Q L U]
£ 0.0025 8 oa

0.0020
0.0015
0.0010
0.0005

. L L ! 0.0 . L .
0 2000040000 60000 8000010000@ 20000 0 200 400 600 800 1000
updates start iteration

We again see good mixing of the chains and very similar estimates to the blocking approach
(Effective sample sizes for betaO and betal are 5686 and 5725 respectively). The other advantage of
this orthogonal approach is in it’s generalisability to non-normal response models. In these cases
Metropolis Hastings algorithms are used and so a blocking approach is not so straight forward.

12.3.1 Exercise 10
Convert this template so that it is analogous to the Regression1 template but uses the orthogonal
parametrisation. Call this new template orthogregression.

12.4 Multivariate Normal response models
Having established a method of including multivariate distributions for use with random slopes in
the preccode we can reuse the same method to allow us to fit multivariate Normal response models
We will here consider the template for fitting 1 level multivariate response models,
1LevelMVNormal.py. This template can be used to fit models with missing data for some responses
which is achieved by a method similar to that used for the probit regression and so the preccode will
generate (at least) two steps, one for the variance matrix of the responses and an intial step to set
up the missing responses. Looking at the inputs attribute we see the following (omitting the help
text):

inputs = """
y = DataMatrix ('Responses: ')
for i in range(0, len(y)):
context['x'+str(i+1l)] = DataMatrix('Explanatory variables for response
'+ y[i] + ': ', allow_cat = True)
mv = Boolean ('Use MVNormal update for beta?: ")

lenbeta = 0

102

for i in range (0, len(y)):
lenbeta += len(context['x'+str (i+1l)])
context['miss'+y[i]] = ParamVector (monitor=False)
n = len(y)
if n ==
tau = ParamScalar ()
sigma = ParamScalar (modelled = False)
else:
omega e = ParamMatrix (modelled = False, customstep=True)
omega_e.size = n
d e = ParamMatrix (customstep=True)
d e.size = n
priors = Text ('Priors: ', ['Uniform', 'Wishart'], help="<p>Note:
Uniform not supported by WinBUGS / OpenBUGS)</p>")
if priors == 'Wishart':
R = List ('R matrix: ")
v = Integer ('Degrees of Freedom:')
if mv:
beta
else:
beta = ParamVector ()
beta.ncols = lenbeta
deviance = ParamScalar (modelled=False)

ParamVector (customstep=True)

7

Here you will notice that we construct parameter vectors that are a combination of the string ‘miss
and the y variable names input using a context statement and these will be used in the model. Note
that in line with the 1LevelBlock template we have also given the option to update beta as a block
but for now we will ignore this here. Let us run the template with the gcsemv1 (Rasbash, Steele,
Browne, & Goldstein, 2012) dataset that contains two responses for secondary school pupils taking
General Certificate of Secondary Education (GCSE) exams in 1989, a written and a coursework test
score. We will set up the inputs as follows:

Dataset: gcsemvi; Template: 1LevelMVNormal; Input string: {'imputeiters': '1000,2000', 'defaultsv':
'Yes', 'outdata’: 'outmv', 'nchains’: '3', 'defaultalg’: 'Yes', 'iterations': '2000', 'x2': 'cons,female’, 'x1':
‘cons,female’, 'seed': '1', 'Engine': 'eStat’, 'burnin': '500', 'priors': 'Uniform’, 'thinning': '1', 'mv': 'Yes',

[N (AN

y': 'written,csework’, 'makepred': 'No'}

103

Stat-JR:TREE

©Responses:

@Explanatory variables for response written:

@Explanatory variables for response csework:

Use MVNormal update for beta?:

@Friors:

Choose estimation engine:

Number of chains:

Random Seed:

Length of burnin:

@Mumber of iterations:

Thinning:

Use default algorithm settings:

Generate prediction dataset:

Use default starting values:

Impute at iterations:

@name of output results:

written,csework remave

cons,female remove

consfemale remove

Yes remave

Uniform remaove

eStat remove

3 remave

T remove

500 remove

2000 remove

1 remove

Yes remove

No remave

Yes remave

1000, 2000 remove

outmv

Next

Here we allow the two responses to both depend on one predictor female. Note that both responses

contain missing values as there are some pupils with only a written score and some with only a

coursework score. The missing values are given the value -9.999e29 and this value will be looked

for in the preccode function. You will also note the extra input for imputing datasets. Here we will

return datasets with the current values of missing data at the prescribed iteration numbers for each

chain. Clicking on the Next button and looking at the model output, equation.tex in the output pane

we see:

Stat-JR:TREE

ate ~ {1levelMVNormal cBook

equation.tex E

wrirten[Ho;
~N ,0,
csework; My

Hy; = Bycons, + B, female,

#y; = Bycons; + B female;
0, e 1
By el
Byecl
Byl
Byecl

If we select model.txt we can see the model code thus:

104

Stat-JR:TREE Start again

model.bd E Popout
model {
for (i in 1:length(uritten)) {
dummy[i] ~ dnormal2a{ misswritten[i], misscsework[i], mu@[i], mul[i], d_e[@], d_e[1], d_e[2])
mu@[i] <- cons[i] * beta_@ + female[i] * beta_1
mul[i] <- cons[i] * beta_2 + female[i] * beta_3

misswritten[i] ~ dflat()
misscsework[i] ~ dflat()

}

Priors

beta_@ ~ dflat()
beta_1 ~ dflat()
beta_2 ~ dflat()
beta_3 ~ dflat()

Here we see again the use of the dnormal2a function and also that we have included dflat
statements for both the misswritten and misscsework responses to let the algebra system know that
these are parameters. We will not look in detail at the model method as we can see the output it
produces on the screen.

There is a preparedata attribute that is used to set the length of the missing data vector to equal the
original response vector:

preparedata =
mydata = data['datafile']
for i in range(0, len(y)):

context['miss'+y[i]].ncols = -1*len(mydata.variables[y[i]]['data'])

We next turn our attention to the preccode function.

12.5 The preccode function for this template
We will deal with the code here in chunks. We begin with a definition of the mmult2 function that
we will use to work out the linear predictors for each response. The mmult2 function is specifically
useful for multivariate response models as it contains a count parameter which informs us which
element of beta to start with in the linear predictor:

preccode = ''"'
<%!
def mmult2 (names, var, index,count):
out = ""
first = True
for name in names:
if first == False:
out += ' + !
else:
first = False
out += 'double(' + name + '[' + index + ']) * ' + var + ' ' +

str (count)
count += 1

105

return out

o

>

{
<% n = len(y) %>\\

Next we have the code chunk for generating the step for the level 1 variance matrix. This is almost
identical to the random slopes code except we need the crossproduct of the level 1 residuals e
(instead of the higher level random effects u) and this needs constructing which is done in the initial
code using the mmult2 function:

SymMatrix sb(${n});
for(int 1 = 0; i < length(miss${y[0]}); i++) {
<% lenbeta = >\ \

% for i in range(0, n):

double e${i} = double(miss${yI[il}I[1])
(${mmult2 (context['x"' + str(i+l)], 'beta', 'i', lenbeta)});
<% lenbeta += len(context['x' + str(i + 1)1) %>\\
endfor
for i in range (0, n):
for j in range(i, n):

sb(${1}, ${J}) += eS{i} * eS{j};

o° oo

o

o

endfor
endfor

o

}

Once constructed the remainder of the code follows the same pattern as random slopes and so for
brevity we omit this code here, it can be viewed in ILevelMVNormal.py.

The one thing we have not mentioned is how the missing data is updated and here this is currently
done in a slightly undesirable way, and relies on the parameter name beginning with the character
string miss. To see how this is done we once again have to delve deeper into the code. In the
subdirectory of Stat-JR with path src/lib/EStat/templates you will find some of the files that are used
in the code generation. The file gibbsstep.cpp contains the template that is used by Stat-JR to
convert the step from the algebra system into C code and in here we can modify what precisely is
written in the C code. You will notice a few statements that involve the “miss” prefix at the start and
end of the code:

% if "miss"™ in theta:

<% temp = theta.replace('miss', '',1) %>
if (${temp} <= -9.999e29) {

% endif

and

if "miss" in theta:

o° —~ o°

endif

This code recognises the prefix “miss” in a variable name and places the condition statements
around the update step for that parameter. There are also some more complicated reliance on
various prefixes involving “mis” but these are primarily for the mixed response modelling which we
do not discuss here. Basically for the case “miss” we have:

$ 1if fn == "dnorm" and "mis" in theta:

106

o\

if .. (different other cases)
elif "miss" in theta:
${theta} = ${expr};

o\

o\

endif
endif

o

which simply translates to equating the variable name of interest (theta) to the expression the
algebra system gives for its posterior (expr). This reliance on the parameter name is undesirable and
we will hopefully come up with a better method for making such algorithmic changes in later
releases.

It would be good at this point to look at the code generated for this example. To do this choose
modelcode.cpp from the object list and scroll down. Here we see the step for the variance matrix
omega_e near the top of the code:

{

// Note currently using a uniform prior for variance matrix
SymMatrix sb(2);
for(int i = 0; 1 < 1905; i++) {

double e0 = double(misswritten[i]) - (double(cons[i]) *
beta 0 + double(female[i]) * beta 1);
double el = double (misscsework[i]) - (double(cons[i]) *
beta 2 + double(female[i]) * beta 3);
sb (0, 0) 4= e0 * e0;
sb (0, 1) += e0 * el;
sb(l, 1) += el * el;
}
if (runstate == 0) {

sb(0, 0) += 0.0001;
sb(l, 1) += 0.0001;
}
matrix sym invinplace (sb);
int vw = 1905 - 3;
bool fail = false;
mat d e = dwishart(vw, sb, fail);
mat omega e = matrix sym inverse(mat d e, fail);

and later on the steps for the missing data:

// Update misswritten

for (unsigned int i=0; 1<1905; i++) {
// This code was generated by the Stat-JR package (copyright 2012
University of Bristol and University of Southampton).

{

if (written[i] <= -9.999e29) {
misswritten[i] =
dnorm(((cons[i] *beta 0)+(beta l1*female[i])+((d e[l]*misscsework[i]*pow(d el
0],(-1.0)))*(-1.0))+(d e[l]*beta 2*pow(d e[0], (-
1.0))*cons[i])+(d _e[l]*beta 3*female[i]*pow(d e[0], (-1.0)))),d e[0]);
}
}

}
// Update misscsework

for (unsigned int i=0; 1<1905; i++) {

107

// This code was generated by the Stat-JR package (copyright 2012
University of Bristol and University of Southampton).

{
if (csework[1i] <= -9.999%e29) {

misscsework[i] = dnorm((((d e[l]*pow(d e[2], (-

1.0))*misswritten[i])*(-1.0))+(d e[l]*pow(d e[2], (-
1.0))*beta O*cons[i])+(d e[l]*pow(d e[2], (-
1.0))*beta 1*female[i])+ (beta 2*cons[i])+ (beta 3*female[i])),d e[2]);
}

}

We can run the template by clicking on the Run button and choosing the ModelResults in the list we
see:

Stat-JR:TREE

ModelResults Popout

Results
Parameters:
parameter mean sd ESS
deviance 30681.69985820675 29.734176776263 4366
beta_0 48.795008073984 0.493724189901 5384
beta_1 -3.431364887468 0.648549598813 5283
beta_2 69.820524428293 0.59656271344 5246
beta_3 5.910043847774 0.771859763322 5657
omega_e_0 177.0910237586032 6.012972299174 4809
omega_e_1 108.196610096192 5.901770071378 5179
omega_e_2 258.420338290875 8.834234822372 5089
de0 0.00760169785297 0.000263327167839 4416
del -0.00318301611484 0.000179923287534 4163
de2 0.00520943129392 0.000182635751795 4172
Model:
Statistic Value
Dbar 30681.69985820675
D(thetabar) 30292.250242305403
pD 389.449615901347
DIC 31071.149474108097

Note here we do not see the missing values as by default non-monitored nodes are not displayed in
ModelResults. To view the missing values you would need to return to the Settings screen (from the
main screen) and click on the tick box, under the EStat heading (not the CustomC heading), that
allows you to Include unmonitored values in results and click on Set before setting up the model
again. At present due to the number of nodes this takes a very long time in the browser so we do not
advise you to try (although the .dta version of the output is faster) however if you do then eventually
the screen will look as follows:

108

Stat-JR:TREE

ModelResults Popout

Results
Parameters:

parameter mean sd ESS

deviance 30681.69985820675 20.734176776263 4366

beta 0 42.795008073984 0.493724129901 5324

beta_1 -3.431364887468 0.6485495983813 5283

beta 2 69.820524428293 0.59656271344 5246

beta 3 5910043847774 0.771859763322 5657

omega_e 0 177.0910237586032 6.012972299174 4809

omega_e 1 108.196610096192 5.801770071378 5179

omega_e 2 258.420338290875 8.834234822372 5089

de0 0.00760169785297 0.000263327167839 4416

del -0.00312301611484 0.000179923287534 4163

de2 0.00520943129392 0.000182635751795 4172
misswritten_0 23.75 0.0

misswritten_1 43,597368430095 11.436358676938
misswritten_2 39.375 0.0
misswritten_3 36.875 0.0
misswritten 4 16.875 0.0
misswritten_5 36.25 0.0
misswritten_6 49375 0.0
misswritten_7 25.0 0.0
misswritten_8 33.105183660376 11.728282671877

Here you will see that for the missing data variables the ones that correspond to actual data have
standard deviation zero in the output as they shouldn’t change from iteration to iteration so for
example the first and third written scores were observed. We can also look at the values of these
missing data at prescribed iterations/chains and so selecting impute_datafile_chain0_iter1000 gives
the following:

109

Stat-JR:TREE

impute_datafile_chain0_iter1000 E Popout
impute_datafile_chain0_iter1000 a
school student female agemths written csework cons
1 20820 16 0 218 2375 33478677 1)~
2 20820 25 1 217 53.88549 7129 1
3 20820 27 1 218 39375 76.852 1
20820 31 1 201 36,875 87563 1
20820 4z 0 218 16.875 44444 1
6 20820 62 1 202 3625 85321686 1
7 20820 101 1 157 49375 89,815 1
8 20820 13 0 200 250 17593 1
] 20820 146 0 203 28576193 32.407 1
10 22520 1 1 218 4375 84259 1
i 22520 7 0 201 45,875 66,667 1
12 22520 s 1 158 28125 47222 1
13 22520 15 1 218 4375 80.556. 1
14 22520 16 0 218 29.375 57.407 1
15 22520 13 1 159 250 42593 1
16 22520 21 0 202 30625 36111 1
17 22520 24 1 217 44375 58333 1
18 22520 25 0 159 30625 37563 1
18 22520 27 1 218 26.25 74074 1
20 22520 29 0 157 30625 41867 1
21 22520 34 1 159 39375 76.852 1
22 22520 37 1 218 4125 34259 1
23 22520 4 1 158 44375 86.111 1
24 22520 4z 0 156 36.25 56.481 1
25 22520 43 1 156 45625 42593 1
26 22520 45 1 218 4125 63.889 1
27 22520 47 1 157 28125 2037 1
& View 1-30 of 1,905

<] >

Here the second written test score has value 53.89, and the ninth written score is 28.58, while their
means (in the earlier output) are 43.60 and 33.11 respectively across all iterations and chains. We
have extended these multivariate normal modelling templates to more levels and to include random
slopes. They also form the basis for the mixed response templates which allow other response types
via the use of latent variables, mimicing and extending the functionality that exists in the REALCOM
software program (Goldstein, Rasbash, Steele, & Charlton, 2007), and a number of these are called
by Stat-JR multiple imputation templates such as 2Levellmpute. You will see that these templates
are pretty big and involve coding in several languages (Python, WinBUGS model code, LaTeX and
C++). It is hoped that with advances in the algebra system that the reliance on the preccode
functions will reduce but if you want to look at the other multivariate templates you will see many
similarities in the code in these functions. This is one of the plus points of the ability to view the code
in the templates within the Stat-JR system.

We will finish this documentation by considering one more example of getting more from the MCMC
estimation engine.

110

13 Out of sample predictions

Most of the statistical modelling templates we have thus far created are primarily being used for
statistical inference. We might however be interested in using the model to predict future
responses. The advantage of a simulation-based approach is that we can easily get confidence
intervals about these predictors at the same time as we estimate the model. We do however have
to be careful that we do not feedback the results of our predicting into the estimation part of the
model. WinBUGS has a method to do this with its cut function and we have developed a similar
method which we will demonstrate here.

13.1 The 1LevelOutSampPred template - using the zxfd trick
We will illustrate our approach on a 1 level model which we can fit using the 1LevelOutSampPred
template. We will firstly choose this template along with the tutorial dataset and then select the
following inputs:

Dataset: tutorial, Template: 1LevelOutSampPred; Input string: {'nmiss": '10’, 'burnin': '500', 'D':
‘Normal', 'outdata’: 'outpred’, 'xm': 'cons,standlrt’, ‘thinning': '1', 'nchains': ‘3", 'defaultalg’: 'Yes',

U

'iterations': '2000', 'y': 'normexam’', 'x': 'cons,standirt’, 'makepred’: 'No', 'seed’: '1', 'defaultsv': 'Yes'}

Stat-JR:TREE Start again Dataset - (futorial) Template - (ilevelOutSampPred’ B0k - Settings About Debug-~

@Response: normexam remove

Specify distribution: Normal remove

@Explanatory variables: cons,standirt remave
@Missing explanatory variables: cons,standirt remave
@Number of missing: 10 remove

Number of chains: 3 remove

Random Seed: 1 remove

Length of burnin: 500 remove
@Number of iterations: 2000 remave
Thinning: 1 remove

Use default algorithm settings: Yes remove
Generate prediction dataset: No remove

Use default starting values: Yes remove

@Name of output results: outpred

Next

To explain what is going on we are planning to fit a regression model to normexam with predictor
standlrt as we have done previously using the 1LevelMod template. We will then use the predictors
given in ‘missing explanatory variables’ to predict the 10 individuals who in this case have the same
scores as the first 10 in the model actually fit. Note if you want to predict other individuals you need
to form new columns of the same length as the data although the values below the ‘Number of

111

missing’ row will be ignored. Clicking on the Next button and choosing model.txt gives the following
output:

Stat-JR:TREE Start again Dataset ial) Template ~ (flevelOutSampPred’ Book ™

model.bxt E

model{

for (i in 1:length{normexam)) {
normexam[i] ~ dnorm(mu[i], tau)
mu[i] <- cons[i] * beta @ + standlrt[i] * beta_1

}

for (j in 1:18) {

mnormexam[Jj] ~ dnorm{mumiss[j], tau)
mumiss[j] <- cons[j] * betazxfd @ + standlrt[j] * betazxfd_ 1
dummy[j] ~ ddummy({mnormexam[j])

}

Priors

beta_@ ~ dflat()

beta_1 ~ dflat()

tau ~ dgamma(@.001000, ©.001008)
sigma <- 1 / sqrt(tau)

sigma2 <- 1 / tau

Here you will notice that we have an additional j loop in the model code for the out-of-sample
predictions which will be stored in mnormexam. There are two interesting parts to this code. Firstly
the line

mumiss[j] <- cons[]j] * betazxfd 0 + standlrt[j] * betazxfd 1

has the strange string zxfd placed in the middle of the two parameter names. This is our way of
stopping the predictions from feeding back to the model parameter estimation (equivalent to
performing the cut function in WinBUGS). Basically as the predictors in this line are not beta0 and
betal then this line will not influence the posteriors for the fixed effects. The posterior for
mnormexam will be calculated but this is only because we include the line

dummy [j] ~ ddummy (mnormexam[j])

so that mnormexam appears on both the left and right hand side within the model code to
differentiate it from data. The algebra system will formulate the posterior which will depend on
betazxfd0 and betazxfd1. Of course in practice we want these replaced by the correct beta0 and
betal and this is done in the bowels of the code generator with the lines:

elif type == 'variable':
result=1["'name'].replace('."', ' ').replace('zxfd','")

which is in code that is not currently available to view by the user. If we run the template we get the
following output for ModelResults:

112

Stat-JR:TREE

ModelResults Popout

Results
Parameters:
parameter mean sd ESS variable
tau 1.541467819601 0.0341823158931 5914
deviance 0.1 0.77555756156e-17 5997
mnormexam_0 0.35699487103 0.802028748875 5849
mnormexam_1 0.108670715629 0.79973678697 6045
mnormexam_2 -0.813028277704 0.815469762172 6592
mnormexam_3 0.116898900322 0.80098530988 5296
mnormexam_4 0.224305830587 0.802395087757 5672
mnormexam_5 1.302085049305 0.814557118592 5644
mnormexam_6 -0.678199036527 0.807525224432 6220
mnormexam_7 -0.611135137603 0.797084227086 6611
mnormexam_8 -0.329770473016 0.818625525329 6305
mnormexam_9 -0.875352636264 0.804207074955 6343
beta 0 -0.00106010282763 0.0126049730013 6385 cons
beta_1 0.594987849173 0.0126520001441 5877 standlrt
sigma 0.805587678841 0.0089293989058 5907
sigma2 0.649051242466 0.0143890566484 5905
Model:
Statistic Value

Here you can see that the out of sample predictions, mnormexam have been estimated with
standard errors. We do not get a DIC diagnostic here as this would include the missing data and be a
little misleading. We have recently incorporated the ability to use additional datasets in a template
and we may in the future update this template to allow the data to be predicted to be in a different
dataset. We hope that this and other templates give you a flavour of the possibilities that are
available in the Stat-JR package. The package is still evolving and so we very much welcome feedback
and suggestions for improvement. We also encourage you to send us your own templates for
inclusion with the software.

13.1.1 Exercise 11

Try modifying the regression1 template to allow for out of sample predictions. Call the new template
regressionlpred.

113

14 References
SAS Institute Inc. (2011). Base SAS® 9.3 Procedures Guide. Cary, NC.

Barry, J., Francis, B., & Davies, R. (1989). SABRE: Software for the Analysis of Binary Recurrent
Events. Decarli A., Francis B.J., Gilchrist R., Seeber G.U.H. (eds) Statistical Modelling. Lecture
Notes in Statistics, 57.

Browne, W. (2016). MCMC Estimation in MLwiN, v2.36. Centre for Multilevel Modelling, University
of Bristol.

Browne, W., Steele, F., Golalizadeh, M., & Green, M. (2009). The use of simple reparameterizations
to improve the efficiency of Markov chain Monte Carlo estimation for multilevel models with
applications to discrete time survival models. Journal of Royal Statistical Society, Series
A(172), 579-598.

Cervone, D., Sorge, V., Lawson-Perfect, C., & Krautzberger, P. (2017). MathJax version 2.7.2.
MathJax.

Charlton, C., Rasbash, J., Browne, W., Healy, M., & Cameron, B. (2017). MLwiN Version 3.00. Centre
for Multilevel Modelling.

Cottrell, A., & Lucchetti, R. (2007). Gretl User's Guide.

de Valpine, P., Paciorek, C., Turek, D., Anderson-Bergman, C., & Temple Lang, D. (2016). nimble:
Flexible BUGS-Compatible System for Hierarchical Statistical Modeling and Algorithm
Development. R package version 0.5. http://r-nimble.org.

Free Software Foundation. (2017). GNU PSPP (Version 1.0.1). Boston, MA: GNU Project.

Goldstein, H., Rasbash, J., Steele, F., & Charlton, C. (2007). REALCOM: Methodology for realistically
complex multilevel modelling. Centre for Multilevel Modelling.

Goldstein, H., Rasbash, J., Yang, M., Pan, H., Nuttall, D., & Thomas, S. (1993). A multilevel analysis of
school examination results. Oxford Review of Education(19), 425-433.

Hadfield, J. (2010). MCMC Methods for Multi-Response Generalized Linear Mixed Models: The
MCMCglmm R Package. Journal of Statistical Software(33(2)), 1-22.

Hastings, W. (1970). Monte Carlo Sampling Methods Using Markov Chains and Their Applications.
Biometrika, 1(57), 97—-109.

Hetland, M. (2005). Beginning Python: From Novice to Professional. New York: Springer-Verlag.
IBM Corp. (2017). IBM SPSS Statistics for Windows, Version 25.0. Armonk, NY.

Kahan, W. (1965). Further Remarks On Reducing Truncation Errors. Communications of the ACM,
1(8), 40.

Lunn, D., Spiegelhalter, D., Thomas, A., & Best, N. (2009). The BUGS project: Evolution, critique, and
future directions. Statistics in Medicine(28), 3049-3067.

114

Lunn, D., Thomas, A., Best, N., & Spiegelhalter, D. (2000). WinBUGS - a Bayesian modelling
framework: concepts, structure, and extensibility. Statistics and Computing(10), 325--337.

Lutz, M., & Ascher, D. (2005). Learning Python, Second Edition. Sebastopol, CA: O'Reilly Media.
Minitab, Inc. . (2017). Minitab 18 Statistical Software . State College, PA.

Paterson, L. (1991). Socio economic status and educational attainment: a multidimensional and
multilevel study. Evaluation and Research in Education(5), 97-121.

Plummer, M. (2003). JAGS: A Program for Analysis of Bayesian Graphical Models Using Gibbs
Sampling. Proceedings of the 3rd International Workshop on Distributed Statistical
Computing (DSC 2003). Vienna, Austria.

R Core Team. (2016). A Language and Environment for Statistical Computing. Vienna, Austria: R
Foundation for Statistical Computing.

Rasbash, J., Steele, F., Browne, W., & Goldstein, H. (2012). A User’s Guide to MLwiN. Centre for
Multilevel Modelling,.

Rossum, G. v. (n.d.). The Python Language Reference. Python Software Foundation.

Salvatier, J., Wiecki, T., & Fonnesbeck, C. (2016). Probabilistic programming in Python using PyMC3.
Peer] Computer Science 2:e55.

Sarkar, D. (2008). Lattice: Multivariate Data Visualization with R. New York: Springer.

StataCorp. (2017). Stata Statistical Software: Release 15. College Station, TX: StataCorp LLC.
Stroustrup, B. (2013). The C++ Programming Language. Addison-Wesley Professional.

The MathWorks, Inc. (2017). MATLAB and Statistics Toolbox Release 2017b. Natick, Massachusetts.

VSN International. (2015). Genstat for Windows 18th Edition. Hemel Hempstead: VSN International.

115

	Contents
	1 About Stat-JR
	1.1 Stat-JR: software for scaling statistical heights.
	1.2 About the Advanced User’s Guide

	2 Installation instructions
	3 A simple regression template example
	3.1 Running a first template
	3.2 Opening the bonnet and looking at the code
	3.2.1 Inputs
	3.2.2 Model
	3.2.3 Latex
	3.2.4 Some points to note

	3.3 Writing your own first template
	3.3.1 Exercise 1

	4 Running templates with the eStat engine
	4.1 Algebra and Code Generation
	4.2 The algebraic software system

	5 Including Interoperability
	5.1 eStat.py
	5.2 Regression2.py
	5.3 WinBUGS and Winbugsscript.py
	5.4 MLwiN
	5.5 R
	5.6 Other packages

	6 Input, data manipulation and output templates
	6.1 Generate template (generate.py)
	6.1.1 Exercise 2

	6.2 Recode template (recode.py)
	6.2.1 Exercise 3

	6.3 AverageAndCorrelation template
	6.3.1 Exercise 4

	6.4 XYPlot template
	6.4.1 Exercise 5

	7 Single level models of all flavours – A logistic regression example
	7.1 Inputs
	7.2 Engines
	7.3 Model
	7.4 LaTeX
	7.4.1 Exercise 6

	8 Including categorical predictors
	9 Multilevel models
	9.1 2LevelMod template
	9.1.1 Exercise 7

	9.2 NLevelMod template
	9.2.1 Exercise 8

	10 Using the Preccode method
	10.1 The 1LevelProbitRegression template
	10.2 preccode and deviancecode attributes

	11 Multilevel models with Random slopes and the inclusion of Wishart priors
	11.1 An example with random slopes
	11.2 Preccode for NLevelRS
	11.2.1 Exercise 9

	12 Improving mixing (1LevelBlock and 1LevelOrthogParam)
	12.1 Rats example
	12.2 The 1LevelBlock template
	12.3 The 1LevelOrthogParam template
	12.3.1 Exercise 10

	12.4 Multivariate Normal response models
	12.5 The preccode function for this template

	13 Out of sample predictions
	13.1 The 1LevelOutSampPred template – using the zxfd trick
	13.1.1 Exercise 11

	14 References

