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Introduction to Mixed Treatment Comparisons.  

 

A E Ades, Nicky Welton, Guobing Lu. 

 

 

What are Mixed Treatment Comparisons ? 

Mixed Treatment Comparison (MTC) evidence structures are a generalisation of 

Meta-Analysis  
1
 evidence structures. Instead of simply analysing a set of Randomised 

Clinical Trials comparing treatment A vs treatment B, we might have A vs B trials, A 

vs C trials, A vs D, B vs C, etc. 

 

Indirect comparisons are a special case: here a relative treatment effect  - a Log Odds 

Ratio, risk difference, etc -   which is not itself supported by “direct” comparisons of 

treatments B and C,  is estimated “indirectly” from data on A vs B  and A vc C 

comparisons. This is a special case in the sense that there no “mixture” of indirect and 

indirect evidence  

 

These evidence structures have raised a series of questions: 

1. Are indirect estimates biased ? 

2. Should direct and indirect evidence be combined ? 

3. What statistical methods should be used ? 

4. How do we determine whether direct and indirect evidence is consistent ?                                          

5. What is “inconsistency” ? 

 

The purpose of this note is not to answer these questions, but to set out our models for 

MTC analysis. This is particularly relevant to those wishing to use the WinBUGS 

software available on this website. 

 

Some useful literature 

1. Empirical papers using indirect comparisons to make inferences about relative 

treatment effects. 
2 3

.  

                     

2. Empirical papers comparing direct and indirect estimates. 
4 5

 

 

3. Methodological papers in the medical statistics  and medical decision making 

literature on how a single coherent and internally consistent set of estimates can be 

estimated from MTC evidence structures. 
6 7 8 9 10 11 12 13 14

   

 

4. Practical uses of some of these approaches in the medical literature 
15

, and in 

decision making applications.
16 17

  

 

What kinds of structures can be analysed by the MTC methods discussed here? 

1 These methods can be applied only to connected networks of RCTs. 
11 14

 For 

example in a dataset consisting of AB, AC, BC, AD, EF, EG, FG pair-wise 

comparisons, the A,B,C,D group of treatments is not connected with the E,F,G group.  

2. We very strongly recommend that single-arm studies, whether from RCTs or 

observational studies, are excluded.   
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A worked example :  Smoking Cessation  

This data structure, 
8
 consists of 24 studies comparing 4 treatments for smoking 

cessation: A= no intervention, B= self-help, C = individual counselling; D= group 

counselling. There is evidence in all 6 possible pair-wise comparisons: AB, AC, AD, 

BC, BD, CD. Two of the trials are 3-arm trials, so there are 50 arms in total. Each cell 

in the table contains the numerator (successful smoking cessation) and the patient 

totals in each arm 
 

Comparison 
Study 
number 

No contact 
 
      A 

Self-help 
 
      B 

Individual 
Counselling  
        C 

Group 
counselling  

    D 

 

AB (3) 

1 79/702 77/694   

2 18/671 21/535   

3 8/116 19/146   

 

 

 

 

 

 

 

AC (15) 

4 75/731  363/714  

5 2/106  9/205  

6 58/549  237/1561  

7 0/33  9/48  

8 3/100  31/98  

9 1/31  26/95  

10 6/39  17/77  

11 64/642  107/761  

12 5/62  8/90  

13 20/234  34/237  

14 95/1107  134/1031  

15 15/187  35/504  

16 78/584  73/675  

17 69/1177  54/888  

ACD (1) 18 9/140  23/140 10/138 

AD (1) 19 0/20   9/20 

BC (1) 20  20/49 16/43  

BCD (1) 21  11/78 12/85 29/170 

BD (1) 22  7/66  32/127 

CD (2) 
23   12/76 20/74 

24   9/55 3/26 

   
 

Our modeling approach is based on the statistical model of Higgins and Whitehead 
7
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10
, although the coding and notation is extended to apply to any MTC structure, 

including those where there is no single treatment to which all other treatments have 

been compared. Readers are referred the original papers and to 
14

 for theory.  

 

To analyse data structures of this sort, our underlying model is: 
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where pjk is the probability of smoking cessation in trial j under treatment k, μjb is the 

log odds of smoking cessation on baseline treatment b in trial j, and δjkb is the trial-

specific Log Odds Ratio of treatment k relative to treatment b. (“k > b” indicates that 

k is after b in the alphabet). We assume a binomial likelihood: 

 

                                                  rjk  ~ Bin(pjk,njk) 
 

Study effects are treated as unrelated nuisance parameters with priors:  

μjb~N(0,10000). We take treatment A as baseline, and the treatment effects of B, C, 

and D relative to treatment A as our basic 
18

 parameters with vague priors: 

                                     

                                         dAB, dAC, dAD ~ N(0,10000) 

 

The remaining contrasts (functional parameters) can be expressed in terms of these 

basic parameters 

 

                   dBC = dAC-dAB;     dBD = dAD-dAB;     dCD = dAD-dAC;  

 

The trial-specific LORs are now drawn from one of the six Random Effects 

distributions : 

                                             δjXY ~ N(dXY,σXY 
2
)      

 

If σ
2
 = 0 we obtain a fixed effects model. For Random Effects,  we make the 

assumption of homogeneous variance: σXY
2 

=σ
2
.  A vague prior is provided for the 

common variance term, for example σ ~ Uniform(0,2). This prior should not be used 

unthinkingly when evidence is sparse 
19 20

, and it may be worth considering 

informative priors based on literature - see 
7
.  For heterogeneous variance models see 

13 14
.  

 

Multi-arm trials on treatments A,B,C  induce a covariance between δjAB and δjAC. 

Under homogeneous variance the covariance is σ
2
/2 

7 10 13
.  

 

 

 

WinBUGS 1.4 Programmes for MTC analysis. 

 

There are currently four programmes available on this website                             

1. FIXED EFFECTS MODEL 

2. SIMPLE RANDOM EFFECTS MODEL  

3. RANDOM EFFFECTS MODEL : up to 3-arm trials 
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4. RANDOM EFFECTS MODEL : multi-arm trials 

 

We provide the full code as text, and the odc files can also be accessed from the 

Mixed Treatment Comparisons web-page and used by anyone with WinBUGS 1.4.3 
21

. This software can be downloaded free of charge from http://www.mrc-

bsu.cam.ac.uk/bugs/welcome.shtml  

 

DATA STRUCTURE 

 

Constants to be entered 

N= Number of arms 

NS = Number of Studies 

NT = Number of Treatments 

 

Labelling the treatments 

The programs below are designed to be completely general, but there are constraints 

on which set of paired comparisons can be represented by basic parameters 
14

. The 

following rules should be adhered to: 

1. The treatments labelled A,B,C, … etc. become treatments number 1,2,3, … etc in 

the WinBUGS code 

2. Choose any treatment as treatment A. (It may be useful if treatment A represents 

„standard care‟).  

3. Set out the trials systematically, as in Table 1, and maintain this order in the 

WinBUGS data listing.  

(a) start with all the trials including treatment A,  

(b) list the AB first, then the AC, AD, etc 

(c) then the trials including B but not A.  

(d) then those including C, but not A or B, etc … 

 

The data list for WinBUGS  

Vectors of length N are set out in columns; each row represents a single arm.  Arms 

from each trial should be consecutive and in alphabetical order. 

 

s[] indicating the study 

t[] the treatment 

r[] the numerator 

n[] the denominator 

b[] the comparator treatment (baseline) for that trial, b[i] ≤ t[i] 

 
list(N=50, NS=24, NT=4) 
 
s[]   t[]   r[]      n[]    b[] 
1    1    79     702    1 
1    2    77     694    1 
2    1    18     671    1 
2    2    21     535    1 
3    1      8     116    1 
3    2    19     149    1  
4    1    75     731    1 
4    3  363    714     1 
5    1      2     106    1 
5    3      9     205    1 
6    1    58     549    1 
6    3   237  1561    1 
7    1       0      33    1 
7    3       9      48    1 

http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml
http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml
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8    1       3    100    1 
8    3     31      98    1 
9    1       1      31    1 
9    3     26      95    1 
10  1       6      39    1 
10  3     17      77    1 
11  1     64    642    1 
11  3   107    761    1  
12  1       5      62    1 
12  3       8      90    1 
13  1     20    234    1 
13  3     34    237    1  
14  1     95  1107    1 
14  3   143  1031    1 
15  1     15    187    1 
15  3     36    504    1 
16  1     78    584    1  
16  3     73    675    1  
17  1     69  1177    1  
17  3     54    888    1   
18  1       9    140    1 
18  3     23   140     1 
18  4     10    138    1 
19  1       0      20    1 
19  4       9      20    1 
20  2     20      49    2 
20  3     16      43    2 
21  2     11      78    2 
21  3     12      85    2 
21  4     29    170    2 
22  2       7      66    2 
22  4     32    127    2 
23  3     12      76    3 
23  4     20      74    3 
24  3       9      55    3 
24  4       3      26    3  
END 
 

 

FIXED EFFECTS MODEL  

 
 
for(i in 1:N)  {     logit(p[s[i],t[i]])<-mu[s[i]]+ d[t[i]] - d[b[i]]                                         # model 
                          r[i]~dbin(p[s[i],t[i]],n[i])  }                                         #  binomial likelihood 
 
for(j in 1:NS)  {   mu[j]~dnorm(0,.0001)}                     # vague priors for 24 trial baselines 
 
d[1]<-0  
for (k in 2:NT)  {d[k] ~ dnorm(0,.0001) }          # vague priors for 3 basic LOR parameters 
 

 

 

SIMPLE RANDOM EFFECTS MODEL  

The simple RE model treats M-arm trials (M>2) without taking account of the 

correlations between the (M-1) trial-specific LORs that they estimate 

 
 

for(i in 1:N)  {      logit(p[i])<-mu[s[i]]+ delta[i]  * (1-equals(t[i],b[i]))                                       #  model  
                           r[i]~dbin(p[i],n[i])                                                                  #  binomial likelihood 
                           delta[i] ~ dnorm(md[i],tau)                          # random effects: trial-specific LORs 
                           md[i] <- d[t[i]] - d[b[i]]   }                                      # means of trials-specific LORS 
 
for(j in 1:NS)  { mu[j]~dnorm(0,.0001) }                                     # vague priors for 24 trial baselines 
    
d[1]<-0 
for (k in 2:NT)  {d[k] ~ dnorm(0,.0001) }                                  # vague priors for basic parameters 
    
sd~dunif(0,2)                                                  #  vague prior for random effects standard deviation   
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tau<-1/pow(sd,2) 
 

 

SOME ADDITIONAL CODE 

Some additional code can be added to each program to: 

 

1. To Form a Baseline 

Add the LORs to the baseline to find the absolute efficacy T[k] of each treatment k, 

given some assumed baseline probability of success on treatment A. The treatment A 

baseline used here is taken from a separate WinBUGS analysis of the 19 treatment A 

arms appearing in the dataset. However, this should NOT be taken as an endorsement 

of such a procedure in general.  A baseline can be defined in many other ways: cohort 

studies, a single trial or set of trials considered to reflect contemporary outcomes 

under treatment A, expert opinion, etc. There is, in addition, the possibility of putting 

a model on the baseline as well as the relative treatment effect, though this runs the 

risk of biasing the treatment effect estimates, if the baseline model is not correct.  
 
# Absolute log odds(success) on Treatment A,  based on a seperate model on the 
#  19 trials Treatment A arms.  
mA ~ dnorm(-2.585,2.763) 
# Absolute pr(success) Treatments B,C,D based on T[1] and the  
#   MEAN  Relative treatment effects  
for (k in 1:NT)   { logit(T[k])<- mA  +d[k] } 

  

2. To Rank the treatments in efficacy, and calculate the probability that each is best: 

best[]. With smoking cessation, higher values of T[] are „better‟. If the data were 

fatalities, for example, this code would require adjustment, otherwise it would give 

the probability that each treatment was the worst. 
 
# Ranking and prob{treatment k is best} 
for (k in 1:NT) { rk[k]<- NT+1 - rank(T[],k) 
                        best[k]<-equals(rk[k],1)} 

 

 

3. Calculate all the pair-wise odds ratios between treatments in the MTC analysis: 

This code generate all the possible LORs and ORs 
  
# pairwise ORs 
for (c in 1:(NT-1)) 
          {  for (k in (c+1):NT)   
                 {  lor[c,k] <- d[k] - d[c] 
                    log(or[c,k]) <- lor[c,k]  
                 } 
           } 

 

 

FULL RANDOM EFFECTS MODELS  

The full RE model takes into account correlation structure induced by multi-arm 

trials. 
7 10

  Although the correlation structure may not make a great difference if the 

number and/or size of multi-arm trials is small, it is advisable to take correlation into 

account.  

 

1. Extension to datasets with  3-arm trials 

Arms belonging to the same trial must appear consecutively in the data list, and a 

further data vector m[]  takes the values 1,2, for the arms of a two arm trials, 1,2,3 for 

a 3 arm, and so on: 
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s[]   t[]   r[]      n[]    b[]  m[] 
1    1    79     702    1   1 
1    2    77     694    1   2 
2    1    18     671    1   1 
2    2    21     535    1   2 
3    1      8     116    1   1 

. 

. 
20  3     16      43    2  2 
21  2     11      78    2  1 
21  3     12      85    2  2 
21  4     29    170    2  3 

 

The code relies on a realisation of the bivariate normal distribution as a univariate 

marginal distribution and a univariate conditional distribution: 

 
sw[1] <- 0 
for(i in 1:N)  {  
       logit(p[i])<-mu[s[i]]+ delta[i]  * (1-equals(t[i],b[i]))                                                          #  model  
       r[i]~dbin(p[i],n[i])                                                                                       #  binomial likelihood 
        delta[i] ~ dnorm(md[i],taud[i])                                                 # trial-specific LOR distributions 
        taud[i] <- tau * (1 + equals(m[i],3) /3)                                    # precisions of LOR distributions 
       md[i] <- d[t[i]] - d[b[i]]  +  equals(m[i],3) * sw[i]                             # means of LOR distributions 
       }             
for (i in 2:N)  {   sw[i] <- (delta[i-1] -  d[t[i-1]] + d[b[i-1]])/2}                    # adjustment for 3-arm trials 
 
for(j in 1:NS){ mu[j]~dnorm(0,.0001) }                                      # vague priors for 24 trial baselines 
    
d[1]<-0 
for (k in 2:NT)  {d[k] ~ dnorm(0,.0001) }                                    # vague priors for basic parameters 
    
sd~dunif(0,2)                                                   #  vague prior for random effects standard deviation   
tau<-1/pow(sd,2) 
 

 

2. General code for multi-arm trials  

 

A completely general programme is given below. Like the above this is based on 

decomposition of multivariate normal as a series of conditional univariate 

distributions. We rely on a more highly structured data listing, including vectors of 

coefficients, and a data layout with each record represent a trial and the columns r[,k] 

and n[,k]  giving numerators and denominators treatment k on each trial, a set of 

indicators t[,] show which treatments were compared, and the number of arms na[]. If 
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# NT=no. treatments, NS=no. studies;   
# NB : set up M vectors each r[,]. n[,] and t[,],  where M is the Maximum number of treatments 
#         per trial in the dataset. In this dataset M is 3. 
 
list(NT=4,NS=24) 
 
r[,1] n[,1] r[,2] n[,2] r[,3] n[,3]  t[,1]  t[,2] t[,3]   na[]    
  9   140   23   140  10 138  1      3     4      3 
 11    78  12     85    29    170 2      3     4      3 
 75  731 363  714    NA   1  1      3   NA    2  
  2   106   9    205    NA    1  1      3   NA    2 
 58  549 237 1561  NA    1     1      3   NA    2 
  0     33   9      48    NA    1  1      3   NA     2 
  3   100  31     98    NA    1  1      3   NA     2  
  1     31  26     95    NA    1  1      3   NA     2 
  6     39  17     77    NA    1  1      3   NA     2 
79   702  77  694    NA    1     1      2   NA     2  
18   671  21  535    NA    1  1      2   NA     2 
64   642   107  761    NA    1  1      3   NA     2 
  5    62    8     90     NA    1  1      3   NA     2 
20  234  34   237    NA    1  1      3   NA     2 
  0   20     9      20       NA    1  1      4   NA     2 
  8  116   19   149   NA    1  1      2   NA     2 
95 1107  143   1031    NA    1  1      3   NA      2 
15  187   36 504     NA    1  1      3   NA      2 
78  584  73 675      NA       1  1      3   NA      2 
69    1177  54 888     NA    1  1     3   NA      2 
20     49  16   43     NA     1  2     3   NA      2 
  7     66   32   127     NA     1  2     4   NA      2 
12   76    20   74        NA     1  3     4   NA      2 
  9    55     3    26     NA     1  3     4   NA     2 
END  
  
#Random effects model for multi-arm trials (any number of arms) 
 
model{ 
for(i in 1:NS){  
         w[i,1] <-0 
      delta[i,t[i,1]]<-0 
      mu[i] ~ dnorm(0,.0001)                                                   # vague priors for 24 trial baselines 
      for (k in 1:na[i])  {  
             r[i,k] ~ dbin(p[i,t[i,k]],n[i,k])                                                     # binomial likelihood 
       logit(p[i,t[i,k]])<-mu[i] + delta[i,t[i,k]] }                                                                    # 
model 
   for (k in 2:na[i]) { 
                 delta[i,t[i,k]] ~ dnorm(md[i,t[i,k]],taud[i,t[i,k]])             # trial-specific LOR distributions 
                 md[i,t[i,k]] <-  d[t[i,k]] - d[t[i,1]]  + sw[i,k]                   # mean of LOR distributions 
                  taud[i,t[i,k]] <- tau *2*(k-1)/k                                    #precision of LOR distributions 
                  w[i,k] <- (delta[i,t[i,k]]  - d[t[i,k]] + d[t[i,1]])          #adjustment, multi-arm RCTs 
                  sw[i,k] <-sum(w[i,1:k-1])/(k-1) }                 # cumulative adjustment for multi-arm trials 
  }    
 
d[1]<-0 
for (k in 2:NT){d[k] ~ dnorm(0,.0001) }                       #  vague priors for basic parameters 
 
sd~dunif(0,2)                                            #  vague prior for random effects standard deviation  
tau<-1/pow(sd,2) 
 
 

An interesting feature of this code is that it can readily be made to generate estimates 

of all the pjk, ie the probability of success on each treatment in each trial. This can be 

contrived by arranging the dataset so that there are 4 four treatments in each trial; 

where a treatment is in reality missing an NA is put into the numerator column, and 1 

into the denominator column. 
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The full random effects models code reflect the fundamental assumption that every 

trial is a sample from a multivariate-normal distribution of the (basic) relative 

treatment effects, with an overlaid  missing at random process. For example, a trial of 

treatments B, C, and D will provide more information about treatment A (in that trial) 

than a trial of just treatments B and C, and this too is captured in the coding.  
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