
Measuring ethnic segregation:
a model based approach



Approaches to measuring segregation

In the past, people have calculated indexes directly from data
Discussion has been about what index to use

what properties should an index have?
Recently an alternative approach has been developed:
modelling.

Note: after modelling, option to calculate index of choice from
results

We use this approach here

Examples of indexes

Dissimilarity (D)

Gini

Gorard

Cowgill

Non-white Ghetto

Reproducibility



Problems with index-only approach

Problems

Not based on the
assumption of an underlying
process: assumes observed
values are the true values

If we do assume an
underlying process, there is
random variability of the
observed values around this

This means when there is no
actual segregation, expected
value of any index 6= 0: it is
a function of the total
number in each school and
the total proportion in each
category

Limitations

Difficult or impossible to:

include explanatory variables
(esp. at school or individual
level)

measure segregation
simultaneously at multiple
levels (e.g. school and LEA
or school and
neighbourhood)

handle multiple categories
(e.g. when measuring ethnic
segregation)



The modelling approach

nonwhiteijk ∼ Bin(totalijk , πijk)

logit(πijk) = β0jk

β0jk = β0 + vk + ujk

vk ∼ N(0, σ2
v )

ujk ∼ N(0, σ2
u)

Var(nonwhiteijk |πijk) = πijk(1− πijk)/totalijk

Levels
1 (i): cohort

2 (j): school

3 (k): LEA

We use σ2
u (variation in underlying proportions on the logit

scale) to measure segregation at school level
A lot of variation in proportion non-White ⇒ high segregation
Little variation in proportion non-White ⇒ low segregation

We use σ2
v to measure segregation at the LEA level

The random LEA effect allows for different proportions
nonwhite in different LEAs
If we had few LEAs we could use LEA fixed effects instead (we
would not then get a parameter to measure LEA segregation)

Example: Goldstein & Noden (2003)



How does this avoid the problems?

Index only approach

Not based on the
assumption of an underlying
process: assumes observed
values are the true values

If we do assume an
underlying process, there is
random variability of the
observed values around this

This means when there is no
actual segregation, expected
value of any index 6= 0: it is
a function of the total
number in each school and
the total proportion in each
category

Model approach

Model allows for binomial
variability of observed value
around true value uj . Can
get standard error for
estimates. So allows
inferences

σ2
u no longer a function of

the total number in each
school



Modelling and segregation curves

σ2
u no longer a function of the total number in each school

because modelling regards the schools as the units of analysis
Here it differs from segregation curves
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Extensions to the model

Original model
nonwhiteijk ∼ Bin(totalijk , πijk )

logit(πijk ) = β0jk

β0jk = β0 + vk + ujk

vk ∼ N(0, σ2
v )

ujk ∼ N(0, σ2
u)

Var(nonwhiteijk |πijk ) = πijk (1− πijk )/totalijk

Adding response categories
proportionijkl ∼ Multinomial(totaljkl , πijkl )

log(π2jkl/π1jkl ) = β0kl

log(π3jkl/π1jkl )= β1kl

β0kl = β0 + f0l + v0kl

β1kl = β1 + f1l + v1kl[
f0l
f1l

]
∼ N(0,Ωf ), Ωf =

[
σ2

f 0
σf 01 σ2

f 1

]
[
v0kl
v1kl

]
∼ N(0,Ωv ), Ωv =

[
σ2

v0
σv01 σ2

v1

]

Cov(ysjkl , yrjkl ) =

 −πsjklπrjkl/totaljkl s 6= r

πsjkl (1− πsjkl )/totaljkl s = r

Adding time
nonwhiteijk ∼ Bin(totalijk , πijk )

logit(πijk ) = β0jk + β1jk cohortijk

β0jk = β0 + v0k + u0jk

β1jk = β1 + v1k + u1jk[
v0k
v1k

]
∼ N(0,Ωv ), Ωv =

[
σ2

v0
σv01 σ2

v1

]
[
u0jk
u1jk

]
∼ N(0,Ωu), Ωu =

[
σ2

u0
σu01 σ2

u1

]
Var(nonwhiteijk |πijk ) = πijk (1− πijk )/totalijk

Adding other covariates
nonwhiteijk ∼ Bin(totalijk , πijk )

logit(πijk ) = β0jk + β1jk xijk

β0jk = β0 + v0k + u0jk

β1jk = β1 + v1k + u1jk[
v0k
v1k

]
∼ N(0,Ωv ), Ωv =

[
σ2

v0
σv01 σ2

v1

]
[
u0jk
u1jk

]
∼ N(0,Ωu), Ωu =

[
σ2

u0
σu01 σ2

u1

]
Var(nonwhiteijk |πijk ) = πijk (1− πijk )/totalijk



Ethnic segregation in schools

We now present some preliminary results from analyses using the
model based approach

We used PLASC/ NPD data for 2002 to 2008
We looked at segregation by ethnicity over time
Ethnicity measured using three categories for simplicity
(White, Black, Asian)

Asian includes Chinese
All other ethnicities dropped from data

Response is proportion in each ethnic category in the cohort
entering the school each year (not proportion in the whole
school)
Looking at secondary schools (so each cohort is age 11)
Include schools in England only; the subset of the schools
DCSF draws up league tables for which have min intake age
11
Drop cohorts with very few students or big change in
proportions (> 25 percentage points)



Sample description

Number of units

146 LEAs
3,176 schools
3,552,319 pupils

Schools and LEAs

Mean number of schools per LEA is 22;
maximum 103
minimum 1

Cohorts

Mean cohort size is 170; maximum 705, minimum 15

Some schools don’t have all cohorts 2002-2008

Some schools have cohorts entirely of one ethnicity

Percentages of total sample

Non FSM Total

White 76 13 89

Black 3 1 4

Asian 5 2 7

Total 84 16 100

Proportion in each cohort

Min Mean Max

White 0 0.88 1

Black 0 0.05 1

Asian 0 0.08 1

FSM 0 0.17 0.97



Results

proportionijkl ∼ Multinomial(totaljkl , πijkl )

log(π2jkl/π1jkl ) = β0kl + β2kl (cohort-2002)jkl

log(π3jkl/π1jkl ) = β1kl + β3kl (cohort-2002)jkl

β0kl = −4.573(0.161) + f0l + v0kl

β1kl = −3.815(0.027) + f1l + v1kl

β2kl = 0.081(0.007) + f2l + v2kl

β3kl = 0.103(0.004) + f3l + v3kl
f0l
f1l
f2l
f3l

 ∼ N(0,Ωf ), Ωf =


5.161(0.635)
3.380(0.452) 2.946(0.372)
−0.005(0.017) 0.017(0.013) 0.005(0.001)
−0.012(0.008) −0.008(0.006) 0.000(0.000) 0.001(0.000)




v0kl
v1kl
v2kl
v3kl

 ∼ N(0,Ωv ), Ωv =


1.244(0.044)
0.976(0.041) 2.037(0.061)
−0.022(0.004) −0.004(0.005) 0.010(0.001)
−0.006(0.003) −0.032(0.004) 0.004(0.000) 0.007(0.000)



Cov(ysjkl , yrjkl ) =

 −πsjklπrjkl/totaljkl s 6= r

πsjkl (1− πsjkl )/totaljkl s = r



Segregation over time
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Modelling segregation by ethnicity and FSM

Long version
proportionijkl ∼ Multinomial(totaljkl , πijkl )

log(π1jkl/π0jkl ) = β0kl

log(π2jkl/π0jkl ) = β1kl

log(π3jkl/π0jkl ) = β2kl

log(π4jkl/π0jkl ) = β0kl + β2kl

log(π5jkl/π0jkl ) = β1kl + β2kl

β0kl = β0 + f0l + v0kl

β1kl = β1 + f1l + v1kl

β2kl = β2 + f2l + v2klf0l
f1l
f2l

 ∼ N(0,Ωf ), Ωf =

 σ2
f 0

σf 01 σ2
f 1

σf 02 σf 12 σ2
f 2


v0kl

v1kl
v2l

 ∼ N(0,Ωv ), Ωv =

 σ2
v0

σv01 σ2
v1

σv02 σv12 σ2
v2


Cov(ysjkl , yrjkl ) =

 −πsjklπrjkl/totaljkl s 6= r

πsjkl (1− πsjkl )/totaljkl s = r

Condensed version
proportionijkl ∼ Multinomial(totaljk , πijkl )

log(πijkl/πijkl ) = β0klBlack(i) + β1klAsian(i) + β2klFSM(i)

β0kl = β0 + f0l + v0kl

β1kl = β1 + f1l + v1kl

β2kl = β2 + f2l + v2klf0l
f1l
f2l

 ∼ N(0,Ωf ), Ωf =

 σ2
f 0

σf 01 σ2
f 1

σf 02 σf 12 σ2
f 2


v0kl

v1kl
v2l

 ∼ N(0,Ωv ), Ωv =

 σ2
v0

σv01 σ2
v1

σv02 σv12 σ2
v2


Cov(ysjkl , yrjkl ) =

 −πsjklπrjkl/totaljkl s 6= r

πsjkl (1− πsjkl )/totaljkl s = r

where Black(i) = 1 for response categories
BlackNonFSM and BlackFSM and 0 for the
other categories and similarly for Asian(i) and
FSM(i)

We have exactly the same pattern of coefficients for time
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 −πsjklπrjkl/totaljkl s 6= r

πsjkl (1− πsjkl )/totaljkl s = r

Condensed version
proportionijkl ∼ Multinomial(totaljk , πijkl )

log(πijkl/πijkl ) = β0klBlacki + β1klAsiani + β2klFSMi

+ β5klBlack.cohorti + β6klAsian.cohorti

+ β7klFSM.cohorti

where Black(i) = 1 for response categories
BlackNonFSM and BlackFSM and 0 for the
other categories and similarly for Asian(i) and
FSM(i)

We have exactly the same pattern of coefficients for time
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Further work to be done

Check appropriateness of model

Check assumption that there are no interaction effects
between ethnicity and FSM status

Is it problematic that some schools never have any students in
some response categories?

Should we be fitting time (cohort) as a polynomial?

Check results sensible

Check have run MCMC long enough

Check predicted confidence intervals for proportions

Check robustness

Compare results to models fitted to each cohort separately

Compare results to model fitted to selected LEAs

Check sensitivity of results to definition of ethnic categories
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Including time

nonwhiteijk ∼ Bin(totalijk , πijk )

logit(πijk ) = β0jk + β1jk cohortijk

β0jk = β0 + v0k + u0jk

β1jk = β1 + v1k + u1jk[
v0k
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]
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Var(nonwhiteijk |πijk ) = πijk (1− πijk )/totalijk
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Cohort was already specified as a level
We add cohort as an explanatory variable, including

a fixed effect (lets the overall proportion change with time)
a random effect at the LEA level (allows changing segregation)
a random effect at the school level (allows changing
segregation)

Other options are to put in a polynomial or set of dummies
Can mix and match e.g. dummies in fixed part but linear in
random part
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Including other covariates

nonwhiteijk ∼ Bin(totalijk , πijk )

logit(πijk ) = β0jk + β1jk xijk

β0jk = β0 + v0k + u0jk

β1jk = β1 + v1k + u1jk[
v0k
v1k

]
∼ N(0,Ωv ), Ωv =

[
σ2

v0
σv01 σ2

v1

]
[
u0jk
u1jk

]
∼ N(0,Ωu), Ωu =

[
σ2

u0
σu01 σ2

u1

]
Var(nonwhiteijk |πijk ) = πijk (1− πijk )/totalijk

Exactly same form as model
adding time

Can add covariates at
individual, cohort, school or
LEA level

Covariates can be
continuous or categorical

Examples

Is there more school segregation in LEAs with greater levels of
deprivation? → add IMD or IDACI

Is the segregation such that the more ethnically diverse
schools are also the poorer quality schools? → include
measure of school quality

How much segregation remains after controlling for differences
in intake ability of pupils? → add pupils’ prior achievement



Extending to more response categories

proportionijkl ∼ Multinomial(totaljkl , πijkl )

log(π2jkl/π1jkl ) = β0kl

log(π3jkl/π1jkl )= β1kl

β0kl = β0 + f0l + v0kl

β1kl = β1 + f1l + v1kl[
f0l
f1l

]
∼ N(0,Ωf ), Ωf =

[
σ2

f 0
σf 01 σ2

f 1

]
[
v0kl
v1kl

]
∼ N(0,Ωv ), Ωv =

[
σ2

v0
σv01 σ2

v1

]

Cov(ysjkl , yrjkl ) =

 −πsjklπrjkl/totaljkl s 6= r

πsjkl (1− πsjkl )/totaljkl s = r

We add response categories
by moving to a multinomial
model

Each category has a separate
intercept and a separate
variance

So we have a separate
measure of segregation for
each category

Our segregation measures are now the variances of the log
odds for the respective categories
We pick a reference category: we are measuring segregation of
the other categories from this category
We also estimate covariances between the log odds for each
pair of categories
(In theory,) can have as many response categories as we want



Testing assumptions

No interaction effects

Full (saturated) model is

log(πijkl/πijkl ) = β0klBlacki + β1klAsiani + β2klFSMi

+ β3klBlack.FSMi + β4klAsian.FSMi

+ β5klBlack.cohorti + β6klAsian.cohorti + β7klFSM.cohorti

+ β8klBlack.FSM.cohorti + β9klAsian.FSM.cohorti

Need to check all the extra fixed and random effects in this model
are not important

Schools with zero proportions

If school k in LEA l never has any students who fall into response
category i , then for all cohorts j

πijkl = 0

⇒ log(πijkl/π0jkl) = log(0) = −∞

Therefore perhaps we need to fit a mixture model.


