Unit name | Advanced Mobile Radio Techniques |
---|---|
Unit code | EENGM2510 |
Credit points | 10 |
Level of study | M/7 |
Teaching block(s) |
Teaching Block 2 (weeks 13 - 24) |
Unit director | Dr. Armour |
Open unit status | Not open |
Pre-requisites |
EENG2110, EENGM2100, EENGM2500 |
Co-requisites |
None |
School/department | Department of Electrical & Electronic Engineering |
Faculty | Faculty of Engineering |
This unit addresses modern wireless communication systems. The first part focuses on adaptive equalisation algorithms to receive data streams in a time-dispersive multipath channel. The material addresses filter based (LTE and DFE) and non-filter based (MLSE and Viterbi) solutions. For the filter based techniques, equaliser weight training based on zero-forcing, MMSE, LMS and RLS algorithms are covered. Convergence issues for the LMS algorithm are addressed. The use of OFDM is developed for high data rate communications in a dispersive channel. Key concepts include sub-carrier orthogonality, frequency domain equalisation and use of a guard-time. Equations to define the optimum number of subcarriers are derived. The second part addresses rationale behind the adoption of CDMA technologies for 3G wireless systems alongside a detailed examination of the physics layer design to secure robust service delivery. In addition, hybrid capacity enhancement via Smart Antennas is considered, culminating in an exploration of multiple-input multiple-output (MIMO) architectures which are now a key enabler of many wireless standards.
Part 1
Equalisation and inter-symbol interference; linear transversal equaliser (LTE); zero forced equalisation; MMSE Weiner-Hopf Equations; Automatic equaliser coefficient calculation (steepest descent, LMS and RLS algorithms); Multi-dimensional error surfaces, Eigenvalue spread and convergence; Auto and Cross correlation matrices; Decision Feedback Equaliser (DFE); MLSE and Viterbi equalisation; Markov Processes.
Multi-carrier Transmission techniques; OFDM transmit and receiver block diagrams; use of FFT/IFFT blocks; Guard-Interval; Group Delay; Cyclical vs Linear convolution; ARQ and FEC; impact on power amplifier design.
Part 2
Definition of terms and basic modes; spreading code generation and properties; spreading codes for Multiple Access; frequency hopping basics; direct sequence basics; propagation aspects of DS; rake reception; power control and systems design aspects.Overview of Qualcomms IS-95 and 3G CDMA systems.
Basic concepts of array processing; modes of operation (SFIR and SDMA); operational benefits; beam-forming architectures; impact of errors; spatial domain methods and direction of arrival; temporal domain methods; aspects of system design (FDD v TDD); TSUNAMI field trials; dual array architectures (MIMO); Capacity Equation, Sensitivity Analysis.
Having completed this unit, students will be able to:
Lectures
Exam, 2 hours (100%) (All ILOs)