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Introduction 
 
In Module 6 we saw how multiple regression models for continuous responses can be 
generalised to handle binary responses. At the end of the module (C6.8), we then 
considered models for grouped or clustered binary data where the response variable 
is a proportion and the explanatory variables are defined at the group level. The 
application of these models was illustrated in an analysis of the proportion of voters 
in each state intending to vote for George Bush, including as predictors the 
proportion of non-white respondents in a state and the proportion who reported 
regular attendance at religious services.  
 
A particular issue in the analysis of proportions is the presence of extrabinomial 
variation, caused by a violation of the assumption that the binary responses on which 
a proportion is based are independent. It was suggested in Module 6 that one way to 
allow for clustering (non-independence) due to omitted group-level predictors is to 
fit a multilevel model with group-level random effects. We pursue this approach 
here, but our focus is on showing how multilevel models can be applied more 
generally to two-level binary response data with predictors that can be defined at 
both level 1 and level 2. 
 
Some examples of research questions that can be explored through multilevel 
models for binary responses are: 
 

• What is the extent of between-state variation in US voting preferences 
(Republican vs. Democrat)?  Can between-state differences in voting be 
explained by differences in the ethnic or religious composition of states?  Do 
individual-level variables such as age and gender have different effects in 
different states? 

 

• Does the use of dental health services (e.g. whether a person visited a dentist in 
the last year) vary across areas?  To what extent are any differences between 
areas attributable to between-area differences in the provision of subsidised 
services or differences in the demographic and socio-economic composition of 
residents? 

 
In both of the above examples, the study populations have a two-level hierarchical 
structure with individuals at level 1 and areas at level 2, but structures can have 
more than two levels and may be non-hierarchical (see Module 4). In this module, 
as in Module 5 for continuous responses, we consider only models for two-level 
hierarchical structures. 
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The aim of this module is to bring together multilevel models for continuous 
responses (Module 5) and single-level models for binary responses (Module 6). We 
shall see that many of the extensions to the basic multilevel model introduced in 
Module 5 – for example random slopes and contextual effects – apply also to binary 
responses. However, there are some important new issues to consider in the 
interpretation and estimation of multilevel binary response models.  
 

Introduction to the Example Dataset 
 
We will illustrate methods for analysing binary responses using data from the 2004 
National Annenberg Election Study (NAES04), a US survey designed to track the 
dynamics of public opinion over the 2004 presidential campaign. See 
http://www.annenbergpublicpolicycenter.org for further details of the NAES. 
 
In this module (as in Module 6) we analyse data from the National Rolling Cross-
Section of NAES04. The response variable for our analysis is based on voting 
intentions in the 2004 general election (variable cRC03), which was asked of 
respondents interviewed between 7 October 2003 and 27 January 2004. The question 
was worded as follows: 
 

• Thinking about the general election for president in November 2004, if that 
election were held today, would you vote for George W. Bush or the Democratic 
candidate?  

 
The response options were: Bush, Democrat, Other, Would not vote, or Depends. A 
small number of respondents reported that they did not know or refused to answer 
the question. Don’t knows and refusals were excluded from the analysis, and the 
remaining categories were combined to obtain a binary variable coded 1 for Bush 
and 0 otherwise.  
 
In Module 6 we analysed data from three states. We now extend the analysis sample 
to include all 49 states in the study, containing a total of 14,169 respondents.  
 
We consider six individual-level explanatory variables: 
 

• Annual household income, grouped into nine categories (1 = less than $10k, 2 
= $10-15K, 3 = $15-25K, 4 = $25-35K, 5 = $35-50K, 6 = $50-75K, 7 = $75-100K, 
8 = $100-150K, 9 = $150k or more). This variable is treated as continuous in 
all analyses and is centred around its sample mean of 5.23 

 

• Sex (0 = male,1 = female) 
 

• Age in years (mean centred) 
 

• Type of region of residence (0 = rural, 1 = urban) 
 

• Marital status (1 = currently married or cohabiting, 2 = widowed or divorced, 
3 = not currently living with a partner and never married) 
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• Frequency of attendance at religious services (0 = less than weekly or never, 
1 = weekly or more) 

 
and one state-level explanatory variable, calculated by aggregating an individual-
level variable giving the frequency of attendance at religious services: 
 

• Proportion of respondents who attend religious services at least once a week 
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C7.1 Two-level Random Intercept Model for Binary 
Responses 

 

C7.1.1 Generalised linear random intercept model 
 
Consider a two-level structure where a total of n individuals (at level 1) are nested 
within J groups (at level 2) with nj individuals in group j. Throughout this module we 
use ‘group’ as a general term for any level 2 unit, e.g. an area or a school. We 
denote by yij the response for individual i in group j, and by xij an individual-level 
explanatory variable. Recall from C5.2, equation (5.4), the random intercept model 
for continuous y: 
 
𝑦ij = β0 + β1xij + uj + eij  (7.1) 

 
where the group effects or level 2 residuals uj and the level 1 residuals eij are 
assumed to be independent and to follow normal distributions with zero means:  
 

uj~N(0, σu
2) and eij~N(0, σe

2). 

 
We can also express the model in terms of the mean or expected value of yij for an 
individual in group j and with value xij on x: 
 
E(yij|xij, uj) = β0 + β1xij + uj. (7.2) 

 
For a binary response yij, we have E(yij|xij, uj) = πij = Pr(yij = 1) and a generalised 
linear random intercept model for the dependency of the response probability πij on 
xij is written: 
 

F−1(πij) = β0 + β1xij + uj  (7.3) 

 
where F-1(“F inverse”) is the link function, taken to be the inverse cumulative 
distribution function of a known distribution (see C6.3.1). In Module 6, we 
considered three link functions: the logit, probit and complementary log-log (clog-
log) functions. Here we will focus on the logit link, with some discussion of the 
probit, but everything we say for the logit applies equally to the other link functions.  
 
The key point to note about (7.3) is that, although the left hand side is a nonlinear 
transformation of πij, the right hand side takes the same form as that of (7.2) for 
continuous y, i.e. it is linear in terms of the parameters β0 and β1 and the level 2 
residuals uj. Therefore this simple random intercept model for binary y can be 
extended in the same ways that we considered in Module 5 for continuous y, 
including the addition of further explanatory variables defined at level 1 or 2, cross-
level interactions, and random slopes (coefficients). 
 

C7.1.2 Random intercept logit model 
 
In a logit model F-1(πij) is the log-odds that y = 1 (see C6.3.2), so (7.3) becomes 
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log (
πij

1−πij
) = β0 + β1xij + uj (7.4) 

 

where uj~N(0, σu
2). 

 
Interpretation of 𝜷𝟎 and 𝜷𝟏 
 
β0 is interpreted as the log-odds that y = 1 when x = 0 and u = 0 and is referred to 
as the overall intercept in the linear relationship between the log-odds and x. If we 
take the exponential of β0, exp(β0), we obtain the odds that y = 1 for x = 0 and u = 
0. 
 
As in the single-level model, β1 is the effect of a 1-unit change in x on the log-odds 
that y = 1, but it is now the effect of x after adjusting for (or holding constant) the 
group effect u. If we are holding u constant, then we are looking at the effect of x 
for individuals within the same group so β1 is usually referred to as a cluster-specific 
effect. In C7.3 we will compare this cluster-specific effect with the effect of x 
averaging across groups (the population-average effect). These effects are equal for 
a multilevel continuous response model, so that in Module 5 we made no distinction 
between them, but they will not be equal for a generalised linear multilevel model 

(unless σu
2 = 0). 

 
As in a single-level logit model, exp(β1) can be interpreted as an odds ratio, 
comparing the odds that y = 1 for two individuals (in the same group) with x-values 
spaced 1 unit apart. 
 
Interpretation of uj 
 

While β0 is the overall intercept in the linear relationship between the log-odds and 
x, the intercept for a given group j is β0 + uj which will be higher or lower than the 

overall intercept depending on whether uj is greater or less than zero. As in the 
continuous response case, we refer to uj as the group (random) effect, group 
residual, or level 2 residual. The variance of the intercepts across groups is var(uj) =

σu
2, which is referred to as the between-group variance adjusted for x, the between-

group residual variance, or simply the level 2 residual variance. (Quite often 
‘residual’ is omitted and we say ‘level 2 variance’, but remember that if the model 

contains explanatory variables then σu
2 is always the unexplained level 2 variance.) 

 
We can obtain estimates of uj that can be plotted with confidence intervals to see 
which groups are significantly below or above the average of zero (a caterpillar plot). 
These estimates are interpreted in the same way as for continuous response models 
(see C5.1.2 and C5.2.2); the only difference is that in a logit model they represent 
group effects on the log-odds scale.  
 
In analysing multilevel data, we are often interested in the amount of variation that 
can be attributed to the different levels in the data structure and the extent to 
which variation at a given level can be explained by explanatory variables. In Module 
5 (C5.1.1) we met the variance partition coefficient which measures the proportion 
of the total variance that is due to differences between groups. There is no unique 
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