### A programme to obtain the power of parameters in 2 level # balanced model with Binary response # generated on 28/07/23 ###~~~~~~~~~~~~~~~~~ Required packages ~~~~~~~~~~~~~~~~~~~~~### library(MASS) library(lme4) ###~~~~~~~~~~~~~~~~~~~ Initial inputs ~~~~~~~~~~~~~~~~~~~~### set.seed(1) siglevel <- 0.025 z1score <- abs(qnorm(siglevel)) simus <- 1000 n1low <- 10 n1high <- 10 n1step <- 1 n2low <- 10 n2high <- 50 n2step <- 5 npred <- 0 randsize <- 1 beta <- c(-0.405500) betasize <- length(beta) effectbeta <- abs(beta) randcolumn <- 0 sigma2u <- matrix(c(0.250000), randsize, randsize) n1range <- seq(n1low, n1high, n1step) n2range <-seq(n2low, n2high, n2step) n1size <- length(n1range) n2size <- length(n2range) totalsize <- n1size*n2size finaloutput <- matrix(0, totalsize, 6*betasize) rowcount <- 1 ##----------------- Inputs for model fitting -----------------## fixname <- "x0" fixform <- "1" randform <- "(1|l2id)" expression <- paste(c(fixform, randform), collapse="+") modelformula <- formula(paste("y ~", expression)) data <- vector("list", 2+length(fixname)) names(data) <- c("l2id", "y", fixname) #####--------- Initial input for power in two approaches ----------------##### powaprox <- vector("list", betasize) names(powaprox) <- "b0" powsde <- powaprox cat(" The programme was executed at", date(),"\n") cat("--------------------------------------------------------------------\n") for (n2 in seq(n2low, n2high, n2step)) { for (n1 in seq(n1low, n1high, n1step)) { length <- n1*n2 x <- matrix(1, length, betasize) z <- matrix(1, length, randsize) l2id <- rep(c(1:n2), each=n1) sdepower <- matrix(0, betasize, simus) powaprox[1:betasize] <- rep(0,betasize) powsde <- powaprox cat(" Start of simulation for sample sizes of ", n1, " micro and ", n2, "macro units\n") for (iter in 1:simus) { if (iter/10 == floor(iter/10)) { cat(" Iteration remain=", simus-iter,"\n") } ##--------------------------------------------------------------## u <- mvrnorm(n2, rep(0, randsize), sigma2u) fixpart <- x * beta randpart <- rowSums(z*u[l2id, ]) binomprob <- exp(fixpart+randpart)/(1+exp(fixpart+randpart)) y <- rbinom(length, 1, binomprob) ##------------------- Inputs for model fitting ---------------## data$l2id <- l2id data$y <- y data$x0 <- x ###~~~~~~~~~~ Fitting the model using lmer funtion ~~~~~~~~~~### (fitmodel <- glmer(modelformula, data, family=binomial(link="logit"), nAGQ="0")) ######~~~~~~~~~~ To obtain the power of parameter(s) ~~~~~~~~~~###### estbeta <- fixef(fitmodel) sgnbeta <- sign(estbeta) sdebeta <- sqrt(diag(vcov(fitmodel))) for (l in 1:betasize) { cibeta <- estbeta[l]-sgnbeta[l]*z1score*sdebeta[l] if (estbeta[l]*cibeta > 0) powaprox[[l]] <- powaprox[[l]]+1 sdepower[l, iter] <- sdebeta[l] } ##-------------------------------------------------------------------------## } ## iteration end here ###--------- Powers and their CIs ---------### for (l in 1:betasize) { meanaprox <- powaprox[[l]]/simus Laprox <- meanaprox-z1score*sqrt(meanaprox*(1-meanaprox)/simus) Uaprox <- meanaprox+z1score*sqrt(meanaprox*(1-meanaprox)/simus) meansde <- mean(sdepower[l,]) varsde <- var(sdepower[l,]) USDE <- meansde-z1score*sqrt(varsde/simus) LSDE <- meansde+z1score*sqrt(varsde/simus) powLSDE <- pnorm(effectbeta[l]/LSDE-z1score) powUSDE <- pnorm(effectbeta[l]/USDE-z1score) powsde[[l]] <- pnorm(effectbeta[l]/meansde-z1score) ###--------- Restrict the CIs within 0 and 1 ---------## if (Laprox < 0) Laprox <- 0 if (Uaprox > 1) Uaprox <- 1 if (powLSDE < 0) powLSDE <- 0 if (powUSDE > 1) powUSDE <- 1 finaloutput[rowcount, (6*l-5):(6*l-3)] <- c(Laprox, meanaprox, Uaprox) finaloutput[rowcount, (6*l-2):(6*l)] <- c(powLSDE, powsde[[l]], powUSDE) } ###~~~~~~~~~~ Set out the results in a data frame ~~~~~~~~~~### rowcount <- rowcount+1 cat("--------------------------------------------------------------------\n") } ## end of the loop over the first level } ## end of the loop over the second level ###--------- Export output in a file ---------### finaloutput <- as.data.frame(round(finaloutput, 3)) output <- data.frame(cbind(rep(n2range, each=n1size), rep(n1range, n2size), finaloutput)) names(output) <- c("N", "n", "zLb0", "zpb0", "zUb0", "sLb0", "spb0", "sUb0") write.table(output, "powerout.txt", sep="\t ", quote=FALSE, eol="\n", dec=".", col.names=TRUE, row.names=FALSE, qmethod="double")