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Modelling survival data in MLwiN 1.20 

1. Survival data 
The term survival data refers to the length of time, t, that corresponds to the time 
period from a well-defined start time  until the occurrence of some particular event 
or end-point , i.e. . It is a common outcome measure in medical studies 
for relating treatment effects to the survival time of the patients. In these cases, the 
typical start time is when the patient first received the treatment, and the end point is 
when the patient died or was lost to follow-up.   

t0

tc ttt c 0−=

Generalizing the definition of survival time, we see other examples of similar data in 
social sciences, often called event history data. One example is in trials evaluating 
contraceptive methods: the particular event is the time (in days or months) from 
receiving contraception to, say, discontinuation of contraception.   Another example 
would be in a life style study where the length of cohabitation time of partners until 
they get married or the transition time from education to employment during a certain 
age period in life are of interest.  

In practice, survival data are often collected from a large clinical trial where many 
clinical centres are involved, or say, there is a contraception evaluation study 
implemented in different areas. Then the survival data have a two-level structure with 
patients or individuals nested within centres or areas. Individuals are level 1 units and 
centres are level 2 units. Other two-level data might come from repeated events within 
individuals, for example, birth intervals and employment episodes, or from population 
survey such as age-at-death or mortality by geographical areas. 

In general, survival data have two distinctive features: non-symmetrical distributions 
and frequently censored observations. The frequency plot for most survival data 
shows a longer ‘tail’ to the right (known as positive skew) that would not meet the 
assumption of Normality. In the follow-up process, not every individual ends up 
having the event of interest observed. Some have left the study before the failure 
occurred, and some of them ended the observation because of other problems (i.e. 
competing risks), or were simply lost in the follow-up, or the study closed. Thus, their 
true failure time should be longer than the observed. These survival data are termed 
right censored survival times and we make the assumption that the censoring event is 
independent of the true survival time. There are also cases of left-censored and 
interval censored data, that will not be covered in this introduction.  

Analysing survival data in MLwiN 1.20 is by means of menus and a set of macros 
labelled ‘SURVIVAL-V2’. We shall begin by exploring one data set. 

Example one – Lifetime in relation to overall mortality 
The example data, saved as a MLwiN worksheet file with the name ‘LIFETIME.ws’, 
shown below are the lifetimes in years of Malmö residents at the time of the 2000 
Swedish Census. They are closed cohorts of people 65 ~ 69 years old at the 1970 
Swedish Census and followed up over 30 years. Along with the mortality data, other 
variables such as individual gender, annual disposable family income and total 

 1 



number of household members in 1970 were made available and matched with the 
individual identification. The age of an individual who was still alive at the 2000 
Census or who was lost after the 1970 Census is treated as a censored time. The 
individuals are nested within 11,038 households, and households are nested within 21 
parishes in the city. 

The mortality and lifetime data are of interest to health authorities and 
epidemiologists in studying health and well being in populations and health 
inequalities between different socio-economic groups or geographical or 
administrative boundaries. One of the most important measures is life expectancy at 
birth or at some specific age groups (OECD, 2002). Using the example, we illustrate 
briefly how single level survival analysis and multilevel survival models can be 
applied to study life expectancy (LE) and the effects of individual background and 
social economic factors on LE using MLwiN. 

Open the file ‘LIFETIME.ws’ to bring up the Names window as below. 

 
Variable label 
 
parish: level 3 identification 
household: level 2 identification 
individual: level 1 identification 
age1970: age of individual in 1970 
male: gender coded as 1=male, 0=female 
death: life status 1=died, 0=otherwise 
age2000: age last seen 
familysize: total members in household 
familyincome: disposable family income, 100SEK 
log(t): nature logarithm of ‘age2000’ 
cons: constant vector = 1 
censored: censoring flag censored=1 

In the data 86.2% of the households are single member families, and 5.4% of the 
records are censored. The censoring flag is in C12. 

Use the View or edit data option in the Data manipulation menu to view the raw 
data in the Data window. Both ‘familysize’ and ‘familyincome’ are household level 
variables. The survival time is the age at death of individuals in 2000 in C7 with the 
status in C6. Note that C6 and C12 are complementary, i.e. the censored individuals 
are those who did not die. 
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2. Questions for survival data analysis 
In substantive fields where a ‘treatment’ (e.g. a drug or surgery) may be introduced 
and evaluated in comparison to a control group, the main research questions can be 
summarised as follows.  

• How long on average are the subjects going to survive after the treatment? 

• Does a particular treatment result in a longer survival of subjects than other 
treatments? 

• What are the risk factors that may affect the survival time? 

In our example, no particular medical treatment is involved. The general term 
‘survival time’ means the lifespan in years in this case. Life expectancy can be 
calculated readily based on the lifespan estimate. We shall be estimating and 
comparing lifespan of males and females in order to assess their health well being. We 
are also interested in investigating risk factors that may be associated with inequality 
in health, as measured by lifespan, between geographical boundaries and between 
social groups. The specific questions of interest are: What is the average lifespan of 
residents in this city? What is the gender difference in lifespan? Does lifespan vary 
between parishes, or between households? How does household income affect the 
lifespan of individuals? How does household size affect the lifespan of individuals?  

To answer these research questions the following statistics are typically used: 

• Survivor function: The probability that the random survival time variable T is 
greater than or equal to a specific t. Assuming F(t) is the cumulative 
distribution function of t, the survivor function is the right tail probability, and 
so is defined 

)(1)()( tFtTPtS −=≥=         (1)
        

• Hazard function: The probability that an individual dies at or just after time t, 
conditional on he or she having survived to that time. It represents the 
instantaneous death rate for an individual surviving to time t, and is defined as 

)(
)()(

)(
)()(

tS
tFttF

tTP
ttTtPth −∆+=

≥
∆+<≤=      (2) 

The term ∆t represents a very small unit increment of time. 

• Cumulative hazard function: The cumulative sum of the hazard probability 
function that can be expressed as, 

)(log)( tStH −=         (3) 

• Median survival time: The time when S(t) = 0.5. This statistic is termed the life 
expectancy in the population.  
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• Comparison of mean survival time or survivor function between treatment 
groups, or between background strata, by means of statistical tests such as 
Log-rank taking into account the stratification in the data.  

• Regression analysis for multiple explanatory variables associated with the 
median survival time or survival function or hazard function, by means of 
parametric survival models and semi-parametric proportional hazard models.   

There are many well established statistical methods for carrying out these analyses. 
These are listed under the categories of non-parametric, parametric and semi-
parametric approaches (Collett, 1999). In this chapter we only introduce how to use 
MLwiN for some basic data exploration (non-parametric) and for fitting single level 
and multilevel survival models (parametric and semi-parametric), illustrated by 
examples. 

3. Data exploration 
It is always advisable to carry out some simple descriptive or exploratory analysis of 
the data before fitting more complex models. We shall illustrate this assuming a single 
level data structure. 

3.1 Distribution of survival time 

To view the distribution of the variable ‘age2000’ we can use the Graphs menu to 
choose the Customised graph option to bring up the following window. 

 

 
Steps for plotting: 
1. Click on ds # 1 to specify 

‘age2000’ as y and choose 
histogram in plot type. 
Allow 1 as the bar width, 
although you could use 
any number. Click on the 
Apply button. 

2.  Click on ds # 2 to specify  
‘log(t)’ as y and choose 
histogram in plot type. 
Allow the appropriate bar 
width. Choose the 
position tab, tick in the 
second cell. Click on the 
Apply button. 

The graph below shows the distribution of the raw survival time (on the left) and the 
distribution of the log survival times (on the right). The two distributions do not differ 
much. 
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Figure 1 Histograms of the raw survival times and the log survival times 

 

3.2 Kaplan-Meier estimate of survivor and hazard functions 

Given n individuals with observed survival times, some of the observations may be 
censored and there may also be more than one individual who fails at the same 
observed time. We suppose that there are g  ( ng ≤ ) failure times amongst the 
individuals, and arrange these times in ascending order. The survival/failure times are 
recorded to the nearest year and this gives 34 distinct time intervals as listed in the 
first column of Table 1 for this example. We count the total number of individuals 
alive at the start of the interval ( , ) and the number of individuals who 
died ( ) in the time interval. The Kaplan-Meier estimate of the survivor function is 
given by 

in gi ,...,2,1=

id
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with the approximate standard error (Greenwood’s formula)  
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Once  is estimated, we can estimate the median survival time t  such that 
. For different groups of individuals such as male and female, we can 

estimate a survivor function for each group and plot them for comparison. 

)(ˆ tS
5.0=

M
ˆ
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The hazard rate is estimated as 
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i
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d
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−

=
+

        (6) 

This is a non-parametric approach, and useful for showing the overall survival pattern, 
hazard pattern and differences between groups before further model fitting. 
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There is no Windows interface in the current version of MLwiN to do all the analysis. 
Instead we can call the macro “K-M-estimator” to carry out the estimation. It is 
essential to know how to use the Command Interface window and some basic 
commands of MLwiN in order to use the macros. The macro K-M-estimator also 
requires the fixed name “time” for the survival time column and the fixed name 
“right” for the censoring flag column. 

This macro is one of the seventeen files in the SURVIVAL macro set that is stored in 
the directory c:\program files\mlwin1.20\survival by default. They can also be stored 
anywhere specified by users.  

Working on the worksheet LIFETIME.ws, we first run the macro in the following 
steps: 

Exercise one 
► Estimate K-M survivor function for the whole data 

Step 1: In Options window change directory from the default to “User 
Defined Settings”, and specify the directory where the macros 
are stored; 

Step 2: In Names window change the column names ‘age2000’ to ‘time’, 
and ‘censored’ to ‘right’; 

Step 3: Open the Command Interface window and type the command 
line OBEY K-M-estimator.txt to execute the macro. 

This macro returns results in columns C392 - C400 as below. 

Description of the results 
 
C392: the start time of the interval; 
C393: the width of the interval; 
C394: Number of subjects at the 

beginning of the interval; 
C395: Number of failures acquired 

during the interval; 
C396: SE of the hazard rate; 
C397: Hazard rate; 
C398: Cumulative Hazard rate; 
C399: SE of survival probability; 
C400: Survival probability 

We can output some or all of the estimates by typing the command Print in the 
Command Interface window. For example the following command line gives the 
results in Table 1 where only part of the data are displayed. 

Print c392 c394 c395 c400 c399 

Table 1 K-M estimates of the survival function   
        t(i)         n(i)         d(i)         S(t)         se[sf]        
 N =     34           34           34           34           34        
   1  0.00000       12587.        0.00000       1.0000        0.00000       
   2  66.000        12587.        55.000        0.99563       0.00058791    
   3  67.000        12532.        122.00        0.98594       0.0010495     
   4  68.000        12410.        196.00        0.97037       0.0015115     
   5  69.000        12214.        293.00        0.94709       0.0019953     
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   6  70.000        11921.        365.00        0.91809       0.0024443     
        …            …             …             …            … 
  17  81.000        7186.0        493.00        0.53174       0.0044477     
  18  82.000        6693.0        535.00        0.48923       0.0044556     
  19  83.000        6158.0        534.00        0.44681       0.0044314     
        …            …             …             …            … 
  30  94.000        1245.0        242.00        0.079813      0.0024159     
  31  95.000        777.00        159.00        0.063481      0.0022420     
  32  96.000        443.00        101.00        0.049008      0.0021441     
  33  97.000        199.00        45.000        0.037926      0.0022057     

  34  98.000        72.000        21.000        0.026864      0.0025627     
 

From Table 1 we see that the survival probability is 0.5317 at t=81, and 0.4892 at 
t=82. This means that the median survival time (life expectancy) or  should be 

between 81 and 82 years old. The common practice is to define the median time to be 
the smallest observed survival time for which the value of the estimated survival 
function is less than 0.5. In this case it is 82 years old for men and women jointly. 

5.0)(ˆ|̂ =tSt

To plot the functions of survival, hazard and cumulative hazard, we use the 
Customised Graphs window in the Graphs menu. We plot S(t), h(t) and H(t) against 
t(i) using the Line style and place them in different position in the graph. All of these 
can be specified in the window as shown below. 

 

 
 
Because of no death information before 1970 from the cohort of 65-69 year olds, the 
survival probability of them before 65 years was assumed one. This produces a flat 
survival probability of one and zero hazard risk in the following plots up to 65 years 
of age. 
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Figure 2 K-M estimates of the lifetime survival and hazard functions 

These plots of the survivor and the hazard functions are not the exact K-M step 
functions. To get the step function you need to stack the lower and upper bound of 
each time interval in one column for the x-axis and repeat the survival probability of 
that interval twice for the y-axis and then plot the graph. This can be done using the 
VECT command, turn off the Autosort on x  on the Graphs window. We shall leave 
this for the reader to explore. 

3.3 Comparison of survival times between groups 

To compare the median survival time for males and females, we can apply the same 
macro for males and females separately to obtain two survivor functions in different 
columns in the worksheet.  A few commands will be used to separate gender, and to 
store their results in different columns. Then we can plot their survivor or hazard 
curves in the same graph.  

Exercise two 

► Estimate K-M survivor function by groups 

Step 1: Open the worksheet “LIFETIME.ws”. 

Step 2: From Options window change from the default directory to “User 
Defined Settings” and specify the directory where the macros are stored;  

Step 3: Open the New Macro window and type in the following command lines 

Name C13 ‘grp’ C14 ‘time’ C15 ‘right’ 
Choo 0 ’male’  ‘age2000’ ‘censored’ C13 – C15 
Obey K-M-estimator.txt 
Eras C31-C36 
Appen C31 C32  ‘t(i)’ ‘s(t)’ C31 C32 
Choo 1 ‘male’ age2000’ ‘censored’ C13-C15 
Obey K-M-estimator.txt 
Appen C33 C34 ‘t(i)’ ‘s(t)’ C33 C34 
Omit 0 60 C31 C32 C31 C32 
Omit 0 60 C33 C34 C33 C34 
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Step 4: Click on the Execute button to run the commands 

Step 5: Open the Graphs window to plot Lines for (x=C31, y= C32) and (x=C33, 
y=C34) in the same display position but different colors to obtain the 
following graph 

 

 

Figure 3 K-M estimates of survival function by gender (the bottom line for male and 
upper line for female) 

The plot clearly shows a greater survival probability for females than for males. 
Viewing the results in C31-C34, we see the median life expectancy is estimated to be 
79 years for males and 85 years for females. 

Furthermore, we may want to test whether the gender difference in the K-M estimates 
is statistically significant. The commonly used non-parametric approaches are the 
Log-rank (Mantel-Haenzel) or Wilcoxon tests (D. Collett, 1999): the first is a global 
test of any differences between the distributions and the second compares their 
locations (medians). Both tests give approximate Chi-squared statistics. This can be 
done by using the macro “LOG-RANK.txt”. The macro requires the time variable 
named as “Time”, the censoring indicator as “Right” and the group indicator as 
“GRP”. 

Exercise three 

► Test for equality of several groups of survival data 

Step 1: Open the worksheet “LIFETIME.ws”. 

Step 2: From Options window change from the default directory to “User 
Defined Settings” and specify the directory where the macros are stored; 

Step 3: Rename the columns ‘age2000’ to ‘Time’, ‘male’ to ‘Grp’ and ‘Censored’ to 
‘Right’; Calculate ‘grp’=’grp’+1; 

Step 4: Open the Command Interface window and type the command line OBEY  
Log-Rank.txt  to execute the macro. 
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Having done the exercise, you can see the following results displayed in the Output 
window 

         B1                B2             B3                 B5             B6        
      311.62          377.69      1.0000        0.0000         0.0000   

In boxes B1 and B2 are the values of the Log-Rank and Wilcoxon tests with their 
tail probabilities in B5 and B6 respectively. The ‘degrees of freedom’ in this case is 1 
in B3. Both tests show significant differences between the median life expectancies of 
males and females. 

χ 2

4. Accelerated lifetime (log-duration) models 
The exploration of the example data has given us some idea of the overall survival 
probability and the differences in life expectancy between males and females. 
However, the question of how socio-economic status measured by family income, 
may affect the survival probability is still to be answered. One might think of 
grouping the income variable into categories of high, median and low incomes, and 
compare them using the Log-rank test. This would be adequate, but as we also wish to 
include covariates that are continuous, such an approach is impractical and we need to 
form an explicit (regression) prediction model. We first introduce the commonly used 
log-duration model or accelerated lifetime model for survival data, starting with the 
single level model that will then be extended to multilevel models. 

We assume a general hazard function for the i  individual at time   th t

)()( 0 ee ii XX
i thth ββ=              (7) 

where  represents the baseline hazard function which is the hazard when the value 
of  is zero. The term  acts as the acceleration factor through the effects of 
explanatory variables on the hazard rate or the density function. Once the parameters 

0h

iX e iX β

β  are estimated, the function is determined. Therefore, if t  is an event time sampled 
from the baseline distribution corresponding to values of zero for the covariates, then 
the accelerated life time model with the effects of covariates is T .  Under the 
log transformation the accelerated lifetime model has the following form, 

0

e iXt β
0=

)log()log( 0tXTy iii +== β  or iii eXy += β          (8) 

where the term  for the baseline survival time can be assumed to come from 
different distributions, such as the Normal, Extreme value, Logistic or Gamma 
distribution. The model is based on the assumption of proportional probability of the 
survival time and the baseline survival, . One can get 
estimates of 

ei

)()|( 0 et iXtPxtTP β>=>
β  by fitting this model using existing packages such as SAS.  

The dependent variable is the logarithm of the survival time, hence log-duration 
model. The intercept of the model 0β  is the estimate of overall median survival time 
on the logarithmic scale.  
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In the two-level case, the log survival time for the i  individual from the th thj  cluster 
can be modelled as  

)log()log( 0tuXTy jijijij ++== β  or euXy ijjijij ++= β      (9) 

where we can assume the random effects u . Under the raw scale of the 
data, the exponential of the random effects exp(  is also termed frailty; Frailty 
captures the difference of median survival times among clusters, parishes or 
households in our example. The model can be extended to allow some 

),0(~ 2σ uj N
)u j

β  coefficients 
to vary between clusters. When no censored observations present, this model is an 
ordinary two-level model. 

The set of macros “SURVIVAL-V2” fits log-duration models for single level, two-
level as well as more than two-level survival data (Model 9 with extension). The 
estimation procedure is Quasi-likelihood under IGLS (Goldstein, 2003). In the single 
level case, the estimates are ML under Normality when there are no censored data. In 
the multilevel case when there are many censored times, for example over 50% in the 
dataset, this estimation procedure tends to break down and is not recommended.  

4.1 Fitting a single level log-duration model 

To study the relationship between the lifetime of individuals and the covariates 
gender ( =1 for male, 0 for female), family income ( x ) and family size ( ), we 
start with a single level model ignoring the structure of individuals nested within 
households nested within parishes. The model for the i  log survival time can be 
written as 

1x 2

th

3x

iiiii exxfxy ++++= 332110 )( βββ           (10) 

The family income variable has a positive skewed distribution with large range of 
values 0 ~ 32,605 (100SEK); therefore the natual log transformation of income is 
applied. We also centre the transformed variable around the average income 
ln(1500)=7.31, assuming a polynomial function f, typically a quadratic, between log-
income and lifetime. Family size is centred at 2. The reference group in the model 
consists of women in two member families with average family income. The median 
lifespan for the reference group is estimated by exp( )0β . For males the same in socio-
economic situation, the median lifespan is estimated as exp( )10 ββ + .  

Model (10) is specified following steps in Exercise four below.  

Some preparation is required to be able to use the macros.  

The default directory for these macros is c:\program files\mlwin\survival, however 
one can put the macros in any other directory.  From the Options window one 
specifies the directory and the two important files PRE.SU and POST.SU in the pre 
and post file boxes accordingly. 
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Once in the correct directory, after typing the command OBEY OPTIONS.SU in the 
Command Interface window, we should see the following screen in the Output 
window.  

              
               LOG-DURATION SURVIVAL MODEL OPTIONS (RELEASE 2.0) 
         ============================================================ 
ERROR DISTRIBUTION:  B10=*  - NORMAL(1), EXTREME VALUE(2), GAMMA(3), LOGISTIC(4) 
MIXED RESPONSE :     B12=*  - YES(1), LINK SURVIVAL RELATED VARS. IN (G10) 
         
*=UNSPECIFIED 

 

This screen reminds us what number to set in which box for what distribution of . 
For example, for a Normal distribution, we set B10 as 1, and for the Extreme value 
distribution we set B10 as 2. For mixed response models with a survival time and 
other Normal response, we set B12 as 1 and the explanatory variables associated with 
the survival time response should be linked to G10, in addition to the B10 setting. The 
mixed response model will not be covered in this chapter. 

ie

The column containing the event information (1=failed and 0=censored) should be 
named as “UNCENS”. This is required by the macro.  

Exercise four 
► Preparing to fit a single-level Log-duration model  

Step 1: Open the worksheet “LIFETIME.ws”. 

Step 2: From Options window change from the default directory to “User Defined 
Settings” and give the directory name where the macros are stored. Type 
PRE.SU and POST.SU as pre- and post- files. 

Step 3: In Names window change the column names ‘death’ to ‘uncens’, ‘censored’ 
to ‘right’; 

Step 4: Open the New Macro window and type in the following command lines to 
setup the model; 
Iden 4 ‘parish’ 3 ‘household’ 2 ‘individual’ 1 ‘cons’ 
Put 12587 0 C13 
Calc C14=’familysize’ - 2 
Calc C15=loge(‘familyincome’+1) - 7.31 
Calc C16=C15^2 
Name C13 ‘zero’ C14 ‘fmsize-2’ C15 ‘L_income’ C16 ‘L_income2’ 
Expl 1 ‘cons’ ‘male’ C14 C15 C16 ‘zero’ 
Fpar 0 ‘zero’ 
Resp ‘log(t)’ 
Setv 4 ‘zero’ 
Setv 3 ‘zero’ 
Set b10 2 
Set b12 0 

Step 5: Click on the Execute button to run the macro 

 

In Exercise four, we have set up a three-level structure with individuals nested within 
household nested within parish. The true level 3 is shifted up to 4, and true level 1 is 
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moved up to 2. For a single level model, variances of the true levels 3 and 2 should be 
zero. So, in fitting such a model we put a zero column as the design vector and set it 
as the random term at parish and household levels. In this way we can fit a single 
level model by forcing a zero variance between parishes at level 4, and a zero 
variance between households at level 3. By setting B10=2, we assume an Extreme 
value distribution for errors. Her the two continuous variables ‘familysize’ and log 
‘familyincome’ are centred around their own medians, and a quadratic polynomial 
function is fitted for the relationship between the log income and the age of death. 

For users who have experience in specifying models through the Equations window, 
Exercise four can be done entirely in the Equations Window. 

Having done Exercise 4, we open the Equations window to display the model 
specification as below. 

 

Nothing has been set at levels 2 and 1, and the macros will set random terms at level 2 
in the course of model fitting. 

To fit this model, click on the Start button in the tool bar, the model should converge 
after a few iterations with the following estimates displayed in the Equations 
window. 
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Based on the fixed parameter estimates in the model, we obtain the estimated median 
lifespan as exp(4.4269)=83.67 for females and exp(4.4269-0.05708)=79.03 for males 
with a significant gender difference in log lifespan (z = -0.05708/0.0017 = -33.58). 
The quadratic form of the log scale of household income has a significantly positive 
effect too, and family size appears to have a marginal negative effect on lifespan.  

Note in the window the –2log-likelihood value may not be reliable and the equation 
),(~)log( ΩβXNt ijkl  should be ignored. 

We may want to display the predicted relationship between household income and 
lifespan graphically. This procedure is explained by Exercise five based on the model 
above. 

Exercise five 

► Predict and display the relationship between household income and lifespan  

Step 1: Open Prediction window to highlight the terms ‘Cons’ ‘L_income’ and 
‘L_income2’, set the predicted value in C17, and 1.96 SE of the quadratic 
function (Fixed effects) in C18. Then click on the Calc button. 

Step 2: Open Command Interface window to type in and execute two command 
lines. 

Calc C17=expo(C17) 
Calc C18=expo(C18) 

Step 3: Open Graphs window and use the customised graph to explore the line 
plot with the 95% confidence interval (using the error bars option) to get 
the following graph showing the trend of the higher household income, 
the longer the lifespan.  

 

 

At the individual level in the model, the residual variance unexplained by the model is 
0.008, and the term ‘bin_cens’ is a scalar with variance constrained to be 1 for the 
censored times. Nothing is set at the level below individual. This is a setting similar to 
the Normal multivariate model in MLwiN. To change the residual distribution from 
Extreme value to Normal, we type the command SET B10 1 in the Command 
Interface window, then click on the More button to continue iterations till the model 
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converges. Similarly we can set B10=3 for a Gamma distribution or B10=4 for a 
Logistic distribution. The estimated median lifespan by gender adjusted for household 
income and family size of Model (10) under different error distributions are presented 
in Table 2, showing small difference between the four distributional forms.  

Table 2 Median lifespan of 65-69 years old estimated by MLwiN macros under 
different residual distributions 

 Raw 
K-M 

B10=2 
Extreme value

B10=1 
Normal 

B10=3 
Gamma 

B10=4 
Logistic 

Female 85 83.66 82.99 84.03 83.96 
Male 79 79.03 78.97 79.16 79.09 
Individual variance on raw scale  1.008 1.008 1.008 1.008 
 

The differences between the K-M estimate and the log-duration model estimates on 
the lifespan of females is not surprising because the K-M estimate does not adjust for 
household income and family size while the single level log-duration model does.  

To estimate the lifespan for each of the age groups in the population of 2000, or the 
age specific lifespan, we need to include dummy variables for the age groups in the 
fixed part. Based on the model we predict the overall survival probability . The 
life-table method would be used to derive the age specific life expectancy. We 
illustrate the procedure in Section 4.3 below. 

)(tS

4.2 Fitting a three-level log-duration model 

We can extend the single level Model (10) to a three-level model (11) by including 
random effects  for parishes and random effects  for households, lf klv

jklklklkljklklljkl exxxxvfy +++++++= 34
2
2322110 )( βββββ      (11) 

),0(~ 2σ fl Nf ,  ),0(~ 2σ vkl Nv

The random effects  allow for mean differences of lifespan between parishes and 
the grand mean value with zero mean and variance . The random effects  
estimate mean differences of lifespan between households and the grand mean value 
with zero mean and variance .  

lf
σ 2

f klv

σ 2
v

To set up Model (11), we go back to the Equations window where Model (10) has 
been fitted. Click on the ‘zero’ term to delete it first, then click on the term ‘cons’ to 
bring up the box below, and to tick the parish and household boxes as shown.  
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Now click on the More button to run the model until convergence to show the 
following results. 

 

 
We may test the joint significance of the parish and household level variances by a 
Wald test in the Interval and Test window as below.  

 
 

The approximate  value is 331 with two degrees of freedom. This is highly 
significant, indicating an improvement of the three-level model over the single level 
model, although the parish level variance seems small enough to be ignored. 
Estimated as –0.00169 in the single-level model, 30% of the family size main effect 
has been explained by the large household level variance. Although all fixed effects 
estimated by the three-level model suggest conclusions similar to that obtained from 
the single-level model, the three-level model estimates have several noteworthy 
differences: 

χ 2

• The total variance of log survival time, estimated as 0.00802 in the single level 
model, has now been separated into three levels with 40.8% attributed to 
difference between households, and 59.1% to differences between individuals 
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within households. The proportion of variability among parishes is only 0.08% 
of the total variance. 

• The standard error of the ‘familySize’ effect estimate is considerably larger in 
the three-level model than in the single-level model as 0.00097 v.s. 0.00081. It 
was under estimated in the single-level model. The same pattern is found for 
the effect of family income. Both variables were measured at the household 
level. 

• The fixed effects of gender and household income are moderately different 
between the two models. 

We can also estimate the household level residuals or parish level residuals, i.e.  or 

, using the Residuals window in the Model dropdown list to check for Normality 
and possible outliers. We leave this for the reader to explore. 

klv̂

lf̂

4.3 Calculating the survival function 

As the different survival functions for males and females are of interest, a column 
named ‘P(L>T)’ in C161 of the worksheet stores the survival probability based on the 
survival time distribution assumed and is updated after each iteration. However, it is 
calculated based on the estimates of all covariates in the model.  For the survival 
functions of the gender group conditional on other variables, for example, family size 
= 2 and family income at the average, we need to use commands. For different 
distributions assumed for the baseline survival rate, the formula for S(t) is different as 
listed in Table 4. Remember that for the log-duration model we always work on the 
logarithmic scale of the observed time for any distribution, i.e. y = log(t).  

In the single level case, we simply leave out the term  from the calculation. For the 
baseline survivor function, only the intercept parameter is involved in calculating . 

Ω
y xˆ|

Table 4 Formula for calculating S(t) after fitting Log-duration model 

Normal 















+

−

Ωσ
φ

2

|ˆ

uncens

xyy
 

Extreme 
Value 




























−−

+
−−

Ω
5772.0)(2826.1expexp1 ˆ|2

yy x
uncensσ

 

Gamma Gamma (b,α ),  

Ω+= σα 22
| /ˆ uncensxy , α/y=b  

Logistic 

( )( ))5513.0/(exp1

1
2

|ˆ Ω+×−+ σ uncensxyy
 

Note: 

Ω :   total variance above 
the true level 1 for given 
explanatory variable values; 

y xˆ|  :  predicted y given the 

value of the covariate x;  

To obtain S(t) from 
)(zφ , use the command 

NPRO ‘z’ in MLwiN; 

To obtain S(t) from the 
Gamma (b, α ), the 
commands are  
GPRO ‘b’ ‘a’ C50 
Calc C50=1-C50 
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In Exercise 6, we calculate the survival functions for male and female conditional on 
family size = 2 and log of family income = 7.31, based on the three-level model (11) 
with Extreme Value distribution, and plot them in Figure 4 showing as before, a larger 
survival probability for females than for males. 

 Exercise six 

► Calculating and plotting survival functions  

Step 1: Open Command Interface window to run the command lines;  
Calc C16=((4.42935-0.058094*'male')-‘log(t)’)*1.2826 
Calc C16=(C16/sqrt(0.0051971+0.0000071+0.0035861))-0.5772 
Calc C17=1-expo(-expo(C16)) 
Name C17 ‘S(t)’ 

Step 2: Choose Customised graphs from the Graphs window; 

Step 3: Select C17 for the y-axis, ‘age2000’ for the x-axis, ‘male’ for the group indicator 
and Line for the plot type in the window; 

Step 4: Click on the button Plot style, choose #16 rotated colour; 

Step 5: Click on the button Apply to bring up the following plot without titles; 

Step 6: Click on the plot to bring out the window for title specification. 

 

Figure 4 Survival functions estimated from three-level Log-duration model (11), 
upper line for females and lower line for males 

The survival functions based on the other three distributions are very close in this 
example. We shall not present them all here. 

To predict median age specific life expectancy for the age group 65-69 conditional on 
other variables in the model, we can use conventional life-table method based on the 
survival probability predicted by the model fitted. The following macro calculates this 
for females based on the three level model. 
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► Calculating life expectancy of females at age 65-69  
Note calculate survival probability 
Calc C16=(4.42935-‘log(t)’)*1.2826 
Calc C16=(C16/sqrt(0.0051971+0.0000071+0.0035861))-0.5772 
Calc C17=1-expo(-expo(C16)) 
Name C17 ‘S(t)’ 
Eras C18-C22 
Sort ‘age2000’ ‘S(t)’ C18 C19 
Take C18 C19 C18 C19 
Note calculate mortality at time t 
Calc C20=1-C19 
Join C21 50000  C21 
Count C18 B2 
Calc B2=B2-1 
Note calculate lives at time t and LE in B8 
Loop B1 1 B2 
Pick B1 C21 B3 
Pick B1 C20 B4 
Calc B5=B3*B4 
Join C22 B5 C22 
Calc B6=B3-B5 
Join C21 B6 C21 
Endloop 
Sum C21 B7 
Calc B8=B7/50000 

In the Command Interface window, we print B8 to obtain the life expectancy estimate 
as 13.43, the years of life remaining for the female population aged 65-69 in year 
2000. For the male population, we simply include the term -0.058094*’male’ in the 
first line of the macro above to get the estimate 10.19 years. In the model fitted, we 
did not fit the survival probability for each of the five age groups in the 1970 cohort. 
So the estimated age-specific life expectancy will be the same based on the same 
survival probability. 

4.4 Survival time for higher level units 

We may be interested in estimating the median survival time for each parish and 
comparing them as a measure of geographical equality in health. We show how it can 
be done as an example. 

Based on model (11), the estimate of conditional median survival time for the  
parish is given by  for female and exp(  for males. The 

estimated median survival time for the  household in the l  parish is given by 
 for females and exp(  for males. 

lth

)ˆˆexp( 00 f l
+β

)
l

)ˆˆˆ
010 f l

++ ββ
th

)ˆ ˆ
0f lklv ++

kth

β̂ˆ ˆˆexp( 00 fklv ++β ˆ
10

+ β

Exercise seven 

► Obtaining the distribution of median survival time of level 3 units  

Step 1: Choose Residuals tool from the Model window;  

Step 2: Specify the level 4 id ‘parish’ in the Level box at the bottom of the screen; 

Step 3: Click on the button Calc to get the residual estimates in C300, standardize 
residuals in C302 and the rank in C305; 
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Step 4: Open the Command Interface window to run the command lines to view 
the results; 
Calc C299=expo(4.429+C300) 
Print C299 C305 

Step 5: Open Customised Graphs window to plot Histogram of C299. 

The subject survival times estimated in C299 and their ranks in C305 show the 
median lifespan for females ranged from 83.4 to 83.9 among 21 parishes. The 
estimated survivor functions of parishes all overlap each other. 

In the same way we can calculate the estimates for households. This shows a much 
wider distribution of median lifespan among 11,039 households of 73.4 - 91.9 years 
for females, and 69.3 – 86.7 years for males.  

5. Proportional Hazard models 

The general form of the proportional hazards model at time t for the i  individual can 
be expressed as 

th

)()()( 0 theth iX
i

β=             (12) 

where t is treated as a continuous variable, and  is the baseline hazard function, ie 
the hazard when the value of the explanatory variables is zero. At any time, the hazard 
function for the i  individual dying in the period t - t  can be specified as  

0h

g
th

∆+ g

)( gi th =
)( gggi

gi

ttn
d

−× ∆+

.            (13) 

where =1 if the individual dies in the time period and 0 otherwise. The term n  is 
the total number of individuals at risk at time , i.e. the number of ties, and is unity 
for a single subject at one time point. This is the K-M estimator of the hazard rate. 
Combining (12) and (13), we may express the hazard of death for the  individual at 
time interval  as  

id g

gt

thi
gt

βiX
ggggigi ethttnd ××−×≈ ∆+ )()( 0           (14) 

Taking the logarithm of (14), we get 

βiggggigi Xthttnd +−+≈ ∆+ )]()ln[()ln()ln( 0 .        (15) 

 We may rewrite the expression as 

βϕ iggigi Xtoffsetdy ++≈= )()()ln(          (16)  

where the term )( gtϕ  is a function of time in relation to the baseline hazards. It can 
have different forms that we shall introduce later. When there are no tied survival 
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times, i.e. n=1 at any time point, the offset is zero. Model (16) is basically a Poisson 
model with log link. 

If there are five survival times observed as (2, 5, 10*, 11, 30*) with * indicating 
censored time, we may rearrange the data as in Table 5.  

Table 5 Restruction of survival data 
Start Time, 

 t g

Individual 
i 

Status Number of 
failure,  ngi

Outcome 

gid  
Time interval 

t g ∆+ - t  g

2 
2 
2 
2 
2 

1 
2 
3 
4 
5 

Died 
Alive 
Alive 
Alive 
Alive 

1 
1 
1 
1 
1 

1 
0 
0 
0 
0 

3 
3 
3 
3 
3 

5 
5 
5 
5 

2 
3 
4 
5 

Died 
Alive 
Alive 
Alive 

1 
1 
1 
1 

1 
0 
0 
0 

5 
5 
5 
5 

10 
10 
10 

3 
4 
5 

Censored 
Alive 
Alive 

0 
0 
0 

0 
0 
0 

1 
1 
1 

11 
11 

4 
5 

Died 
Alive 

1 
1 

1 
0 

19 
19 

30 5 Censored 0 0 1 
 

This expansion leads to several important features in fitting the hazard model (16) to 
survival data. 

(1) The hazard rate is assumed constant within the observed time intervals. 

(2) Fitting a Poisson model with log link to the outcome is straightforward.  

(3) If there are tied observations at any time interval, the number of failures in 
Table 5 would be greater than one. The logarithm of this number would be 
treated as an offset in the model. 

(4) Censored times do not provide information after the time censoring occurred, 
and their corresponding time blocks can be ignored, for example the last row 
in Table 5. 

(5) Time dependent covariates can be incorporated naturally in the expanded 
structure, and time dependent effects can be fitted by interacting covariates X 
with time t  or  in the model.  )log(t

Several forms for )( gtϕ  can be considered. Here are just a few. The terms in α  are 
parameters defining the time function. 

  Polynomial function:   p
gpgg ttt )][log(...)][log()log( 2

21 ααα +++
  Blocking factor or step function: gg ZZZ ααα +++ ...2211  





=
otherwise

tfor
Z g

g 0
1

, 
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  Weibull distribution: )log()1()log()log( gt−++ γγλ  
  Exponential distribution: )log( gtα  and α  to be constrained as unity. 

The polynomial function is an effective form if there are large numbers of time points 
observed. The higher order the function is fitted, the better the approximation to the 
baseline hazard and other estimates in the model. For the data where the observed 
time could be grouped to a few intervals, the blocking factor approach is advisable.  

In MLwiN v1.2, the program looks for a column named ‘OFFS’. This is zero except 
where there are ties, as explained above. 

5.1 Fitting a single-level model 

Fitting Model (16) in MLwiN is the same as fitting any single level Poisson model 
using the Equations window on the expanded data. Extending the single level model 
to a two-level or more than two level model is straightforward. The following 
Exercise 8 takes you through the data expansion and fits a single level Poisson model 
on the LIFETIME example, and Exercise 9 extends it to a three-level Poisson model. 
The model estimates of the exercises are presented in Table 6. 

The command SURV in Exercise 8 does the data expansion. Given the column for 
survival time, ‘age2000’ in the example, and the column for censored observation, 
‘censored’ here, the SURV command returns five columns corresponding to each 
time interval: response or death count, number of total failures, risk time indicator, 
survival time and number of subjects at the start point of the time. The command also 
repeats other variables or level identifiers to the same length as the response column. 

Exercise eight 

► Expanding data and fitting a single level proportional hazard model  

Step 1: Enlarge the worksheet size to 25,000 cells in the Options window, 
then open the worksheet “LIFETIME.ws”. 

Step 2: Open the New macro window to type in the following command 
lines and click on Execute button; 
Eras C4 C6 C10 C11 
Move 
Sort 'age2000' C1-C8 'age2000' C1-C8 
Surv 'age2000' 'censored' C1-C4 C6 C7 C10-C14 C1-C4 C6 C7 
Eras 'age2000' 'censored' 
Move 
Name C7 'response' C8 'failure' C9 'rs-index' C10 'rs-time' C11 'rs-n' 
Sort 2 'parish' 'household' C3-C11 'parish' 'household' C3-C11 
Count C1 b1 
Put b1 1 C12 
Calc C13=C12 
Calc C14=loge('rs-time') 
Aver C14 b1 b2 
Calc C14=C14-b2 
Calc 'familysize'='familysize'-2 
Calc C15=C13-C12 
Calc C16=loge('failure') 
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Calc C17=loge('familyincome'+1)-7.31 
Calc C18=C17^2 
Name C13 'cons' C14 'logt' C15 'zero' C16 'offs’ 
Name C17 'L_income' C18 'L_income2’ 
Name C12 ‘pvar’ C19 ‘logt2’ C20 ‘logt3’ C21 ‘logt4’ 
Calc C19=’logt’^2 
Calc C20=’logt’^3 
Calc C21=’logt’^4 

Step 3: Open Equations window to specify a Poisson model shown below 

Step 4: Set Nonlinear options to MQL1 Poisson error constrained and click 
on Start button to run the model till convergence 

The baseline hazard is fitted adequately by a 4th order polynomial function. You will 
generally need to experiment with the order of the polynomial until adding further 
terms does not alter the model parameters. The estimated effects of gender, family 
size and household income in the column (5) of Table 6 are almost identical to the 
Cox model estimates that you will obtain from other packages such as SPSS. Due to 
the large sample size, removing the offset from the model does not make much 
difference to the fixed effects except that the baseline function is different. 

5.2 Fitting a three-level model 

Considering the structure of the data with individual nested within  household 
within  parish, we now extend Model (10) to the three-level Model (17) illustrated 
in Exercise 9, working in the Equations window. 

thi thj
thk

2
34332211

4

1
000 )(log)( jkjkjkijk

h

h
hkjkijk xxxxtvuy ββββαβ +++++++= ∑

=
      (17) 

We may also allow random effects of other parameters in (17) at level 2, provided 
there are enough data points within individuals. 
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Exercise nine 

► Fitting a three-level proportional hazard model  

Step 1: Click to delete the term ‘zero’ in the equation  

Step 2: Tick the term ‘cons’ in the parish and household level boxes 

Step 3: Choose MQL1 procedure for the nonlinear specification 

Step 4: Click Start button to run the model till converge 

Estimates of the main effects of the three covariates in Table 6 are rather similar to the 
single level estimates, due to low variance between parishes and between households. 

Table 6 Parameter estimates (SE) of the proportional hazards model (17) 
Variable 

 
(1) 

Parameter 
 

(2) 

MLwiN 3- 
level with 
offset (3) 

MLwiN single 
level without 
offset (4) 

MLwiN 
single level 
with offset (5) 

SPSS Cox 
model 

(6) 
Intercept β0  -9.442 (0.021) -3.308 (0.019) -9.441 (0.019)  

Log( t ) k α 1  4.535 (0.318) 5.468 (0.315) 4.532 (0.319)  

Log( t )^2 k α 2  5.373 (2.297) -10.74 (2.244) 5.373 (2.297)  

Log( t )^3 k α 3  -39.36 (27.20) 303.76 (25.88) -39.38 (27.21)  

Log( t )^4 k α 4  682.5 (107.5) -997.26 (102.2) 682.33 (107.5)  

Male β1  0.608 (0.020) 0.609 (0.020) 0.609 (0.020) 0.609 
(0.020) 

FamilySize β 2  0.012 (0.010) 0.013 (0.010) 0.013 (0.010) 0.013 
(0.010) 

L_income β 3  -0.184 (0.018) -0.188 (0.017) -0.188 (0.017) -0.187 
(0.017) 

L_income^2 β 4  -0.021 (0.003) -0.021 (0.003) -0.021 (0.003) -0.021 
(0.003) 

Parish var. σ 2v  .0007 (0.0007) N/a N/a N/a 

Household 
var. 

σ 2u  0.0000 N/a N/a N/a 

Individual var.  Poisson 
constrained 

Poisson 
constrained 

Poisson 
constrained 

 

 

The sign of the main effects in the proportional hazard model is opposite to those in 
the accelerated-lifetime model because in the PH model the hazard is the outcome, 
whilst the outcome in the AL model is the survival time. 

However, fitting the AL model in Section 4 we found significant random effects 
between households but not in the PH model. This could be due to the MQL1 
estimation procedure that underestimates parameters, and PQL procedure did not 
converge on the data. Another possible reason could be that most households 
consisted of single member and the variation of those households would be pulled 
down at the individual level and constrained to be one. In fitting extra-Poisson 
variation model a sizable household variation was returned. 
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5.3 Calculating the survival function  

According to equation (12) and based on the polynomial function fitted, the baseline 
hazard function at time g is approximated by  

)(ˆ
0 gth =exp( ). ∑

=

+
4

1
0 )(logˆˆ

p
g

p
p tαβ

The baseline survival function at time g is 

)](ˆexp[)(ˆ
00 gg thtS −= . 

The estimated survivor function for the i  individual given th x  value is 
)ˆexp(

0
)]([)( ˆˆ ix

ggi
tt SS

β=   (18) 

Cumulating  to the end of time gives cumulative hazard function , thus 
the overall survivor function of baseline is estimated as 

)(ˆ
0 gth )(ˆ

0 tH

)](ˆexp[)(ˆ
00 tHtS −=  

In the next exercise, we calculate the survivor function using equation (18) for males 
and females based on the three level model presented in Table 6 above. 

Exercise ten 

► Calculating survivor function of the Cox model  

Step 1: Open a New macro window and type in the following 
commands; 
Sort ‘rs-time’ ’failure’  ‘logt’ ‘logt2’ ‘logt3’ ‘logt4’ C22-C27 
Take C22-C27 C22-C27 
Calc C28=expo(-9.44+4.535*C24+5.373*C25-39.4*C26+682.5*C27) 
Calc C28=C28*C23 
Cumu C28 C29 
Calc C30=expo(-C29) 
Calc C31=C30^expo(0.608) 
Name C22 ‘t’ C30 ‘sf-female’ C31 ‘sf-male’ 

Step 2: Click Execute button to run the macro 
Step 3: View the columns C22 C30-C31 to find the median life  
            expectancy in year for female and male. 

The results in C22 C30 and C31 show that the median life expectancy is just over 84 
years for females and just over 79 years for males. We can also plot the graph that 
looks very similar to Figure 4 of the log-duration model estimates. 

In the three-level model (17) where random effects of the intercept β 0  are allowed 
among parishes and households, we can calculate a survival function for each parish 
or each household within a parish. For example, we include residual estimates of 
parish  in the  function to calculate survivor functions of parishes, and kv0ˆ )(0 th
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include  in the hazard function for the survivor function of households 
within parishes.  

jkk uv 00 ˆˆ +

Exercise 11 leads to calculation of the parish survivor function graphed in Figure 5, 
based on the three-level model. 

Exercise eleven 

► Calculating parish survivor functions of a three-level Cox model  

Step 1: Sort data on three columns in the order of ‘parish’, ‘rs-time’ 
and ‘household’, and carrying on the rest data, and put them 
all back to the same columns, using the Sort window. 

Step 2: Predict including level 3 residuals using the Prediction 
window as shown below and the results are stored in C23 

)(0 th

 
Step 3: Open a New macro window and type in the following 

commands.  

Calc C24=expo(C23+'offs') 
Take 'rs-time' 'parish' C24 C25 C26 C27 
Mlcu C26 C27 C28 
Calc C29=expo(-C28) 

Step 4: Plot line graph between C29 (y) and C25 (age in year) by C26 
(parish) using Graphs window to get Figure 5. 

 

Figure 5 Estimated survivor function for parish from the three-level proportional 
hazard model 
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Showing no difference of lifespan between 21 parishes, this result is the same as what 
is estimated by the log-duration model. 

The more general case allowing random effects of other covariates can be 
incorporated readily.  

5.4 Residual analysis 

In the single level survival analysis, it is of interest to know what distribution the 
survival function could be by graphically inspecting the relationship between the 
estimated survival probability  and the cumulative hazard rate given the value 
of x. Typically the Cox-Snell residuals for individuals could be calculated as 

 in checking for the proportionality in the Cox model.  In multilevel 
models aspect, the analysis of residuals at higher levels is similar to Poisson 
multilevel model analysis, using windows tools for residuals and graphs. 

)|(ˆ xtS j

)(ˆ)ˆexp( 0 ii tHXβ

5.5 Checking the assumption of proportional hazards 

Fitting Models (16) and (17), we assumed that the effects of covariates are 
independent of the time variable . This means that the relative hazard for the i  
subject is proportional in relation to any change of the covariates, 
i.e. .  In the case where the effect of a covariate 

t th

ethth iX
i

β=)(/)( 0 x  may depend on 
time , the proportionality of hazards no longer holds. We can check for this in a 
number of ways. 

t

1) Checking the relative hazards 

We can simply introduce a time-dependent variable by creating an interaction 
term between the variable of interest and the log(t) term, and treat it the same 
as other time-independent variables. Consider a two-level model with one 
covariate, 

))log(()(log...)log() 21100( txxtt ijij
p

pjij uy ×+++++= ββααβ         (19) 

The parameter estimate  reflects the non-proportionality of the relative 
hazard in relation to . If 

β̂ 2

ijx x  is a binary variable, we can easily plot the 

relative hazard functions of  and  against the log time  for =0 
and =1.  

e 0β e t )log(21 ββ +
ijx

ijx

2) Checking the baseline hazards 

As we have specified the form to approximate the entire baseline hazard 
function, we could directly interact  with the baseline hazard function, i.e, 

. The baseline functions  for =0 and e  for 

=1 can be plotted against each other. 

ijx
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3) Allowing random effects of time-dependent variable in continuous scale. 

The non-proportionality in relation to a time-dependent variable implies that the 
effect of the variable on the hazard rate is no longer a constant but varying over 
time. We may consider fitting random effects of this variable among time blocks 
in the expanded data structure. In doing this we may treat the survival time blocks 
as units a level above individuals, and sort the data by levels accordingly.  

6. Discrete-time hazard models 
In fitting proportional hazard models illustrated above, the data are restructured in 
time intervals corresponding to times when events occur. However, in many cases 
including the life expectancy study we can divide time span into predetermined 
intervals, for example, 20~29 years, 30~39 years,…., 90~99 years, and restructure the 
data around each time interval. 

Consider the same example of (2, 5, 10*, 11, 30*) used in Table 5, we may set 3 time 
intervals: 0~9, 10~19, 20~29 and 30_39 denoted by , ,  and . The data can 
be expanded as follows: 

1I 2I 3I 4I

Time interval 
g 

Individual 
i 

Response 

gid  
Indicator 

1I  
Indicator 

2I  
Indicator 

3I  
Indicator 

4I  

1 
1 
1 
1 
1 

1 
2 
3 
4 
5 

1 
1 
0 
0 
0 

1 
1 
1 
1 
1 

0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

2 
2 
2 

3 
4 
5 

0 
1 
0 

0 
0 
0 

1 
1 
1 

0 
0 
0 

0 
0 
0 

3 5 0 0 0 1 0 
4 5 0 0 0 0 1 

In each time interval the response has a code 1 if an individual died in the time period, 
and 0 otherwise. Thus the probability that an individual dies in the current period, 
given that they survived from the last period is 

)0|1( )1( === − iggigi ddPπ . 

A discrete-time model, assuming a piecewise constant baseline hazard can be written 
as a standard logistic model 
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where  are covariates and  are indicators for the time intervals shown in the 
table above. In some cases many more time intervals could be presented, and the first 
term in (20) can take the form of a continuous polynomial function (Goldstein, Pan 
and Bynner, 2002). Model (20) can be fitted using any package that fits standard 
logistic model, and readily extended to two or three level models by adding in random 

iX pI
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effects in (20) allowing for variation between higher-level units. The Equations 
window in MLwiN can be used to specify and fit the model straightforwardly. The 
baseline hazard function of the time interval g is the exponential function of (20) with 

 is zero. The calculation of cumulative hazard and survivor functions is the same 
illustrated in Section 5.2 in the manual. 

iX

Applications of the model were presented by Goldstein et al. (2002), Goldstein (2003) 
and Steele et al. (1996). The extensions of the discrete event time model for 
competing risks and multistate competing risks can be found in Steele, et al (1996b) 
and Steele, et al. (2002). 
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