Module 11: Three-Level Multilevel Models

R Practical

Tamas Novak and George Leckie¹ Centre for Multilevel Modelling

Pre-requisites

Modules 1-5

Contents

	on to the Television School and Family Smoking Prevention and Project	2
	amining and Describing the Data	
	Exploring the three-level data structure	
P11.1.2	Summarising the response and predictor variables	9
P11.2 A 7	Three-Level Model of THKS	16
	Specifying and fitting the three-level model	
P11.2.2	Interpretation of the model output	18
	Calculating coverage intervals, variance partition coefficients (Vaclass correlation coefficients (ICCs)	
P11.2.4	Predicting and examining school and classroom effects	23
P11.3 Ad	ding Predictor Variables	29
P11.3.1	Adding student level predictor variables	29
P11.3.2	Adding school level predictor variables	30
P11.4 Ad	ding Random Coefficients	38
P11.4.1	Adding classroom level random coefficients	38
P11.4.2	Adding cross-level interactions	41
Further Re	eading	45
Reference	S	46

¹ This Practical is adapted from the corresponding Stata practical: Leckie, G. (2013). Three-Level Multilevel Models - Stata Practical. LEMMA VLE Module 11, 1-52. Accessed at: https://www.bristol.ac.uk/cmm/learning/online-course/.

If you find this module helpful and wish to cite it in your research, please use the following citation:

Tamas, N. & Leckie, G. (2025). Three-Level Multilevel Models - R Practical. LEMMA VLE Module 11, 1-46. https://www.bristol.ac.uk/cmm/learning/online-course

Address for correspondence:

Tamas Novak
Centre for Multilevel Modelling
University of Bristol
35 Berkeley Square
Bristol, BS8 1JA
UK

tamas.novak@bristol.ac.uk

George Leckie Centre for Multilevel Modelling University of Bristol 35 Berkeley Square Bristol, BS8 1JA UK

g.leckie@bristol.ac.uk

Introduction to the Television School and Family Smoking Prevention and Cessation Project

We will analyse data from the Television School and Family Smoking Prevention and Cessation Project (TVSFP) (Flay *et al.*, 1989). The project was designed to test the effect of two different school-based interventions on student tobacco and health knowledge: (1) A social-resistance classroom curriculum (CC); and (2) A television-based programme.

The study sample involved schools with seventh-grade students (age 12 to 13 years) in Los Angeles and San Diego, California. Schools were randomized to one of the four study conditions formed by crossing the two interventions in a 2×2 design.

		Television-based programme (TV)		
		No	Yes	
Classroom	No	Neither intervention	TV only	
Curriculum (CC)	Yes	CC only	CC and TV	

The two interventions were delivered to the seventh-grade students in these schools in spring 1986. Students were baselined in January 1986, completed an immediate postintervention questionnaire in April 1986, a one-year follow-up questionnaire in April 1987, and a two-year follow-up questionnaire in April 1988. At each time point, students' knowledge was assessed using a tobacco and health knowledge scale (THKS), constructed as the number of correct answers to seven binary questionnaire items.

The data were restudied by Hedeker *et al.* (1994) who used them to illustrate the importance of clustering in clinical and public health research and how multilevel models could be used to account for two-level and three-level hierarchical clustering structures. They concentrated on the sub sample of students who studied at 28 Los Angeles schools and only analysed data from the baseline and postintervention time points. Students who missed data at either time point were listwise deleted.

In this Module, we will explore the three-level hierarchical structure of the data: students (level 1) in classrooms (level 2) in schools (level 3). We will fit three-level multilevel models to examine the relative importance of schools and classrooms as influences on student tobacco and health knowledge and we will pay particular attention to assessing the possible causal effects of the CC and TV interventions.

There is good reason to expect both school and classroom effects on students' THKS scores. While schools were randomly assigned to the four study conditions, implementation of the CC and TV interventions were carried out at the classroom level. It seems very likely that some schools and teachers would have been more enthused about the interventions than others and this is likely to have had a direct effect on the success of the interventions. We therefore expect to see both between-school and within-school-between-classroom variation in students' THKS

scores, even after accounting for baseline differences in their tobacco and health knowledge.

We use the Hedeker *et al.* sub sample of the original data. The data consist of 1,600 students (level 1) nested within 135 classrooms (level 2) nested within 28 schools (level 3).

The response variable is students' postintervention THKS. We shall treat this score as a continuous response variable in our multilevel models, though we note that we could equally treat this response as ordinal and therefore fit ordinal response multilevel models (see Module 9). The predictor variables of key interest are the school level binary indicators of whether each school was randomly assigned to the CC or TV interventions. The predictor variables also include students' baseline THKS scores. We will include this predictor variable in our models to adjust for baseline variation in students' tobacco and health knowledge.

The dataset contains the following variables

Variable name	Description and codes
schoolid	School ID
classid	Class ID
studentid	Student ID
postthks	Postintervention THKS score. Scores range from 0 to 7, with a higher score indicating a higher tobacco and health knowledge
prethks	Baseline THKS score. Scores are measured on the same scale as postthks .
СС	Classroom curriculum (CC) (0 = no CC, 1 = CC)
tv	Television (TV) (0 = no TV, 1 = TV)
ccXtv	CC × TV, the interaction between CC and TV. The variable is constructed by multiplying the variables cc and tv . Note that ccXtv is also binary and 1 = both CC and TV and 0 otherwise.

P11.1 Examining and Describing the Data

From within the LEMMA learning environment

- Go to Module 11: Three-Level Multilevel Models, and scroll down to R files
- Click '11.1.rds to download the dataset

Open the R script for this lesson, read the dataset using the readRDS() function and save it to a variable called mydata.

```
> mydata <- readRDS('11.1.rds')</pre>
```

Use the str() function to produce a summary of the dataset. The str() function displays the structure of an R object in a compact way. Running str() on a data frame object (like mydata) will result in a console output that lists the dimensions of the data frame as well as the names, data types, and first ten of values of each column.

The data consist of 1,600 observations on 8 variables.

Standard univariate summary statistics can be requested using the summary() function.

```
> summary(mydata)
schoolid classid studentid
Min. :193.0 Min. :193101 Min. : 1.0
1st Qu.:405.0 1st Qu.:405101 1st Qu.: 400.8
                                    Median: 800.5
Mean: 800.5
Median :415.0 Median :415105
Mean :421.9
                  Mean :422042
3rd Qu.:509.0 3rd Qu.:509106 3rd Qu.:1200.2
Max. :515.0 Max. :515113 Max. :1600.0

        postthks
        prethks
        cc

        Min. :0.000
        Min. :0.000
        Min. :0.0000

        1st Qu.:2.000
        1st Qu.:1.000
        1st Qu.:0.0000

Median :3.000 Median :2.000 Median :0.0000
Mean :2.662 Mean :2.069 Mean :0.4769
3rd Qu.:4.000 3rd Qu.:3.000 3rd Qu.:1.0000
Max. :7.000 Max. :6.000 Max. :1.0000
                   CCXtv
Min. :0.0000 Min. :0.0000
1st Qu.:0.0000 1st Qu.:0.0000
Median :0.0000 Median :0.0000
Mean :0.4994 Mean :0.2394
3rd Qu.:1.0000 3rd Qu.:0.0000
```

```
Max. :1.0000 Max. :1.0000
```

We see, for example, that the response variable **postthks** ranges from 0 to 7. We shall describe a range of summary statistics for the response and predictor variables in P11.1.2.

P11.1.1 Exploring the three-level data structure

We start by using the head() function to list the data for the first couple of students in the data frame. We set the argument n to 10 to look at the first 10 students.

We see, for example, that student 1 was taught in class 193101 within school 193. The student scored 1 out of 7 on the THKS at baseline (**prethks**) and 2 out of 7 at postintervention (**postthks**). The variables **cc** and **tv** (and therefore **ccXtv**) are both zero and so school 193 received neither intervention.

Next, we use the unique() and length() functions to confirm that the number of schools and classrooms in the data are 28 and 135, respectively. The unique() function removes duplicates from a vector, data frame, or array like objects. In our example it removes duplicate school IDs and class IDs. The length() function returns the length of an object. We can count how many schools and classes we have by running the length() function on the unique array of school and class IDs.

```
> length(unique(mydata$schoolid))
[1] 28
> length(unique(mydata$classid))
[1] 135
```

Let's explore the unbalanced nature of the three-level hierarchy: the number of classrooms varies across schools and the number of students varies across classrooms.

First, we count the number of classes within each school. We will use the aggregate() function for this. The aggregate() function groups data by a given variable and runs a function (e.g., mean()) on each of the subsets and returns the results per group in one data frame. In this case we subset mydata\$classid by mydata\$schoolid. We set the x and by arguments to named lists created from mydata\$classid and mydata\$schoolid respectively. The names mclasses

This document is only the first few pages of the full version.

To see the complete document please go to learning materials and register:

http://www.cmm.bris.ac.uk/lemma

The course is completely free. We ask for a few details about yourself for our research purposes only. We will not give any details to any other organisation unless it is with your express permission.