Department of Civil Engineering
‘How you can shape the world’

Dr Liz Holcombe & Dr Dimitris Karamitros
Admissions Tutors

21 April 2020
Welcome to Bristol
What’s it like to live in Bristol?

The Best UK city to live

“great shopping, buzzing social scene and glorious scenery”

“great choice of housing, fantastic transport links, real sense of growing economic importance and creative energy”

…a city with engineering roots

A city of engineering inspiration…

…a city with engineering career prospects!

Isambard Kingdom Brunel
(1806 - 1859)
Accommodation with a view
https://www.bristol.ac.uk/accommodation/

Get active
http://www.bristol.ac.uk/sport/

Looking after your wellbeing
http://www.bristol.ac.uk/students/wellbeing/our-approach/

✓ >300 societies
✓ Welcome Week
✓ SU Lettings
✓ Representation

✓ Health Service
✓ Wellbeing Service
✓ Counselling Service
✓ Residential Life Service
✓ Disability Support
✓ Multifaith Chaplaincy
✓ Personal Tutoring
Bristol University is (in) the “centre of town”…
The University of Bristol

One in the top Universities worldwide

- Top 51 Worldwide
- Top 9 UK
- Top 8 Engineering UK

>90% Student Satisfaction
£27k Starting Salary

Accredited by the JBM
(for Chartered Engineers)

‘The Graduate Market 2019’
2nd most targeted University by top UK employers

Top 5 for Research UK

Top 8 Civil Engineering UK

Dr Liz Holcombe & Dr Dimitris Karamitros
Admissions Tutors – email: d.karamitros@bristol.ac.uk & liz.holcombe@bristol.ac.uk

bristol.ac.uk
Bristol Futures
https://www.bristol.ac.uk/bristol-futures/
✓ Personal Development Planning
✓ Study Skills
✓ Open Online Courses

Careers Service
http://www.bristol.ac.uk/careers/
✓ Helping you to plan your future career, target employers and get your first job
✓ BristolPLUS Award

Industrial Liaison Office
http://www.bristol.ac.uk/engineering/ilo/
✓ Year in Industry Programme
✓ (First Year) Internship Scheme
✓ Industrial Mentoring Scheme
✓ Inside Track Lectures & Seminars
✓ Newsletter & Online Social Networks

Dr Liz Holcombe & Dr Dimitris Karamitros
Admissions Tutors – email: d.karamitros@bristol.ac.uk & liz.holcombe@bristol.ac.uk
£19m Engineering Growth Project
Teaching & study space, Labs, Café & meeting space & more!

New £12m Soil-Foundation-Structure Interaction Facility
UK Collaboratorium for Research on Infrastructure and Cities

£300m Temple Quarter Enterprise Campus
Ongoing (Planned to open in 2023)
Research-led teaching
A variety of learning methods
Industry-relevant and connected
World-class laboratory facilities
Accredited so you can become professional qualified as a Civil Engineer
Civil Engineering Programmes

<table>
<thead>
<tr>
<th>Programme and entry route</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEng in Civil Engineering (H205)</td>
<td>3 years full-time</td>
</tr>
<tr>
<td>MEng in Civil Engineering (H200)</td>
<td>4 years full-time</td>
</tr>
<tr>
<td>MEng Civil Engineering with Study in Continental Europe (H201)</td>
<td>4 years full-time, 3rd year at a European University</td>
</tr>
<tr>
<td>MEng Civil Engineering with Study Abroad (Entry via H200 or H201)</td>
<td>4 years full-time, 3rd year at a University overseas</td>
</tr>
<tr>
<td>MEng Civil Engineering with Year in Industry (Transfer from H200/H201, subject to eligibility criteria)</td>
<td>5 years full-time, 3rd year placement (credit-bearing)</td>
</tr>
</tbody>
</table>
1st Year units

- Engineering Mathematics (20cp)
- Introductory Structural Analysis (20cp)
- Properties of Materials (10cp)
- Field Methods – incl. Surveying (20cp)
- Thermofluids (20cp)
- Design and Computing (20cp)
- Option (10cp):
 - Sustainable Development
 - Application of Electronics
 - Language (overseas & study abroad)

For more details, see “Course Structure” under: www.bristol.ac.uk/engineering/departments/civilengineering/
2nd Year units

- Engineering Mathematics (20cp)
- Methods of Structural Analysis (20cp)
- Geomechanics (20cp)
- Water Engineering (20cp)
- Structural Materials and Design (20cp)
- Option (20cp):
 - Architecture with Building Services
 - Language (overseas & study abroad)

Shaking Table Design Competition

For more details, see “Course Structure” under:
www.bristol.ac.uk/engineering/departments/civilengineering/

Dr Liz Holcombe & Dr Dimitris Karamitros
Admissions Tutors – email: d.karamitros@bristol.ac.uk & liz.holcombe@bristol.ac.uk
Typical countries and universities

Austria: Innsbruck, Vienna

France: Grenoble, Lyon

Germany: Hannover

Italy: Bologna

Netherlands: Delft

Spain: Valencia, Barcelona

Sweden: Gothenburg

For more details, see “Year abroad” under:
https://www.bristol.ac.uk/global-opportunities/go-abroad/
(Search by subject for Civil Engineering)
Typical countries and universities

USA:
- University of California (*Berkeley, San Diego, Irvine, Davis*)
- University of Illinois (*Urbana-Champaign*)
- Drexel University (*Philadelphia*)

Canada:
- McGill University (*Montreal*)

Australia:
- University of Sydney
- University of Western Australia
- University of Adelaide

Hong Kong:
- Hong Kong University

Singapore:
- Nanyang University

For more details, see “Year abroad” under: https://www.bristol.ac.uk/global-opportunities/go-abroad/
(Search by subject for Civil Engineering)
MEng with Year in Industry (transfer)

✓ Duration: 5 years full study
✓ 3rd year: Formal industrial placement (Credit bearing)
✓ Entry: Transfer from H200 (MEng), H201 (MEng & Abroad), H205 (BEng)
• Research Project (40cp)
• Advanced Structural Analysis
 – incl. Finite Element Analysis (20cp)
• Design of Geotechnical Structures (10cp)
• Water Engineering (10cp)
• Civil Engineering Systems (10cp)
• Concept Design (20cp)
• Reliability for Engineers (10cp)

For more details, see “Course Structure” under:
www.bristol.ac.uk/engineering/departments/civilengineering/

Dr Liz Holcombe & Dr Dimitris Karamitros
Admissions Tutors – email: d.karamitros@bristol.ac.uk & liz.holcombe@bristol.ac.uk
• Compulsory:
 • Design Project (40cp)

• Select a minimum of 20cp from:
 • Earthquake Resistant Structures (10cp)
 • Geotechnical Engineering Practice (10cp)
 • Water Resources Risk Management (10cp)

• Select a minimum of 10cp from:
 • Infrastructure Systems (10cp)
 • Sustainable Systems (10cp)
 • Asset Management (10cp)

• Select 20-50cp from typically available units such as:
 • Research Project (40cp)
 • Analysis and Design of Structures
 • Timber Engineering
 • Soil-Structure Interaction
 • Soil Dynamics & Earthquake Geotechnics
 • Engineering Seismology
 • Hazards and Infrastructure

• Smart Cities
• Transport and Mobility Modelling
• Power Generation for the 22nd Century
• Engineering for International Development
• Innovation, Entrepreneurship and Enterprise
Teaching methods:
- Lectures
- Individual and group work
- Laboratories (practical and computer)
- Design classes
- Tutorials
- Field visits
- Projects
- Small-group or individual project supervision

Assessment methods:
- Exams
- Coursework
- Vivas
- Posters
- Presentations
- Personal tutoring
- Student Staff Liaison Committee

Dr Liz Holcombe & Dr Dimitris Karamitros
Admissions Tutors – email: d.karamitros@bristol.ac.uk & liz.holcombe@bristol.ac.uk
Typical Timetable for Y1

Week 7

<table>
<thead>
<tr>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-10</td>
<td>Field Methods (L+Ex)</td>
<td></td>
<td></td>
<td>Structural Analysis (L+Ex)</td>
</tr>
<tr>
<td>10-11</td>
<td>Option</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-12</td>
<td>Engineering Maths (L)</td>
<td>Field Methods (L)</td>
<td>Eng. Maths (L)</td>
<td>Structural Analysis (L+Ex)</td>
</tr>
<tr>
<td>13-14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14-15</td>
<td>Laboratory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dr Liz Holcombe & Dr Dimitris Karamitros

Admissions Tutors – email: d.karamitros@bristol.ac.uk & liz.holcombe@bristol.ac.uk
“Today, civilisation relies more than ever on teams of inventive people to design, build and maintain the sophisticated environment that surrounds us.”

“Civil engineering is all about helping people and shaping the world…”

Institution of Civil Engineers
93% of Engineering Research at (UoB) 'world leading' or 'internationally excellent'.

Dr Liz Holcombe & Dr Dimitris Karamitros
Admissions Tutors – email: d.karamitros@bristol.ac.uk & liz.holcombe@bristol.ac.uk
About 40 Civil Engineering academics – wide range of world leading expertise across the discipline...

We link research, teaching & practice

- **Research-into-teaching**
 - Year 2 EQ / structures lab
 - Year 3 research projects
 - Year 4 optional units

- **Putting it into practice**
 - Year 3 Water Resources project
 - Year 4 Design project

Dr Liz Holcombe & Dr Dimitris Karamitros
Admissions Tutors – email: d.karamitros@bristol.ac.uk & liz.holcombe@bristol.ac.uk

bristol.ac.uk
Earthquake & Geotechnics Lab

Dr Liz Holcombe & Dr Dimitris Karamitros
Admissions Tutors – email: d.karamitros@bristol.ac.uk & liz.holcombe@bristol.ac.uk

bristol.ac.uk
2nd year structures class

Dr Liz Holcombe & Dr Dimitris Karamitros
Admissions Tutors – email: d.karamitros@bristol.ac.uk & liz.holcombe@bristol.ac.uk
Example student research project

Year 3 undergraduate research project:

Shearing capacity between rammed earth and concrete capping beams (2014-15)

Experiment design

Experiment performance

Dr Liz Holcombe & Dr Dimitris Karamitros
Admissions Tutors – email: d.karamitros@bristol.ac.uk & liz.holcombe@bristol.ac.uk
Teaching and Research Highlights

Post-earthquake assessments (Nepal, 2015)

Dr Liz Holcombe & Dr Dimitris Karamitros
Admissions Tutors – email: d.karamitros@bristol.ac.uk & liz.holcombe@bristol.ac.uk
Cut and fill slopes
Informal construction
No drainage
...Rainfall-triggered landslides
Example student research project

Year 3 undergraduate research project: *Low-cost landslide mitigation measures for urban communities*

Dr Liz Holcombe & Dr Dimitris Karamitros
Admissions Tutors – email: d.karamitros@bristol.ac.uk & liz.holcombe@bristol.ac.uk
~200mm in 24h (20% of annual rainfall)

Flood modelling and mitigation

Likelihood of Water Depth exceeding 70cm

Dr Liz Holcombe & Dr Dimitris Karamitros
Admissions Tutors – email: d.karamitros@bristol.ac.uk & liz.holcombe@bristol.ac.uk
Teaching and Research Highlights

Weather radar for flood forecasting

RADAR RAINFALL, 20/07/2007 00:15:00

Dr Liz Holcombe & Dr Dimitris Karamitros
Admissions Tutors – email: d.karamitros@bristol.ac.uk & liz.holcombe@bristol.ac.uk
The **SMOS** (Soil Moisture and Salinity Mission) satellite sensor produces products at ~40km grid resolution over the globe.

Accurate measurements of soil moisture are key for flood/drought forecasts

3rd year water resources project

- Geology
- Location
- Materials
- Volume
- Stability
- Water provision

- Env. impact
- Construction
- Costs
- Safety

Putting it into practice - design

Dr Liz Holcombe & Dr Dimitris Karamitros
Admissions Tutors – email: d.karamitros@bristol.ac.uk & liz.holcombe@bristol.ac.uk
Use of digital technologies or information and communication technologies (ICT) towards

- Green cities
- Sustainability
- Zero carbon emission
- Improved life quality

Bristol Is Open is a joint venture between the University of Bristol and Bristol City Council
Open monitoring of any aspects of city life, including energy, air quality and traffic flows

Dr Liz Holcombe & Dr Dimitris Karamitros
Admissions Tutors – email: d.karamitros@bristol.ac.uk & liz.holcombe@bristol.ac.uk
Year 3 undergraduate research project:

Queue modelling – A study into the ability of self-service machines to increase capacity and meet future demands of confined urban service areas

Proposed Configuration

The screenshots below have been taken from the FlexSim Model during a maximum capacity simulation run.

Dr Liz Holcombe & Dr Dimitris Karamitros
Admissions Tutors – email: d.karamitros@bristol.ac.uk & liz.holcombe@bristol.ac.uk
Research Project Showcase Day

Dr Liz Holcombe & Dr Dimitris Karamitros
Admissions Tutors – email: d.karamitros@bristol.ac.uk & liz.holcombe@bristol.ac.uk
4th Year Design Project

- New Thames Barrier
- Fixed Link to the Isle of Wight
- Eco-house
- Earthquake Resilient Schools in Malawi
- Demountable Exhibition Centre
- Visitors Centre for Thatchers Cider
- Royal Opera House Costume Centre

...and many more!

Dr Liz Holcombe & Dr Dimitris Karamitros
Admissions Tutors – email: d.karamitros@bristol.ac.uk & liz.holcombe@bristol.ac.uk
THE OCEAN SKYSCRAPER

PROJECT BRIEF

Explore the possibility of an inspirational concept design for a high-quality “Ocean Skyscraper” that rises out of the Pacific Ocean, to be used as a Luxury 5* hotel.

This concept is a new project through the development which:
- Creates a landmark that provides a visually and aesthetically engaging design
- Is of high-quality design and respects the context of the site
- Contributes to the place and community at the chosen location
- Maximises the new development potential with attention to sustainability and ecology
- Provides the facilities expected in a Luxury 5* Hotel

SITE SELECTION

East Asia and West USA were considered as preliminary locations for the skyscraper. Mainly due to extreme natural phenomena and limited data availability in East Asia, the skyscraper will be located in West USA.

The locations considered were:
1) San Francisco 2) Los Angeles 3) San Diego 4) Oahu

It was also concluded that the closer the site to either pole of the planet, the higher the average wind speed.

The selected site for the skyscraper, based on the place considerations, was the Oahu island in Hawaii.

More specifically, it will be located 400m offshore of Waikiki Beach.

Key Facts

High tourist expenditure

Strategic location to cater tourists from both East Asia and West USA

Breathtaking scenery and hospitality

Adequate labor power and well established construction industry

Easily accessible via the Honolulu International Airport

SITE INFORMATION

- To minimise environmental impact, the selected site is not located in a marine protected area
- To optimise social impact, the site is close to surrounding built environment (hotels, golf clubs)

Seabed Geology

Hazard Assessment

- Sediment with lower compressibility
- No significant liquefaction
- Medium dense sand with average 95% sand and 7% gravel
Putting it into practice - design
Putting it into practice - design

Introduction

Bristol Trams 2030 fulfills Bristol’s need for improved public transport by integrating a tram network into the city.

Bristol once boasted an extensive tramway system, which was decommissioned after damage during World War II. Recent changes in the local and national political environment have sparked renewed interest in light rail as a viable public transport solution.

Bristol suffers considerably from congestion. Evidence has shown that trams are the most successful means of cutting modal shift away from the private car, due to their improved capacity, comfort, and public perception.

Furthermore, trams are the most sustainable public transport option, minimizing emissions within the city centre.

Bristol Trams 2030 goes beyond the scope of existing transport plans, which cut out transport developments until 2026, by developing a visionary answer to Bristol’s long-term transport needs.

Design Considerations

Bristol Trams 2030 aims to accomplish the following:

1. Promotion of public transport
2. Reduction of traffic levels and congestion in Bristol
3. Improved access to key locations
4. Integration with the existing transport network

Route

- The connectivity of Bristol Trams 2030 was the route choice. This was central to all other design decisions.

Phasing

- The final network comprises 7 phases, the first two will be considered in detail.

Stakeholders

- Bristol Trams 2030 has considered all relevant stakeholders and their needs.

Tram Choice

- Prior to detailed design, the optimum tram vehicle for the network needed to be identified.

Temple Circus

- Temple Circus experiences high traffic volumes and must accommodate three tramlines.

City Centre

- The tramline must navigate this complex junction and high profile pedestrian plaza.

Station Design

- An iconic, repeatable and functional station design has been devised for implementation across the network.

Bristol Tram Masts

- This key transport hub is an essential location for tram integration.

Network Design

- Extensive network analysis has been conducted to optimise the tram route and study demand.

Depot Design

- This essential facility for tram maintenance and storage has been designed.

Phasing

- Phases 1-3 (Airport - Exeter) – Public transport to the airport currently relies on a minibus service. A dedicated tram route is essential for passenger access to the airport. Phases 4-7 (South Bristol – City Centre) – The南部 endorsed tram route will initially serve the southern suburbs and connect to the city centre.

Stakeholders

- Bristol Trams 2030 has considered all relevant stakeholders and their needs. The proposed route options provide a high-speed intercity link and serve the expanding local area.

Design Principles

- The design principles of Bristol Trams 2030 are based on the following:

 1. Compatibility with adjacent urban infrastructure
 2. Reliability and flexibility in operation
 3. Promoting sustainable transport
 4. Integration with pedestrian and cycle networks
 5. Minimizing environmental impact
 6. Maximizing social benefits

City Centre

- Central and sporting districts are connected by an extensive network of tram lines, which are designed to accommodate the varying demands of the city centre.
Bristol Trams 2030

P. Christopher, C. Kennedy, H. Pollock Fraser and T. Webster

Station Design

Introduction

The route has 12 stops ranging to 80 miles of track, to provide a sustainable public transport system within the city. The layout and configuration of the stations has been designed to be both functional and visually appealing, taking into account the specific needs and characteristics of each location.

Model Design Considerations

- All stations are designed to accommodate passengers with disabilities, ensuring accessibility for all commuters.
- The design incorporates sustainable materials and energy-efficient systems to reduce environmental impact.
- Consideration is given to the integration of the stations with existing transport networks and pedestrian areas.

Model CALS

- The model allows for the simulation of various scenarios, including changes in passenger demand, operational adjustments, and infrastructure improvements.
- It facilitates the evaluation of different design options and their potential impacts on the overall network performance.

Modelling Tool

- A comprehensive model of the network design, considering the interdependencies between different components.
- The model integrates traffic flow, demand forecasting, and operational strategies to optimize the system's performance.

Network Design

Design Process

The fundamental focus on the design is on the overlap of the network and the route, ensuring efficient connectivity. The initial concept is refined through detailed urban planning and engineering considerations.

Model Design Considerations

- Integration of mixed-use development around the stations to maximize urban regeneration and economic benefits.
- Consideration of the environmental impact, including energy consumption and emissions.
- Accessibility and pedestrian safety measures are prioritized to enhance the overall experience for commuters.

Modelling Tool

- A simulation tool to assess the impact of various design options, including the integration of new technologies and urban planning strategies.
- The tool allows for the evaluation of different design scenarios to optimize performance and efficiency.

Network Analysis

- The model facilitates the analysis of network performance, considering factors such as traffic flow, capacity, and travel times.
- It enables the identification of bottlenecks and areas for improvement, facilitating the refinement of the design.

Modelling Process

- A comprehensive approach to integrating the station design with the overall network, ensuring optimal performance and efficiency.
- The process involves iterative evaluations and adjustments to optimize the design.

Depot Design

Design Intent

The design of the depot is intended to be sustainable and efficient, minimizing environmental impact and operational costs. It is designed to integrate with the surrounding area, enhancing the overall aesthetic and functional aspects.

Modelling Tool

- A simulation tool to evaluate the performance of the depot, considering factors such as energy consumption, operational efficiency, and environmental impact.
- The tool facilitates the optimization of the depot's design to meet sustainability targets.

Network Design

- The design is optimized for energy efficiency, reducing operational costs and carbon footprint.
- It includes strategies for waste management and water conservation.

Modelling Process

- A comprehensive approach to integrating the depot design with the overall network, ensuring optimal performance and efficiency.
- The process involves iterative evaluations and adjustments to optimize the design.

Bristol Temple Meads

Location

Located at the southern end of the city, this station is a major transport hub, with frequent rail services and bus connections. The station is designed to accommodate a high volume of passengers, ensuring efficient movement and access to the region.

Model Assumptions and Limitations

- The model assumes steady passenger demand, reflecting the current trends and seasonal variations.
- It does not account for potential future changes in demand or economic conditions.

Model Calculations

- The model uses a combination of analytical and simulation techniques to evaluate the performance of the station.
- It considers factors such as passenger flow, service frequency, and station capacity.

Network Integration

- The station is integrated with the surrounding urban fabric, enhancing accessibility and pedestrian safety.
- It connects with key transport nodes, facilitating efficient travel between different parts of the city.

Conclusion

The overall design of the Bristol Trams 2030 project is focused on sustainability, efficiency, and functionality. The integration of multiple design considerations and the use of advanced modelling tools ensure a comprehensive approach to the project, optimizing the overall performance and sustainability.
Example student design project

THE ECO-FARMSCRAPER

University of Bristol
Department of Civil Engineering

March 2016

Group 3
Mohammadreza Haghsenas
Lim Chuin Phin Sebastian
Rushang Mita
Patrick Samengo Turner
Henryk Taylor
Supervised by: Dr Dawei Han

Proudly Sponsored By

ARUP

bristol.ac.uk

Dr Liz Holcombe & Dr Dimitris Karamitros
Admissions Tutors – email: d.karamitros@bristol.ac.uk & liz.holcombe@bristol.ac.uk
Example student design project

South West Regional Assembly

Dr Liz Holcombe & Dr Dimitris Karamitros
Admissions Tutors – email: d.karamitros@bristol.ac.uk & liz.holcombe@bristol.ac.uk

Bristol Expo Centre
Thomas Hall (th1754) | Rob Edwards (re1763)
Katie Letheren (kl1996) | Vicky Malinova (vm1687)
Supervisor: Dr. Erdin Ibraim
Example student design project

CARDIFF CITY FC - HENSOL TRAINING COMPLEX SCHEME

BEN WHITTLE, LUKE FARRAND, HENRY FISHER, WILL JACKSON

SUPERVISOR: DR. ADAM CREWE

UNIVERSITY OF BRISTOL, DEPARTMENT OF CIVIL ENGINEERING
Putting it into practice - design

Example student design project

New University Library

Creating a sustainable and inspirational space for independent learning.

University of Bristol Department of Civil Engineering
Authors: Tim McAulay, Kaye Pollard, Oliver Rayner, Rachael Thayalan
Supervisor: Professor Sally Heslop

Dr Liz Holcombe & Dr Dimitris Karamitros
Admissions Tutors – email: d.karamitros@bristol.ac.uk & liz.holcombe@bristol.ac.uk
Example student design project

Seismically Base-Isolated College in Kathmandu, Nepal

Joe Beardsley - Reggie Clark - Ted Cross - Maxwell de Podesta - Jack Rushton
Dr Nicholas Alexander – Dr Flavia De Luca

Dr Liz Holcombe & Dr Dimitris Karamitros
Admissions Tutors – email: d.karamitros@bristol.ac.uk & liz.holcombe@bristol.ac.uk

bristol.ac.uk
Example student design project

Dean Forest Heritage Railway:
Feasibility Study for the Parkend Extension

- William Alexander
- Daniela Bar-Gera
- Sébastien Cromp
- Thom Charles Noble

Supervisors:
- Dr. John Macdonald
- Mr. Jason Shirley

Dr Liz Holcombe & Dr Dimitris Karamitros
Admissions Tutors – email: d.karamitros@bristol.ac.uk & liz.holcombe@bristol.ac.uk
Example student design project

THAMES TIDAL BARRAGE
Group 6 – George Atkinson, Safak Muslu, Ed Roberts and James Rodney
Supervisor: Dr M. Rico-Ramirez
Example student design project

FLOATING HARBOUR BRIDGE

Department of Civil Engineering

Sebastian Beck Vladimir Djuric Max James Leo Youngman

Dr Liz Holcombe & Dr Dimitris Karamitros
Admissions Tutors – email: d.karamitros@bristol.ac.uk & liz.holcombe@bristol.ac.uk
Example student design project

LICHFIELD HIGH SPEED RAILWAY BRIDGE

Samuel Bellman, Alexandra Bradford, Francis Gaymond, Marc-Andre Jansen

Dr Liz Holcombe & Dr Dimitris Karamitros
Admissions Tutors – email: d.karamitros@bristol.ac.uk & liz.holcombe@bristol.ac.uk
Example student design project

Making Bristol Temple Meads More Inclusive

A Train Station for Everyone

Dr Liz Holcombe & Dr Dimitris Karamitros
Admissions Tutors – email: d.karamitros@bristol.ac.uk & liz.holcombe@bristol.ac.uk
Design Project Poster Session
NCE, Civil Engineer Graduate of the Year!

- Brittany Harris, MEng Civil Engineering, Winner in 2016
- Sophie McPhillips, MEng Civil Engineering, Winner in 2014
- Joe Smith, MEng Civil Engineering 2012, Winner in 2013
- Stephen Thompson, MEng Civil Engineering 2011, Runner-up 2012
- Eva Linnell, MEng Engineering Design 2011, Highly Commended 2012

More Recent Prizes and Awards:

- Joshua Mudie: Runner-up at IABSE Young Designers Paper Competition (2015)
Steel Construction Institute

“Regional Assembly Building” - 1st Prize £1200 (R. Biviji, J. Charlton, T. Tan, A. Yeung)
“New Railway Station” - 1st Prize £1000 (R. Langford, D. Luu, D. Norman, M. Rooney)

Royal Society of Arts Travel Awards

“The Millennium Ride” - £1000 each (Alex Johnston, Alex Baalham, Colin Davies)
“New Railway Station” - £500 each (R. Langford, D. Luu, D. Norman, M. Rooney)

IAHR Student Paper First Prize

“The Effects of Climate Change on Flooding in South-West England” (T. Grevatt, T. Koh)

OASYS Design Awards

Computer generated design poster for a Canal Bridge
(Emma Jenkinson, David Kang Gil, Karn Supaviriyakul, Theodosia Tsoumba)

Royal Academy of Engineering

Leadership Advanced Award - £5000 each (Eleanor Heath and Alexander Martin)
How do we design cities to improve our standard of living?
Studying Civil Engineering at Bristol

Study Civil Engineering at the University of Bristol

Dr Liz Holcombe & Dr Dimitris Karamitros
Admissions Tutors – email: d.karamitros@bristol.ac.uk & liz.holcombe@bristol.ac.uk
Thank you for your attention!