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All of the sections within this module have online quizzes for you to 
test your understanding. To find the quizzes: 
 

 
From within the LEMMA learning environment 

• Go down to the section for Module 6: Regression Models for Binary 

Responses Concepts 

Click "6.1 Preliminaries: Mean and Variance of Binary Data" 
to open Lesson 6.1 

• Click Q1 to open the first question 
 

 
Most of the sections within this module have practicals so you can 
learn how to perform this kind of analysis in MLwiN or other 
software packages. To find the practicals: 
 
 
From within the LEMMA learning environment 

• Go down to the section for Module 6: Regression Models for Binary 

Responses Concepts 
Then either 

• Click "6.1 Preliminaries: Mean and Variance of Binary Data" to open Lesson 
6.1 

• Click MLwiN Practical 
Or 

• Click Print all Module 6 MLwiN Practicals 
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Introduction 
 
In Module 3 we considered multiple linear regression models for the relationship 
between a continuous response variable (y) and a set of explanatory variables (x) 
which may be continuous or categorical. In this and the next few modules, we 
consider regression models for categorical response variables. 
 
We will consider models for two types of categorical variable (see C1.3.8 for a 
classification scheme for variables):  
 

• Nominal, where the numeric codes assigned to categories are simply labels (e.g. 
sex, ethnicity) 

 

• Ordinal, where the numeric codes imply some ordering (e.g. strength of 
agreement with a statement in a questionnaire with categories ranging from 
‘strongly agree’ to ‘strongly disagree’) 

 
In many subject areas, but especially in the social sciences, categorical responses 
are more common than continuous responses. In this module, we consider models 
for a particular type of categorical response – binary or dichotomous responses, that 
is variables with only two categories. Examples include: 
 

• Voting intentions in two-party systems, e.g. Republican vs. Democrat in the US 
 

• Exam performance where only a pass or fail is recorded, e.g. in a driving test 
 

• Mortality or presence of a medical condition 
 
Note that when there are only two categories, it does not matter whether one 
category can be thought of as ‘higher’ than the other; the distinction between 
nominal and ordinal is irrelevant. In later modules, we will see how the methods 
described here can be extended to handle categorical responses with more than two 
categories. In that case, the distinction between nominal and ordinal is important 
and we will need to consider different (but closely related) models for each.  
 
To introduce ideas, we will assume in this module that our data do not come from a 
hierarchically-structured population. However, all methods we describe can be 
extended to allow for and to explore clustered data and, in Module 7, we will meet 
multilevel models for binary response data. 
 
 

Introduction to the Example Dataset 
 
We will illustrate methods for analysing binary responses using data from the 2004 
National Annenberg Election Study (NAES04), a US survey designed to track the 
dynamics of public opinion over the 2004 presidential campaign. See 
http://www.annenbergpublicpolicycenter.org for further details of the NAES. 
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We analyse data from the National Rolling Cross-Section of NAES04. The response 
variable for our analysis is based on voting intentions in the 2004 general election 
(variable cRC03), which was asked of respondents interviewed between 7 October 
2003 and 27 January 2004. The question was worded as follows: 
 

• Thinking about the general election for president in November 2004, if that 
election were held today, would you vote for George W. Bush or the Democratic 
candidate?  

 
The response options were: Bush, Democrat, Other, Would not vote, or Depends. A 
small number of respondents reported that they did not know or refused to answer 
the question. Don’t knows and refusals were excluded from the analysis, and the 
remaining categories were combined to obtain a binary variable coded 1 for Bush 
and 0 otherwise.  
 
The survey covered 49 states, but we restrict our analysis to only three – California, 
New York and Texas. The total sample size in the selected states is 3688. (In C6.8 
and Module 7 we extend the analysis to all 49 states.) 
 
In this module, we consider three explanatory variables: 
 

• Age in years 

• Sex (coded 0 for male and 1 for female) 

• State (coded 1 for California, 2 for New York and 3 for Texas) 
 
In C6.8 (where we analyse the proportion of respondents who would vote Bush in a 
state) we consider two explanatory variables: 
 

• Proportion of non-white respondents in the state 

• Proportion of respondents who attend religious services at least once a week 
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C6.1 Preliminaries: Mean and Variance of Binary 
Data 

 
Denote by yi the binary response for individual i, coded 0 or 1. 
 
Mean of binary y 
 
Recall that the population mean, or expected value, of a variable y is given by 
 

μ = 𝐸(𝑦) =
1

𝑁
∑ 𝑦i

𝑁

𝑖=1

 

 
where N is the population size and {yi} are the values of y for members of the 
population.  
 
Suppose that in the population there are R individuals with a y-value of 1, and 
therefore N-R individuals with a y-value of 0. Then the expression for the population 
mean simplifies to the proportion of individuals with a y-value of 1, which we will 
denote by π: 
 

μ = π = Pr(y = 1) =
R

N
.  (6.1) 

 
When y is taken as the response variable in an analysis, we will refer to πas the 
response probability.2 Some authors refer to π as the success probability, where 
obtaining a y-value of 1 is regarded a success and a value of 0 a failure.  
 
Of course, we will not generally know the population mean and we will estimate it 
by the proportion of individuals with a y-value of 1 in our sample: 
 

π̂ = y̅ =
r

n
 

 
where r and n are the sample values of R and N. 
 
Variance of binary y 
 
Recall also that the population variance (the square of the standard deviation) of a 
variable y is given by 
 

σ2 = var(y) =
1

N
∑ (yi − μN

i=1 )2. 

 

For binary y we substitute π for μ and, using the facts that i) yi
2 = yi (because 12 = 1 

and 02= 0) which implies ∑ yi
2N

i=1 = ∑ yi
N
i=1 and ii) ∑ yi

N
i=1 = R = Nπ, we obtain: 

 

                                         
2 This should not be confused with the probability of responding in the survey. Here, we use the 
term response probability for the probability of being in a particular response category (y= 1). 
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∑ (yi − πN
i=1 )2 = ∑ (yi

2 − 2π yi + π2)N
i=1 = Nπ − 2Nπ2 + Nπ2 = Nπ(1 − π). 

 
Therefore the variance simplifies to 
 

σ2 = var(y) = π(1 − π).  (6.2) 
 

The sample estimate of the variance, denoted by σ̂2 or s2, is 
 

s2 = π̂(1 − π̂). 
 
The Bernoulli and binomial distributions 
  
From (6.1) and (6.2) we can see that the mean and variance for a binary variable y 
are defined by a single parameterπ, unlike a continuous y which needs two separate 
parameters to define its mean and variance. A distribution with mean π and variance 
π(1-π) is called a Bernoulli distribution. 
 
Sometimes y is said to follow a binomial distribution but, strictly, the binomial 
distribution has an extra parameter that is redundant for binary data. The more 
general binomial distribution applies to grouped binary data, where instead of 
observing a binary y for each individual we observe the proportion of individuals in 
a group with the value y=1. In the case of grouped data, we need π and the total 
number in a group (the denominator for the response probability) to define the 
distribution of the proportion. The Bernoulli distribution is a special case of the 
binomial distribution with the additional ‘denominator’ parameter set to 1. 
(Grouped binary data are the subject of C6.8 at the end of this module.) 
 
Expected value for an individual: towards modelling 
 
For a given individual i, their expected value for y is denoted by 
 

E(yi) = πi = Pr(yi = 1).  (6.3) 
 
In the absence of other information πi= π, i.e. their expected value is simply the 
response probability for the population (estimated by the sample response 
probability π̂i). More generally, however, an individual’s response will depend on 
their values on a set of explanatory variables x1, x2, …, xp and therefore the expected 
response will vary across individuals (hence the i subscript on π). Our objective in 
this module is to specify a suitable model that relates an individual’s response 
probability πi to their values on the xs: x1i, x2i, …, xpi. 
 
 

Don’t forget to do the practical for this section! (see beginning of 
document for details of how to find the practical)  
 
Please read P6.1, which is available in online form or as part of a pdf 
file. 
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