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Abstract

In this thesis we study, via Monte Carlo simulations, the structural and dynamic prop-

erties of interfaces in simple lattice models driven out of thermal equilibrium. Our main

focus is a driven Ising lattice gas in both two and three dimensions, where an interface

is stabilized by two parallel confining walls at the lower and upper (z) boundaries of the

system. The boundaries in the other directions are taken to be periodic. Simulating using

Kawasaki exchange dynamics, which conserve magnetisation or density locally, and intro-

ducing drive by biasing the transition rates in the x direction, a lateral current parallel to

the interface plane is created. We find that the system reaches a non-equilibrium steady

state, in which interfacial capillary-wave fluctuations are suppressed, and the magneti-

sation profile obeys the scaling form of an equilibrium system, but with a reduced wall

separation; the interface width is also reduced. Static spatial pair correlations along the

interface decay more quickly with distance under drive than in equilibrium, and for weak

driving fields, can be rescaled to the equilibrim result, with a reduced correlation length.

These results imply that the effect of drive upon the structure of the interface is the same

as that of increasing the degree of confinement in equilibrium.

Turning to dynamics, we find that the space-time interface height correlation function

shows evidence of thermal capillary wave transport in the drive direction, when the order

parameter current profile has a component which is an odd function of distance z from the

interface. This is the case for a linearly varying shear-like driving field F (z), for example,

but not for spatially uniform drive. Simulation results for a driven discrete Gaussian

effective interface model, and a conservative, driven Blume-Capel (spin-1) model, also

reveal transport of interfacial fluctuations, with the same criterion. We are able to measure

the dispersion relations of the moving waves, and relate these to linear transport operators.

These results for the structure and dynamics hold in two and three dimensions for the

Ising model. We compare our results to recent experimental and theoretical studies of

driven interfaces, finding a mix of agreement and disagreement. In the 3d Ising model we

also investigate the interplay between the drive and the equilibrium roughening transition,

finding that the effective-confinement picture ceases to apply, but that transport still

occurs. Finally, we report some explorations into intriguing instability-related phenomena

discovered in the driven Blume-Capel model simulations.
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Chapter 1

Introduction

Man’s desire to study and understand interfaces stems in the first instance from their

presence all around us. Indeed, when we look around, surfaces and interfaces form almost

all that we see. Study of interfaces is also useful. A primary modern example is the growing

field of micro- and nano-fluidics, where surface-to-volume ratios can be several orders of

magnitude larger than in macroscopic systems [1]. The consequential enhancement of

interfacial effects may be exploited. Pinned micro-fluidic interfaces can be used to create an

environment for chemical reactions to occur, for example to create polymer walls [1]. This

is just one of many micro-fabrication processes depending crucially on interface behaviour

– other examples include growth of silver nanowires [2] and microscopic polymer strings

[3]. Of particular practical importance are interfaces in non-equilibrium systems – the vast

majority of systems, both those occurring naturally, and those created by man, are not in

thermal equilibrium, but possess currents. Non-equilibrium interfaces occur in applications

such as crystal and dendritic growth, in deposition processes, and in the propagation of

flame fronts [4], as well as in the aforementioned micro-fluidic systems (in such systems,

fluids often need to be transported, so driven interfaces are particularly relevant).

Returning to a fundamental perspective, interfaces present an abundance of interesting

problems, even in equilibrium: wetting [5], roughening [4], the effect of confined geometries

[6, 7], fluctuations, and even the very definition of the interface itself [8, 9]. Driving out

of equilibrium adds a whole new treasure-trove of investigative opportunities, for example

phase separation under drive [10], interplay with the roughening transition (for example,

non-equilibrium deposition processes and roughening in 4He [4, 11]), and the effect of

drive on the structure and dynamics of the steady-state interface. It is this last question

1



2 CHAPTER 1. INTRODUCTION

this thesis attempts to address, for some simple lattice models, via Monte Carlo (MC)

simulations.

The understanding of interfacial behaviour has advanced by the now-standard com-

bination of theory, experiment, and computer simulation. On the experimental side, the

traditional methods are light and X-ray scattering, which give a Fourier-space description

of the interfacial structure. Recently it has become possible to directly (i.e., in real space)

observe interfaces of colloidal systems via confocal microscopy [12, 13], due to their very

low surface tension and consequently slow dynamics. This approach is extremely attrac-

tive to those who live in real space! The studies carried out here are partly motivated by

such an experiment [13], which we shall discuss later.

Theoretical approaches to the study of equilibrium interfaces may be classified into

three categories or levels [14]. Firstly, microscopic theories attempt a “full” description of

the system in question, by constructing a Hamiltonian for the individual degrees of freedom

(e.g. molecules or Ising spins) and calculating the partition function. Thus bulk-interfacial

coupling is automatically taken into account – this is the ideal approach, but of course

is not usually practical for systems of interest or relevance. A notable exception is the

two-dimensional Ising model, for which exact results are available. The second method

is density functional theory [15]: one starts from an order parameter density field and

constructs a free energy functional – minimization then yields the equilibrium properties

(both bulk and interfacial). The difficulty is that the exact free energy functional is not

usually known, so approximations must be made – the accuracy of the results depends

on how sophisticated these approximations are, and how well they fit the model at hand.

Nevertheless, results can be excellent. The third angle of attack is to treat only the

interfacial degrees of freedom explicitly. One constructs an effective interface Hamiltonian

which is a functional of the displacement h(r) of the interface from a reference plane:

H = H[h(r)], where r is a vector parallel to the reference plane. Bulk degrees of freedom

are supposed to have been integrated out (into the parameters of the Hamiltonian) – this

is generally not explicitly done since then we would be back to the other two approaches!

The relative simplicity of this approach is a great advantage, although capturing bulk-

interfacial coupling is naturally problematic. Capillary wave theory, which we discuss in

Sec. 2.3, is an example of this third approach.

The most dramatic change in recent times has been in computer simulation. Raw

computing power has increased dramatically, while costs have dropped – the combination
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of this “brute-force” advance, as well as the development of new algorithms, has meant that

accurate, large-scale simulations of systems with interfaces are now possible. Approaches

are diverse, from more (or less) realistic modelling of inter-particle and external potentials,

and integration of the equations of motion, as in molecular dynamics, to more abstract

lattice models simulated by Monte Carlo methods (and everything in between). One

important advantage of computer simulations, at least currently, is the relative ease of

obtaining results for non-equilibrium systems, as compared to via theoretical methods.

This is in large part due to the lack of a general statistical-mechanical framework out of

equilibrium, which is of course sought by workers in the field [16], and hopefully at some

point will become a reality.

In the next chapter we discuss some important aspects of the theoretical description

of equilibrium interfaces, which will be of use later.
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Chapter 2

Theoretical background:

equilibrium interfaces

The main focus of this chapter is to review the capillary wave theory description of inter-

facial fluctuations, and discuss its predictions. To prepare for this we first introduce some

thermodynamics.

2.1 Gibbs dividing surface

It is useful to define the position of an ideal (sharp) dividing surface between two fluid

phases separated by an interface. In this picture, the order parameter profile (density for

a one-component fluid, or number density difference in components na − nb for an A-B

binary mixture, or magnetisation for an Ising system) is step-like, changing abruptly from

its bulk value in one phase to its value in the other. Of course, this is not really the case

– rather, the Gibbs dividing surface is a useful way of defining the surface tension and

excess surface densities of various quantities. In particular, the choice of dividing surface

is made so that the surface tension is equal to the excess free-energy per unit area of the

interface. To choose a concrete example for exposition, we consider a liquid-gas system in

three dimensions, and following Ref. [17] start from

Vlnl + Vgng +Ni = N

Vlel + Vgeg + Ei = E

Flfl + Fgfg + Fi = F. (2.1)

5
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INTERFACES

Here the symbols V , N , E, F are volume, particle number, energy, and Helmholtz free

energy. The lower case n, e and f are the corresponding densities (per unit volume). The

subscripts g, l and i stand for gas, liquid, and interface, respectively. In fact we will seek

Ni = 0, the criterion defining the Gibbs dividing surface. The Gibbs-Duhem relation is

[17]

F = −PV + σA+ µN, (2.2)

where P is the pressure, σ the surface tension, A the interfacial area, and µ the chemical

potential (which is equal in the two phases in equilibrium). For the interface, this becomes

Fi = fiA = σA+ µNi, (2.3)

as the interface has no volume here. Since no coordinates have been specified, we choose

the dividing surface to be at z = 0, for convenience. We also assume that the system

is isotropic and homogeneous in the directions parallel to the interface, so that the only

density dependence is on z. Then the following equation defines the number of particles in

the interfacial region (that is, the number of particles not accounted for by the assumption

of a sharp step profile), Ni:

Ni = A

∫ 0

−∞
dz [n(z)− nl] +A

∫ ∞
0

dz [n(z)− ng] , (2.4)

where n(z) is the true, inhomogeneous, number density. The Gibbs dividing surface corre-

sponds to satisfying Ni = 0, and thus from (2.3), fi = σ: the surface tension is the excess

Helmholtz free-energy per unit area of the interface. Having set out some thermodynam-

ics and defined an ideal dividing surface, we now turn to the statistical mechanics of the

interface.

2.2 The order parameter profile and intrinsic interface

The Gibbs dividing surface is just one choice for the more general concept of an intrinsic

surface h(r) [8, 18, 19] defined to be the instantaneous boundary (i.e. in one particular

configuration) between two phases. Here r are the (d − 1) coordinates parallel to the

interface plane (as before, the perpendicular coordinate is z), in a d-dimensional system.

As before we use the example of a liquid-gas system, with order parameter n(z), the

number density. The instantaneous microscopic density is, formally,

n(R, t) =
∑
i

δ(R−Ri(t)), (2.5)
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where R = (r, z). The average order parameter profile is then obtained by a phase-space

average:

n(z,A) =
〈

1
A
n(R, t)

〉
. (2.6)

Using the intrinsic surface, we may define an intrinsic density profile:

ñ(z;h) =

〈
1
A

∑
i

δ(R−Ri + [0, 0, h(r)])

〉

=
〈

1
A
n(R + [0, 0, h(r)] , t)

〉
. (2.7)

This is the statistical average of the particle density, relative to the reference surface

defined by h(r), and so depends on the choice of intrinsic surface. Averaging over the

realizations of the intrinsic surface should then give the average profile defined in (2.6).

The intrinsic profile ñ(z) is, as its name implies, a property of the phase equilibrium itself,

independent of the interfacial area, whereas the total profile n(z) does depend on the

system size. Density-functional type theories – the simplest of which is the venerable van

der Waals [20, 21] theory of the interface, may be viewed as giving results representing

the intrinsic profile; for a Lennard-Jones fluid near its triple point, van der Waals theory

gives an interface width (the length scale over which the density goes from approximately

that of one bulk phase to the other) of 2-3 molecular diameters [22], which is of the order

of the bulk correlation length ξb. Thus the intrinsic profile is rather sharp, essentially

a broadened step function [18]; for any particular dividing surface h, the density varies

rapidly towards the bulk densities as we move away from the dividing surface. However,

the surface h(r) itself fluctuates, with an extent controlled by surface tension, system size,

and external fields. The fluctuations of the dividing surface are thus the origin of the

dependence of the full profile n(z) upon system size – we investigate these in the next

section.

Usually it is (reasonably) assumed that the intrinsic profile (2.7) obtained for a partic-

ular h(r) is in fact independent of h(r) [18]. Then we can make the relationship between

the various quantities explicit, because the full profile will be given by a convolution of

the intrinsic profile and the probability distribution of h(r):

n(z,A) =
∫
ñ(z − h)P (h) dh

=
∫ 〈

1
A
n(R, t |h)

〉
P (h) dh, (2.8)
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where in the last line 〈n(R, t |h)〉means the averaged microscopic density for a given, fixed,

h(r). As mentioned, the intrinsic profile is calculable from density-functional theories – a

natural question is whether one can access it in simulations or experiments – and whether

doing so is useful. Measuring the intrinsic profile in a robust way is indeed desirable,

from the point of view of constructing a coherent quantitative description of the interface

profile [8, 19] – i.e., connecting density-functional results (microscopic) with those of the

interface Hamiltonian approach (mesoscopic, capillary wave theory). Chacón et al. have

developed an “intrinsic sampling method” [8, 19] which aims to find the intrinsic profile.

In this thesis our concern is the average behaviour, including the fluctuations of the

intrinsic surface, so we do not need to employ elaborate methods to deconvolve the different

contributions – to determine the profile, we simply measure the average of the density at

each z coordinate. The question of how to define the intrinsic surface – the boundary

between the two phases – remains. This will be discussed when we introduce the main

simulation model in Chapter 7.

2.3 Capillary wave theory

We now assume we have some prescription for the location of the intrinsic surface h(r) =

h(x, y) dividing two phases in a three-dimensional system, where x and y are coordinates

in the lateral (interface) plane. Let the mean position of the interface be at z = 0, where z

is the vertical coordinate, perpendicular to a flat interface. The function h(r) will usually

be referred to as the interface height. The objective of capillary wave theory (CWT) is to

describe the thermal fluctuations of the interface, which cause it to distort, and wander

in space – see Fig. 2.1 for an idealised illustration. We therefore construct an interface

Hamiltonian H, which gives the excess energy associated with these movements. This

means that CWT falls into the third class of theories mentioned earlier – bulk degrees

of freedom are not considered. The prediction of thermal fluctuations at a liquid-vapor

interface seems to have first been made by Smoluchowski [23]. Mandelstam [24] then

developed these ideas into a theory of thermal “capillary waves”. This theory was then es-

sentially rediscovered by Buff, Lovett and Stillinger [25] without reference to Mandelstam’s

work (although, interestingly, with passing reference to Smoluchowski). Subsequent work

developed the theory more formally. Here we follow the treatments of Refs. [26–28].

The Hamiltonian H = H[h(r)] consists of contributions due to work against surface
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h=0

h

x

y
z

Figure 2.1: Interfacial fluctuation as treated by capillary wave theory, in a three-

dimensional system. The undulations depicted here are idealised – in reality the amplitude

may also of course change with y: h = h(x, y).
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tension, and work against external field(s). For clarity of exposition and continuity with

the interfacial thermodynamics above, we consider a liquid-gas system in a gravitational

field, and unconfined by walls. The description is readily generalized to other order pa-

rameters (e.g. for a spin system), or confined situations, as we will discuss later. For an

infinitesimal area dx dy, the work against gravity required to create a “bump” of liquid

phase of height h(x, y) above z = 0 is

∆Wg = dx dy

∫ h

0
dh′ g(ρl − ρg)

=
1
2
dx dy g(ρl − ρg)h2. (2.9)

Here ρl and ρg are the mass densities in the bulk liquid and gas phases, respectively,

and g is the acceleration due to gravity. Physically, to create a liquid “bump” of volume

dV = dx dy dh′, one has to add mass (ρl − ρg)dx dy dh′ to the volume. The total work is

then given by the integral up to the desired height h. The work against surface tension

is due to increases in area [29] caused by distorting the interface surface from its ground

(flat) state:

∆Wσ = σdx dy

(√
1 + |∇h(r)|2 − 1

)
. (2.10)

In CWT, the square root is simply approximated to first order – physically this means

that local interface distortions are assumed to be small: ∂h
∂x , ∂h

∂y � 1. The full interface

Hamiltonian is then

H =
∫ ∫

dx dy

(
σ

2
|∇h(r)|2 +

1
2
g(ρl − ρg)h2

)
, (2.11)

where the integrals cover the whole interface area. As argued by Bedeaux and Weeks

[27], H should come about when short-wavelength degrees of freedom present in the full

Hamiltonian for the system have been integrated out. It is possible to make this concept

more precise by considering the columnar picture of Weeks [9]. The system is viewed

as an array of columns, each of transverse dimensions ∼ ξb, the bulk correlation length.

The partition function can then be written as a sum of constrained partition functions,

each with a particular set of column heights {hi}. These constrained functions can be

used to define an interface Hamiltonian, whose continuum limit is (2.11). This picture

is sensible when distortions of the interface on the scale of ξb are not allowed, since the

height is constant within a column – thus providing a natural short-wavelength cutoff in

the theory. For further details of this approach see Ref. [9]. We now take h(r) to be
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periodic on a square of side L and expand it in a Fourier series:

h(r) =
kmax∑

k = kmin

hk exp(ik · r), (2.12)

where k = (kx, ky). We discuss the limits of the sum in a moment. Using Parseval’s

identity, we can then write (2.11) in Fourier space:

H =
1
2
L2

kmax∑
k = kmin

|hk|2
(
g(ρl − ρg) + σk2

)
, (2.13)

where k = |k|. The low wave vector limit in the sum is set by the system size: kx,min, ky,min =

2π/L, corresponding to the longest wavelength mode allowed. From the previous discus-

sion, the upper limit should correspond to the length scale below which the interfacial

description does not apply, i.e., kmax ≈ 2π/ξb. This is also consistent with the require-

ment of small local gradients. Eqn. (2.13) is quadratic in the Fourier height components

hk, so we can invoke the equipartition theorem: the thermally averaged energy associated

with each mode is kBT/2, where T is the temperature and kB the Boltzmann constant.

Hence 〈
|hk|2

〉
=
kBT

σL2

1
k2 + ξ−2

‖
, (2.14)

where the angles indicate an ensemble average. Using equipartition is equivalent to per-

forming the Gaussian integrals involved in the explicit calculation of
〈
|hk|2

〉
– the Gaus-

sian nature of the Boltzmann factors means that the average is straightforward to calculate.

Eqn. (2.14) introduces an important new quantity with the dimensions of length:

ξ‖ ≡
√

σ

g(ρl − ρg)
. (2.15)

ξ‖ is the lateral correlation length, or capillary length – as the name implies, it measures

the range of correlations along the interface. This is a crucial length scale in the problem,

and will appear in all the results for quantities of interest. Armed with the Fourier space

description of H, we are now in a position to calculate observables of interest.

2.3.1 Interface width

We first calculate the width w of the interface. This may be defined as the root-mean-

square height displacement: w ≡
√
〈h2〉. To aid calculation, we convert the sum over
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wave vectors to an integral, using the density of modes in Fourier space. This yields an

integral which can be done by inspection; the result is

w2 =
kBT

4πσ
ln

[
k2

max + ξ−2
‖

k2
min + ξ−2

‖

]
(d = 3). (2.16)

Eqn. (2.16) has interesting asymptotic properties. Firstly, if gravity is turned off, then

ξ‖ → ∞, so w2 ∼ ln(kmax/kmin), which diverges as ln(L) as L → ∞. This means that

in zero gravity, the interfacial width is infinite in the thermodynamic limit. Secondly, if

L→∞ first, then

w2 =
kBT

4πσ
ln(k2

maxξ
2
‖ + 1)

∼ ln(ξ‖), L→∞, g → 0, (d = 3) (2.17)

Thus whichever way we take the limits g → 0, L → ∞, the width is divergent – put

another way, the order parameter (density) profile is completely “washed out”, dρ/dz = 0.

This prediction is in contrast to that of density-functional approaches, where one ob-

tains a width which is finite in the limit of infinite system size and zero gravity. As

mentioned above, one may view these microscopic theories as giving profiles representa-

tive of the intrinsic profile, incorporating bulk fluctuations, while in CWT we are instead

describing the fluctuations of the dividing surface. Making this statement precise is not

easy, due to the question of the choice of cutoff kmax, whose exact value is still somewhat

arbitrary, and the question of exactly which fluctuations are incorporated into the two

approaches, in order to avoid “double-counting”. Further discussion of these issues may

be found in Ref. [30], where the authors use a density-functional theory to then construct

an improved interfacial Hamiltonian.

We now return to the capillary wave predictions. The analysis above may be carried

out for systems in any dimension – for a two-dimensional system (1d interface: a line) one

finds for the width

w2 =
kBTξ‖

2πσ
[
arctan(ξ‖kmax)− arctan(ξ‖kmin)

]
(d = 2). (2.18)

In the limit L→∞ the second term vanishes. In the limit of small g, we can approximate

the first arctan term by its asymptotic value π/2, since ξ‖ � k−1
max in this limit. Then we

have

w2 ∼ kBT

4σ
ξ‖, L→∞, g → 0, (d = 2) (2.19)



2.3. CAPILLARY WAVE THEORY 13

Thus the width is again divergent in the infinite system, zero gravity limits; the divergence

as g → 0 is much stronger than in three dimensions – linear as opposed to logarithmic.

This suggests that capillary-wave fluctuations are much stronger in 2d, and that d = 3 is

the marginal dimension (logarithmic divergence). Indeed this is confirmed if one treats

the problem in arbitrary dimension d [27] – for d > 3, the width is independent of ξ‖, and

so remains finite in the thermodynamic limit, in agreement with mean-field results.

2.3.2 Height correlation function

The spatial height-height correlation function gives information about the interfacial struc-

ture on the two-point level:

C(r) ≡
〈

1
L2

∫
dr′ h(r′)h(r′ + r)

〉
, (2.20)

where the integral is over the whole interface, and the angles denote an ensemble average.

Note that since 〈h〉 = 0, C should decay to zero for r → ∞ without the subtraction of a

〈h〉2 term. We can show that (2.14) are coefficients of the Fourier series expansion of this

function. Firstly, by definition,

C(r) =

〈
1
L2

∫
dr′
∑
k

hke
ik·(r′+r)

∑
k′

hk′e
ik′·r′

〉
(2.21)

Since h is real, taking the complex conjugate of it leaves it invariant, so we have

C(r) =

〈
1
L2

∫
dr′
∑
k

hke
ik·(r′+r)

∑
k′

h?k′e
−ik′·r′

〉

=

〈
1
L2

∫
dr′
∑
k,k′

hkh
?
k′e

ik·rei(k−k′)·r′
〉

=

〈
1
L2

∫
dr′
∑
k

hke
ik·r
∑
k′

h?k′e
i(k−k′)·r′

〉

=

〈
1
L2

∑
k

hke
ik·r
∑
k′

h?k′

∫
dr′ ei(k−k′)·r′

〉

=

〈∑
k

hke
ik·r
∑
k′

h?k′δkk′

〉
=
∑
k

〈
|hk|2

〉
eik·r. (2.22)

In going from the fourth to the fifth line, we used the resolution of the Kronecker delta in

terms of an integral (see Ref. [31] Chapter 5). Thus the Fourier coefficients of the corre-

lation function expansion are just the expectation values of the absolute values (squared)
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of the Fourier coefficients for the height. This is useful, because we can substitute using

(2.14), and convert to an integral:

C(r) =
kBT

σL2

L2

4π2

∫
kmin<|k|<kmax

dk
k2 + ξ−2

‖
eik·r (2.23)

To proceed, a transformation to polar coordinates is made. In the limit kmin → 0, kmax →

∞, the required integrals may be found in tables [32]. Sending the lower limit to zero is

not a problem, since one is interested in the limit of infinite system size anyway. However,

we explicitly stated earlier that CWT does not apply for all k – fluctuations on the scale

of the bulk correlation length cannot be treated. Therefore we cannot simply send kmax

to infinity in good conscience. Mathematically, the integral is divergent for r = 0 in

dimensions d ≥ 3. Physically, C(0) = 〈h2〉 should give the squared interface width (see

the previous section), and so should only diverge when ξ‖ becomes infinite. The resolution

is to regularize the integral by introducing a shifted spatial variable [27, 33, 34], where

the shift is related to the length scale corresponding to kmax. Then the upper limit on the

integral may be sent to infinity, because for k greater than kmax, the rapid oscillations of

the integrand ensure no contribution. The result for a three dimensional system is

C(r) =
kBT

2πσ
K0

(√(
r

ξ‖

)2

+ λ2

)
, (2.24)

where K0 is the modified Bessel function of the second kind, and λ ≈ 1/(kmaxξ‖) is the

shift [27, 35]. The presence of λ ensures that the correlation function does not diverge at

zero separation. For small arguments, K0(z) diverges as − ln(z), while in the other limit,

there is exponential decay; the capillary length ξ‖ controls the range of correlations.

2.3.3 Confinement

In the previous sections, we have considered an unconfined liquid-gas interface in a grav-

itational field. In the simulations described later, we wish to model a confined interface,

where the system is constrained by two (upper and lower) walls at some separation Lz

– see Fig. 2.2a for an illustration. Such systems are relevant experimentally, particularly

with the growth of nano-fluidics, mentioned earlier, as well as being of theoretical interest

due to the new behaviour resulting from interactions between walls, interface and bulk.

To describe this situation, CWT should be modified to take into account the presence of

the walls. Since we shall be simulating a spin system in zero external (static) magnetic
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field, the gravitational potential term is not applicable. Instead, we know that the inter-

facial fluctuations will be limited by the walls, due to entropic effects: excursions of the

interface to the vicinity of one wall are entropically unfavourable, because the interface

has less freedom to fluctuate in this position (it cannot pass the impermeable wall), as

compared to further away. Thus it is natural to add a potential to the Hamiltonian H to

model this effect. Consider a potential V (h) which we expand in powers of h about the

mean position h̄:

V (h) = V (h̄) + (h− h̄)
(
dV

dh

)
h=h̄

+
1
2

(h− h̄)2

(
d2V

dh2

)
h=h̄

+ . . . (2.25)

The first derivative is zero at the mean position, so ignoring the constant term, the leading

contribution is

1
2
h2

(
d2V

dh2

)
h=0

, (2.26)

where we have let the mean position lie at h = 0 (as in the preceding discussion of CWT).

Recalling the gravitational contribution Eqn. (2.9) to the unconfined CWT Hamiltonian,

we see it is of the same parabolic form as Eqn. (2.26). Thus for any potential which we can

expand as in (2.25) (with non-zero second derivative at h = 0), we will obtain a leading

h2 dependence on the interface height. Now we may write the CWT Hamiltonian in a

general form using (2.26):

H =
∫
dr
{
σ

2
|∇h(r)|2 +

1
2
h2

(
d2V

dh2

)
h=0

}
. (2.27)

In this form we may apply the theory laid out previously to any situation which may be

modelled by some appropriate choice of the potential V (h). We may immediately identify

the lateral correlation length by comparing (2.27) and (2.11), and using (2.15):

ξ−2
‖ =

1
σ

(
d2V

dh2

)
h=0

, (2.28)

and the results for the width and height correlations apply unchanged.

An accepted explicit form of potential in d = 3 [7, 36, 37] for walls which have a short

range interaction with the bulk phases is

V3d(h) ∝ exp (−κ (Lz/2 + h)) + exp (−κ (Lz/2− h)) , (2.29)

where the h = 0 plane is taken to be at the midpoint between the walls – each term

represents the contribution from one wall (we have assumed that the effects of each wall
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are separable in this way). The constant κ is the decay rate for the potential away from

the walls; in mean-field theory κ = 1/ξb [36, 38]. Expanding in powers of h (or using

(2.26)), the first non-constant term goes as h2, as expected:

V3d(h) ∝ exp (−κLz/2)κ2h2. (2.30)

For this potential, the explicit form of the lateral correlation length is

ξ‖ ∝
√
σ

2
κ−1 exp(κLz/4), (d = 3) (2.31)

corresponding to Eqn. (2.15) in the unconfined case. Notice that ξ‖ scales exponentially

with the wall separation. We can now see the behaviour of the interface width in a confined

system; for d = 3, in the limit L→∞ (long lateral dimension), using (2.17) we have

w2 =
kBT

4πσ
ln(k2

maxξ
2
‖ + 1)

∝ Lz, (kmaxξ‖)
2 � 1. (d = 3) (2.32)

In d = 2, an appropriate potential from the walls is [7]

V2d(h) ∝ 1
(Lz/2− h)2

+
1

(Lz/2 + h)2
, (2.33)

giving, via (2.28),

ξ‖ ∝ L2
z (d = 2). (2.34)

The leading contribution to the interface width (2.18) for L→∞ will then be

w2 ∼ ξ‖ ∼ L2
z (d = 2). (2.35)

In both cases, the interfacial width scales as a power of the wall separation Lz; the de-

pendence is stronger in d = 2 than in d = 3. Note that in both cases the limit L → ∞

has been taken – if one wants to access this regime in a finite (simulation) system, care is

required to ensure that L� Lz. We will see evidence of crossover between regimes in the

3d results presented later.

Before moving on, some of the great variety of phenomena that occur in confined

situations should be mentioned. The nature of the wall-particle interactions is important

in determining the phase behaviour of confined systems. For example, in colloid-polymer

mixtures, where phase separation into a colloid-rich (liquid-like) phase and a polymer-rich

(vapour-like) phase can occur for suitable system parameters, confinement by simple hard
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walls can bring about an effective attraction of the colloids to the walls. This is due to the

depletion effect – when colloids are closer than about twice the polymer radius of gyration

to the walls, it is entropically favourable for the polymers to evacuate this area, and for

the colloids to move next to the wall, since the polymers will have more freedom to explore

different configurations. Monte Carlo simulations of the Asakura-Oosawa model of colloid-

polymer systems [39, 40] confined between hard walls have shown capillary condensation

[41] of the colloidal liquid to occur, due to this effect – that is, the wall attraction is able

to stabilise the colloidal-liquid phase at statepoints which in bulk would be colloidal-gas

(the binodal is shifted).

Subsequent studies have considered the same system, but with different colloid-wall

interactions. Vink et al. [42] found that it was possible to essentially cancel the depletion

effect by making the walls repel colloids at short ranges, with an appropriate choice of the

strength of the repulsive potential. Fortini et al. [43] considered semi-permeable walls,

where the polymers may pass a small distance, but the colloids may not; this is like an

infinite repulsive colloid-wall potential. In this limit, capillary evaporation, the opposite

of condensation – stabilisation of the gas phase within the liquid region of the bulk phase

diagram, was observed. Asymmetric walls, which each have different interactions with

the colloid, are of particular interest. Parry and Evans [38] studied the phase behaviour

of a generic fluid (or Ising magnet) confined between walls with opposing fields, via a

Landau free energy functional. In the semi-infinite system (Lz = ∞, walls infinitely far

apart), complete wetting, an infinitely thick layer of the phase favoured by the wall, occurs

at a temperature Tw, where the transition may be of first or second order depending on

the surface field. In the confined system, for temperatures above Tw but below bulk

criticality, coexistence between two phases occurs, separated by an interface with average

position midway between the walls [38, 44]. The location of Tw may be altered by changing

the magnitude of the wall fields, and may be sent arbitrarily far below the bulk critical

temperature for large enough fields. As the temperature passes through Tw, an interface

localization-delocalization transition occurs – for T < Tw, the interface becomes localized

to the vicinity of one wall; this transition has been studied in Ising [7, 45] as well as

colloid-polymer [46] systems.

From the above overview, it should be clear that a rich array of phenomena can occur

in confined fluid systems – far more than may be explained properly here, and instead the

reader is referred to review articles [47, 48] covering both Ising-like and colloid-polymer
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systems.
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h=0

V(h)
Lz

-L /2z L /2z

(a) (b)

h=0

Figure 2.2: (a) Confined system with an interface – this could be a two-dimensional system,

or a slice through a three-dimensional one. (b) Parabolic potential V (h) with a minimum

at the mean interface position, midway between the walls.
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Chapter 3

The Ising Model

3.1 History and definition

The Lenz-Ising model is unquestionably an important model in condensed matter physics

– indeed, it is rather difficult to avoid it in some guise or another. This last statement is

a clue to why the model is so widely used – when cast in different ways, the Ising model

captures the essence of many problems on an idealized level. The most obvious (and the

original) of these is ferromagnetic behaviour; others include the description of binary alloys,

liquid-gas systems, and more generally “cooperative phenemona”, i.e. complex, non-trivial

collective behaviour exhibited by a system of many simple components. A brief discussion

of some of these applications of the Ising model will be given in the following.

The key characteristics of the Ising model as known today were conceived by Wilhelm

Lenz, and his student, Ernst Ising, in the 1920s. These are the assumption of elementary

magnets on a lattice which may turn over or flip between two orientations, the existence

of interactions which favour alignment of these magnets, and that these interactions are

short-ranged. The reader might notice that in the first sentence of this chapter we used

the term “Lenz-Ising model”, then reverted to the much more common “Ising model”;

as pointed out by Niss [49] (the historically curious reader might be interested to read

this nice account of the history of the Ising model, as well as its sequel [50]) the former

name was actually preferred by Ising, and is probably the fairer, since Lenz introduced

the “flipping” assumption in a paper in 1920 (Ising’s thesis came in 1924), and must

certainly have contributed to the further details of the model. In any case, we revert to

simply “Ising model” hereafter, for familiarity and brevity (quite possibly the reason for

21
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the shorter name’s popularity!). Let us now define the basic model.

On lattice sites i, of which there are N in total, sit “spins” σi, which may take values

±1. In the magnetic picture, the two states correspond to actual spin states of an electron:

oriented “up” and “down” respectively. Nearest-neighbour spins on the lattice interact

via a coupling constant J with units of energy. Two aligned spins contribute −J to the

internal energy of the system; opposite spins contribute +J . Thus if J > 0, aligned spins

lower the energy and the system is ferromagnetic. We shall not consider antiferromagnetic

Ising models (where J < 0), which are also studied. We also ignore quantum-mechanical

effects – in any case, for the lattice-gas mapping we consider later, these are negligible.

The whole system may also sit in an external field B, which couples to all the spins. All

this may be described mathematically by the Ising Hamiltonian

H [{σi}] = −J
∑
〈ij〉

σiσj −B
∑
i

σi, (3.1)

where the angles indicate that the first sum is only over nearest-neighbour (interacting)

pairs. The dependence on the values of the spin variables is explictly indicated on the left

hand side here. The lattice may possess any number of dimensions d, the most relevant

of which, d = 3, is also the trickiest to deal with. For the most part we will consider 2d

square lattices and 3d simple cubic lattices in the following.

In equilibrium statistical mechanics, given the Hamiltonian and nature of the lattice

(dimensionality, geometry, boundary conditions), in principle one can proceed to calculate

the partition function in the thermodynamic limit, and from this, obtain results for all

static observables as derivatives of it. In practice, this is only possible under certain

conditions. For example, in one dimension, the Ising model is solvable with or without

a field [17]; indeed the solution of the one-dimensional model was the primary topic of

Ising’s 1924 thesis and paper of the following year. In two dimensions on a square lattice,

an exact solution is only available for the case B = 0 [51] – the celebrated Onsager result.

Rudolf Peierls had proved the existence of ferromagnetism in the 2d Ising model at low

temperatures in 1936, but did not have a solution. Kramers and Wannier, in 1941, had

found the critical temperature Tc where ferromagnetism sets in, but Onsager was able to

find the partition function. In three dimensions, no exact solution has been found at all.

Despite this, much is known in two and three dimensions from approximate theoretical

approaches, for example mean field theory, series expansions and renormalization group

methods [17, 52, 53], and from Monte Carlo simulations [54–56]. We now ask – what have
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these varied methods helped to discover that makes the Ising model so interesting?

3.2 Phase transition

The most important feature of the Ising model is the existence (or lack thereof, depending

on dimensionality) of a second-order phase transition (in the thermodynamic limit) from a

state of zero average magnetisation to one with a non-zero spontaneous magnetisation msp,

in the limit of the external field B going to zero. Firstly we define the thermally-averaged

magnetisation per site:

m ≡ 1
N

〈∑
i

σi

〉
, (3.2)

where the angles indicate an ensemble/thermal average over all states available to the

system. Equilibrium statistical mechanics prescribes Boltzmann probabilities,

ps =
e−βHs

Z
(3.3)

for the states s – that is, weighted according to their energy, with lower energy states

being more probable. Here β ≡ 1/kBT , where T is the temperature of the system, and kB

the Boltzmann constant. Hs refers to the Hamiltonian (3.1) evaluated for state s. The

normalisation factor Z is of course the partition function:

Z(β) =
∑
s

e−βHs , (3.4)

where the sum is over all states. The Helmholtz free energy F is related to the natural

logarithm of the partition function:

F = 〈E〉 − T 〈S〉 = −kBT lnZ, (3.5)

where 〈E〉 and 〈S〉 are the expectation values of the energy (Hamiltonian) and the en-

tropy, respectively. In equilibrium, F attains its minimum value. Expectation values of

observables, such as (3.2), of a system in equilibrium may be obtained by performing an

ensemble average, that is, a weighted average over all states:

〈A〉 =
∑
s

As ps =
1
Z

∑
s

As e
−βHs , (3.6)

where A is an arbitrary observable, and As is the value of A in the state s. In passing

we remark that (as mentioned above) properties of the system, such as magnetisation per
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site, may also be written as derivatives of the partition function (or equivalently, the free

energy):

m =
1
Z

∑
s

(
1
N

∑
i

σi

)
e−βHs

=
1
βN

∂ lnZ
∂B

. (3.7)

Returning to the spontaneous magnetisation, we can now define this as (noting the order

of the limits)

msp = lim
B→0

lim
N→∞

m. (3.8)

The thermodynamic limit of an infinite system, N →∞, has been taken here. The quantity

msp is the order parameter for the Ising transition, since it is zero in the disordered, high

temperature, phase, and non-zero in the ordered phase. Interpreting (3.8) physically, the

external field is made arbitrarily small, but the system retains unequal numbers of up and

down spins on the average. If this is the case, the up/down symmetry has been broken, and

spontaneous symmetry breaking has occurred: although for B = 0 the Hamiltonian (3.1) is

invariant under the operation of flipping all spins, H [{σi}] = H [{−σi}], the expectation

value of the magnetisation, msp, is not invariant since it is non-zero. The limit N → ∞

is crucial for theoretical work, since in a finite system, there is no true phase transition,

because the partition function Z and the resultant free energy remain analytic [31]. This

is why the order of the limits in Eqn. (3.8) was important – if we had taken the field

to zero before taking the thermodynamic limit, then the magnetization would just be

zero. Fortunately all this does not mean studying finite systems (as done in simulation) is

useless; one has a pseudo-phase transition, where although truly msp = 0, the distribution

is strongly double-peaked at two values equal in sign but opposite in magnitude.

The existence of a transition and its properties depend on the dimensionality of the

lattice. In one dimension, there is no transition for T > 0, but in two or more dimensions,

a non-zero critical temperature Tc marks the transition point. In two dimensions on

the square lattice, kBTc/J = 2/ ln(1 +
√

2) = 2.269 . . . [51] (exact), while in 3d on the

simple cubic lattice kBTc/J = 4.5115 . . . [57] (from Monte Carlo simulations). Since the

transition is second-order, the spontaneous magnetisation (a first derivative of the free

energy) tends continuously to zero from below Tc, while the susceptibility at constant

temperature χT = (∂m/∂B)T diverges. The divergence is a power-law, χ ∼ |T − Tc|−γ

where γ > 0 is the critical exponent for the susceptibility. Other divergent quantities (see
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below) have associated critical exponents.

The critical properties of the 2d and 3d Ising models have been extensively studied

– not only to understand the model itself, but due to the idea of universality [31, 58],

which tells us that all systems in the same “universality class” possess the same critical

exponents. The 3d Ising universality class encompasses d = 3 systems with a single

scalar order parameter and short-range interactions, and so covers many systems, for

example simple liquids. This is an important example of the relevance of the Ising model

outside ferromagnetism – by studying the 3d Ising model, we can predict the critical

exponents of classical liquids, without bothering about the details of the chemistry. As

mentioned above, no exact solution has been found for the 3d Ising model (the transfer

matrix method by which the 2d model may be solved encounters technical difficulties [17]).

However, very accurate estimations of the critical temperature and exponents are possible,

via renormalization group (RG) methods, series expansions, and Monte Carlo methods.

The RG approach is based on the idea of integrating out degrees of freedom (spins in the

Ising model) to produce a new system with “block” degrees of freedom which interact via

altered coupling constants. This picture is originally due to Kadanoff [59]; subsequently

Wilson [60] developed this concept quantitatively, casting it in the form of differential

equations. This enabled the prediction of critical properties with accuracies comparable

to series expansion methods [61]; Wilson’s work was (and still is) important in many other

areas – for example, it provided a resolution to the Kondo problem in condensed matter

physics. High temperature series expansions are based upon the idea of expanding the

expectation value of some observable about the T = ∞ state; a graphical representation

naturally emerges [17], and graphs can be evaluated to, in princple, arbitrary order, to

obtain highly accurate results after summing. The analysis is, however, difficult, so precise

results are not available for all quantities for all models of interest. Discussion of Monte

Carlo methods, the third method listed, we defer to Chapter 6.

Below the critical point, where there is a spontaneous magnetisation, phase separation

occurs, and the most probable states are those with macroscopically large regions of +1

or −1 spins, separated by interfaces. In the ferromagnetic picture, these are regions

with opposite magnetisation, separated by domain walls. As temperature decreases, the

magnetisation increases, and as T → 0, msp → ±1, depending on the sign of the field as it

goes to zero in the limit Eqn. (3.8). Thus at very low temperature the system is nearly all

‘up’ or ‘down’. As the temperature is increased up to near Tc, the magnetisation vanishes
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as a power law: msp ∼ |T − Tc|β: the majority of one species becomes smaller. For the

2d Ising model, β = 1/8 (independently of the lattice type, as for all critical exponents –

an example of universality). As the critical point is approached, spatial correlations grow,

and right at Tc, correlated regions of up and down spins exist at all length scales: that

is, the bulk correlation length ξb → ∞ as ξb ∼ |T − Tc|−ν , where ν is another (positive)

critical exponent. In fact, the various critical exponents are related via scaling relations,

and the correlation length divergence is responsible for the susceptibility and specific heat

divergences. This is because ξb is the characteristic length scale in the system, and controls

the singular part of the free energy. For fuller explorations of scaling and critical properties

the reader is referred to Refs. [17, 31, 53, 62].

3.3 Conserved order parameter Ising model

An important specialisation of the “vanilla” Ising model, and one which we shall make

great use of later, is the conserved order parameter (COP) Ising model. As the name

implies, this variant constrains the magnetisation to be a chosen constant. Thus the

ensemble of states available to the system is restricted – for example, if one chooses m = 0,

then only states where there are equal numbers of up and down spins are permitted.

The external field B, which couples to the spins in the Hamiltonian (3.1), now simply

contributes a constant term when
∑

i σi is fixed, so we can ignore it.

The conserved order parameter Ising model also exhibits a phase transition [63], at the

same critical temperature as the normal model, but due to the constraint, there can be no

overall magnetisation. Thus, below Tc the system again phase separates, but as T → 0, the

different regions become larger (and there are thus fewer individual islands of one sign).

This is because the internal energy cost of interfaces, 2J per unit length relative to an

unbroken bond, becomes increasingly important at low T , relative to entropic contributions

to the free energy.

Why should one care about the COP Ising variant? We answer this question in the

next section, where the lattice gas isomorphism of the Ising model is introduced.
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3.4 Mappings of the Ising model: relevance outside mag-

netism

The other applications of the Ising model alluded to at the beginning of this chapter may

be reached by simple mappings of variables from the magnetic language to the one of

interest. We first consider the lattice gas equivalence, which will be of use later in making

contact with fluid interfaces. Let us define a lattice gas model, forgetting for the moment

any connection to the Ising model. We may allow the lattice to be in principle of arbitrary

dimension and type, although we will only be concerned with 2d square and 3d simple

cubic lattices. Each site of the lattice may be occupied by a single particle (ni = 1), or

unoccupied (ni = 0), where ni is the occupation number of the site, and defines its state.

Let there be N sites in all. We imagine that the particles will interact via two-, three-, and

higher body potentials, as well as experience an external field. This may be represented

by the Hamiltonian

HLG =
N∑
i

Uext(i)ni −
1
2

N∑
i,j

U2(i, j)ninj + . . . , (3.9)

where Uext(i) is the external potential, U2 is the pair interaction, the ellipses represent

three-body and higher interactions, and the half prevents double-counting. We now make

the assumption of nearest-neighbour interactions, so that U2(i, j) = U2 = const. if i and j

are nearest-neighbours, and U2(i, j) = 0 otherwise. We also neglect three-body and higher

interactions, to arrive at

HLG ≈
N∑
i

Uext(i)ni − U2

∑
〈ij〉

ninj , (3.10)

where the second sum is now over nearest-neighbours. With this simplified Hamiltonian,

we can make an exact equivalence with the Ising model (comparing with (3.1), it already

has the same form). We define

ni =
1
2

(σi + 1)

⇒ σi = 2ni − 1, (3.11)
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so that a particle is equivalent to a ‘+’ spin state, and a hole to a ‘-’. Substituting (3.11)

into (3.10), we have

HLG =
1
2

∑
i

(σi + 1)Uext(i)−
U2

4

∑
〈ij〉

(σiσj + 1 + 2σi)

= const.+
1
2

∑
i

σiUext(i)−
U2

4

∑
〈ij〉

σiσj −
U2

4
2
2
z
∑
i

σi, (3.12)

where z is the coordination number of the lattice; for example a 2d square lattice has

z = 4. A factor of 1/2 in the last term prevents double-counting after converting the pair

sum to a single one. The constant terms not involving the spin variables just set the zero

of energy, and will just introduce a multiplicative factor into the partition function. In

(3.12), the term involving Uext represents a field varying at each lattice site. For simplicity,

we now set Uext = 0. The grand canonical partition function for the lattice gas is then

Ξ(T, µ,N) =
∑
{σi}

exp [−β(HLG({σi})− µNp)]

=
∑
{σi}

exp

−β
−U2

4

∑
〈ij〉

σiσj −
U2z

4

∑
i

σi − µ
∑
i

1
2
σi + const.


=
∑
{σi}

exp

−β
−J∑

〈ij〉

σiσj −B
∑
i

σi

+ const.


=ZIsing × const. (3.13)

where µ is the chemical potential, and Np is the number of particles in a given configura-

tion. The outer sums are over all states (all numbers of particles from Np = 0 to Np = N

are included). In the third line we have identified

J ≡ U2/4

B ≡ zU2/4 + µ/2, (3.14)

and thus found that the grand canonical partition function of the lattice gas is equivalent to

the canonical partition function of the Ising model. The phase transition in the Ising model

occurs at B = 0, or in the lattice gas language at a chemical potential of µ = −zU2/2.

We can also say that the lattice gas in the canonical ensemble is equivalent to the

COP Ising model. In the canonical ensemble, Np = const., so that after mapping, the

terms involving
∑

i σi are also constants. Then the only non-constant term is the spin-spin
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interaction term, and

ZLG(T,N,Np) =
∑
{σi}Np

exp

−β
−J∑

〈ij〉

σiσj + const.

 , (3.15)

where the configurational sums only include the states corresponding to the constraint of

fixed Np. This is just the partition function for the COP Ising model, to within a constant

factor. All this demonstrates the primary use of the COP Ising model - we can use it as an

idealised liquid-gas type system in the canonical ensemble. For example, one can simulate

a COP Ising model below its critical temperature, and interpret the results in terms of a

phase separated liquid-gas system. The results may be viewed in either the magnetic or

lattice gas “language” interchangeably; the simplicity of the fundamental mapping (3.11)

makes conversion of observables quite transparent. For example, the particle-particle

spatial (disconnected) correlation function is

〈ninj〉 =
1
4

(〈σiσj〉+ 1), (3.16)

differing from the disconnected spin-spin correlator only by a constant.

In the thermodynamic limit, statistical ensembles become equivalent – this is because

the relative fluctuation in an observable reduces as the number of degrees of freedom in the

system increases [17]. For example, in the grand canonical lattice gas, the fluctuations in

the particle number Np scale as
√
〈(Np − 〈Np〉)2〉/ 〈Np〉 ∼ 1/

√
N . Thus the canonical and

grand canonical lattice gas, and consequently the normal and COP Ising models, become

equivalent in the thermodynamic limit. In simulations, this limit is of course inaccessible,

and the inequivalence in finite systems can have important effects, as we will see later.

The appeal of lattice gas models, such as the Ising lattice gas just described, lies

in the relative simplicity compared to a continuum system – particles may only sit at

discrete positions. Of course, if one wishes to describe, say, a particular liquid-gas system

in detail, this imposition makes the model rather unrealistic. However, when looking at

more general properties, such as critical behaviour, phase separation, or as we shall do,

fluctuations of an interface, a simple generic system can be an advantage – we can hope

to find features common to many systems. This “universality-oriented” approach is of

course a commmon theme in condensed matter physics – we wish to discover the essential

features underlying any particular phenomenon, so that we can understand a seemingly

diverse range of systems under a single physical description.
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The Ising Hamiltonian may also be used to describe binary alloys, systems of two types

of metal atoms, A and B, in a lattice structure. Sites may be occupied by either an ‘A’

atom, or a ‘B’ (allowing empty sites corresponds to a three-state system, so would not be

equivalent to the Ising model, but rather a Blume-Capel model – this will be discussed

later). The site variables are mapped to Ising spin variables, and similar arguments apply

for the Hamiltonian as in the case of the lattice gas. A classic example of this type is

β brass, an alloy of copper and zinc. This exhibits an Ising transition from an ordered

state, where the Cu atoms sit on one (cubic) sublattice of a bcc lattice, and the Zn on the

other, to a disordered state where they are equally likely to sit on either sublattice. Aside

from these exact mappings, the Ising model has been used in many other non-magnetic

contexts. One interesting recent example [64] is a study of networks within the brain,

where correlation networks extracted from magnetic resonance imaging scans of human

brains were compared to networks constructed from simulation data of the 2d Ising model.

The authors found that many properties of the networks were “indistinguishable” for the

choice of simulation temperature T = Tc. This is quite striking – the Ising model is rather

simple, yet shows the same behaviour at criticality as the hugely complex human brain.

As the authors point out, the collective behaviour of the ∼ 1010 neurons is the important

factor, rather than the finer biological details – this is the same idea as universality in

statistical physics. Many more examples of the relevance of the Ising model outside its

original field exist, from driven lattice systems [65] (the subject of Chapter 4), to applica-

tions in quantum chromodynamics (QCD) [66], to more outlandish and inter-disciplinary

connections such as immunological networks [67].

3.5 Ising interfaces

In this work we are specifically concerned with the properties of the planar interface of a

phase-separated, conserved order parameter, Ising system. The first question is – how can

such an interface be induced? The answer lies in the choice of boundary conditions on the

edges of the lattice. Taking the example of a COP Ising model with −1 < m < +1 and

T < Tc on a 2d square lattice, if all four boundaries are periodic, and the system size is

sent to infinity in both directions, then there is no preferred direction for an interface to

lie along, so all orientations will occur. However, if we impose walls of fixed spins at, say,

the top and bottom edges of the system, then we create a strong energetic bias against
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Lz

(a)

(b)
Figure 3.1: (a) A phase-separated Ising system (simulation snapshot) confined between

walls of opposing spins at separation Lz. The x boundaries are periodic. (b) Zoomed

section of the interface: a “beak-like” overhang, and “bubbles” are visible.

configurations with contact of many spins of opposite sign to the wall, with it. If one wall

consists of all ‘+’ spins, and the other all ‘−’, then the system will separate into two phases

divided by a single planar interface, lying horizontally on the average – see Fig. 3.1a. Note

that in the figure, the ‘+’ phase lies in the upper half of the system – strictly, given the

lattice gas mapping ‘+’→ particle, this means that the high density phase is in the upper

half. However, since the mapping may be trivially swapped around, restoring the natural

order, this is really a matter of taste. We will adopt the convention of Fig. 3.1a in the

simulation models. Additional interfaces would cost energy 2J per unit horizontal length,

so in equilibrium they are not favourable. (We note that if the walls are of the same sign,

there will be a minimum of two interfaces). The other boundaries, perpendicular to the

average interface plane, are still assumed to be periodic. Indeed, this is the choice made

for the simulations presented later. In this way all parts of the interface are able to move

in the vertical direction (although the constraint m = const. prevents the free “wandering”

of the whole interface that is possible for non-conserved systems. This is relevant in the

context of choice of simulation dynamics, which we discuss later in Chapter 6; see also

[68]). Another approach is to pin the interface by introducing walls of fixed spins at the

left and right edges as well, where each wall is partly composed of ‘+’ spins and partly

of ‘−’. This additional energetic restriction may be used to force the interface to have a

non-zero average tilt angle. For the present work, where drive and particle flux will be

present, the periodic choice is more suitable, as should become clear when we explain the

model in Chapter 7.
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h

Figure 3.2: A discrete Gaussian or SOS-type configuration. The overhangs and bubbles

present in the full Ising model are not present, allowing for an unambiguous definition of

the interface height.

3.5.1 The solid-on-solid and discrete Gaussian models

Investigating interfaces in the Ising model is made problematic by its nature as a mi-

croscopic model, where the degrees of freedom describe the whole system, not just the

interface. Of course, this feature is an advantage in that the interface is not artificially

“baked-in”, but appears as result of the phase behaviour of the model. However, not only

is a fully microscopic model hard to deal with analytically, but also there is no immediate

unambiguous definition of the dividing surface between phases for a given system con-

figuration. Even though, in a system with appropriate boundary conditions as described

above, on a large scale there are clearly two “bulk” regions with an interface in between,

there are always “bubbles” or “intruders” of one phase in the other for T > 0. Although

there will be a continuous dividing surface (we consider a 3d system) of broken bonds

midway between the upper and lower walls, this can possess “overhangs” where the di-

viding surface passes a point (x, y) in the lateral plane at two z values – see Fig. 3.1b.

This prevents the vertical position of the surface from being a single-valued function of

r = (x, y), so one cannot use it to define a height function h(x, y). Of course, one can

coarse-grain the Ising system to be able to define such a function, and indeed we will do

this in the simulations described later, but there is also merit in investigating limits of the

Ising model where an interface-height description arises naturally.

The solid-on-solid (SOS) model may be obtained as the infinite vertical coupling limit

of the anisotropic Ising model. The latter is the same as the isotropic Ising model intro-

duced earlier, but the coupling J is now allowed to vary in the different axis directions.

For current purposes, we let the couplings in the lateral (interfacial) plane be equal, and

be denoted by simply J ; in d = 3, this means that couplings in x and y directions are
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the same. We denote the coupling in the perpendicular direction by Jz. The Hamiltonian

is then as before, Eqn. (3.1), but with J replaced by a direction-dependent coupling Jij .

Now we let Jz → ∞. What are the consequences? Firstly, the ground-state (T = 0)

energy becomes infinite, but this can simply be subtracted since it is a constant [69].

Secondly, configurations with “intruders” become disallowed, since the presence of extra

broken z-bonds implies an infinite free energy cost. Similarly, overhangs are forbidden –

in all, we have enforced the system to have a single-valued integer height function h(r) at

all lateral positions r; formally, the bulk critical temperature is infinite in the SOS limit.

An example configuration (taken from an MC simulation) is given in Fig. 3.2. Effectively,

we have reduced a d-dimensional Ising model of spins σi to a (d− 1)-dimensional problem

of integer height variables (columns) hi. The Hamiltonian for this system can be written

HSOS [{hi}] =
J

2

∑
〈ij〉

|hi − hj | −B
∑
i

hi, (3.17)

where the first term counts the energy cost of broken bonds due to height differences of

neighbouring columns. Hereafter we will set B = 0, since as in the Ising model, we will

not consider the effect of a static external field. In a simulation, the effect of such a field is

to grow or shrink the heights as a function of time, and thus move the interface position.

We will briefly discuss some work on such non-equilibrium SOS interfaces in Chapter 6.

A closely related model is the discrete Gaussian (DG) model, whose Hamiltonian reads

HDG [{hi}] =
J

2

∑
〈ij〉

(hi − hj)2 −B
∑
i

hi, (3.18)

differing only by the replacement of the moduli of the height differences by their squares.

As the name implies, this yields Gaussian configuration probabilities, which are analyti-

cally convenient. One expects the qualitative features of the DG and SOS models to be

the same at low temperatures [70, 71], since the energy costs of height differences 0, ±1

are the same in both models, and at low temperatures, height differences are typically

small.

The DG model is essentially the discrete version of the capillary wave model, discretized

in both lateral positions and heights; thus we expect it to display many of the same

characteristics. One important exception is the presence of a finite-temperature roughening

transition in the 2d DG (and SOS) models, which does not occur in continuum. The

roughening transition will be discussed Sec. 3.5.4. Note that allowing a continuum of height
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values gives the unweighted Gaussian model [71], which does not display a roughening

transition.

3.5.2 Two-dimensional systems

For two-dimensional Ising systems with an interface, several exact results are available,

since the transfer matrix technique may be applied. The underlying idea in the transfer

matrix approach is to write the partition function as a trace of a product of matrices:

Z = TrV L, (3.19)

where V is a matrix, and L is the linear dimension of the lattice (which will go to infinity in

the thermodynamic limit). Using the properties of matrix algebra, the trace of V L may be

expressed as a sum of the Lth powers of the eigenvalues. Then in the thermodynamic limit

N → ∞, only the largest eigenvalue contributes, so the problem of finding the partition

function is reduced to the task of finding the largest eigenvalue of V . Of course, this is

certainly not trivial! (V is not symmetric, and may be infinite-dimensional). However,

the problem is tractable, at least for certain cases. A useful and elegant method is to

cast the problem in a quantum-mechanical way, and apply known transformations from

that field (such as the Jordan-Wigner transformation, which converts the problem into an

interacting fermion problem). This “spinor approach”, see for example Schultz et al. [72],

was used in Refs. [73–75]; a very approachable account may be found in Ref. [17].

The case of all boundaries being ‘+’ spins was solved using the transfer matrix tech-

nique by Abraham and Martin-Löf [73] some time ago; this solution was later adapted

[74, 75] to the case of opposing upper (+) and lower (−) walls at a finite separation, with

the lateral dimension infinite (“strip-like” geometry). Specifically, let the x and z direc-

tions be parallel and perpendicular to the walls, respectively. Let the length of the system

in the x-direction be Lx, and let the wall separation be Lz. In Ref. [75], the magnetisation

profile m(z) and interfacial width w were calculated exactly for semi-infinite strips, that is,

Lx → ∞ with Lz finite, for several values of Lz and temperature. This geometry creates

a confined system, where the walls play an important role. In fact, in theoretical work

the more general concept of a surface field is used – fields which act on the surface layers

of the lattice to bias the spins there in a particular orientation. Fully fixed walls of op-

posite sign then correspond to infinite surface fields of opposite sign. Varying the surface

fields allows one to investigate wetting and interface localization-delocalization transitions
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[7, 45, 76, 77]. Note that this system is quasi one-dimensional; since the lower critical

dimension of the Ising model is two, the strip has no true phase transition. Rather, below

the bulk critical temperature, the system is in the “soft-mode” phase (T > Tw, recalling

the discussion in Sec. 2.3.3; Tw = 0 for fixed walls) predicted by Parry and Evans [38] with

a +− interface midway between the walls.

For low temperatures, the profiles in Ref. [75] were found to agree well with SOS

model results, as expected, since the SOS model as defined above should describe low-

temperature Ising interfaces well. Profiles are characterized by values close to ±1 near

the walls, with a smooth, monotonic variation in between. For low temperatures, the

profiles are sharp, since fluctuations are small, and the magnitude of the bulk spontaneous

magnetisation msp is large. As temperature increases, the profiles become more diffuse.

This is due to the long-wavelength capillary-wave fluctuations discussed earlier, which

being thermal in nature, grow in strength as temperature is increased. The interfacial

width – defined earlier as the r.m.s. interface height, w =
√
〈h2〉, increases in parallel; the

local and global position of the interface “wanders” between the two walls, exploring the

whole region. Indeed, the scaling plots in Ref. [75] indicate that w ∝ Lz in confined two

dimensional Ising systems – the interface intrepidly explores all perpendicular space. This

result is the same dependence we obtained in the confined version of CWT, see Eqn. (2.35),

providing support to the assertion that capillary waves are the dominant contribution

to the interfacial behaviour above microscopic scales. We note that the width may be

alternatively defined as the second moment of the gradient of the profile (as in fact was

done in Ref. [75]; this definition requires no coarse-graining – see Sec. 9.3.2), but as we

will see later, which definition we use has only a minor quantitative effect on simulation

results for nearly all quantities. The r.m.s. height definition is perhaps the more easy to

picture physically.

The finite-size scaling relations for the magnetisation profile are also of interest. For

an equilibrium fluid or Ising magnet confined between two walls, Fisher and de Gennes

[78] proposed a scaling relation for the density or magnetisation profile. For fixed walls of

spins, and zero bulk field, this reads [75]:

m(z, T, Lz)eq = mb(T )M̃eq

(
z

ξb(T )
,
Lz
ξb(T )

)
= mb(T )Meq

(
z

Lz
,
Lz
ξb(T )

)
, (3.20)

where ξb(T ) is the bulk correlation length as before, and mb(T ) is the spontaneous mag-

netisation for a bulk (infinite in all directions) system. M̃eq andMeq are finite-size scaling
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functions: Meq(u,w) is obtained from M̃eq(ũ, w) by changing the first scaling variable

ũ = uw. We have appended the various functions with “eq” subscripts for consistency

with later notation, although not necessary in this purely equilibrium context. Eqn. (3.20)

implies that the shape of the magnetisation profile depends on a common scaling function

of two variables, which are the perpendicular coordinate z, and the wall separation Lz,

in units of the bulk correlation length. The temperature enters the scaling variables only

through its influence on ξb(T ). The shape of the scaling function (and thus the profile)

can be altered by changing the wall separation at fixed T or by changing the tempera-

ture at fixed Lz (or of course, varying both simultaneously). For semi-infinite 2d strips

with opposing walls, scaling of the form (3.20) was found [75]. We will later construct an

analogue of this finite-size scaling form in driven, non-equilibrium Ising systems.

The correlation length along the interface, ξ‖, has also been calculated for 2d Ising

systems [74]. Below Tc and away from the critical regime, ξ‖ ∼ L2
z. Combining this with

the above result for the width, we have w2 ∼ ξ‖. These relations between the width, lateral

correlation length, and wall separation are the same as that predicted by capillary wave

theory, see Eqns. (2.18) and (2.34), and also from the SOS model [38]. This result, together

with the agreement of the dependence of w on Lz, shows that for low temperatures, away

from criticality, the full Ising model exhibits the same large scale behaviour as that of a

simple interface Hamiltonian – capillary wave theory. This is an excellent endorsement as

to the qualitative correctness of CWT, and shows that in confined phase-separated Ising

systems long-range CW-type fluctuations are dominant for this non-critical temperature

regime. This makes sense – as discussed previously, CWT does not treat correlations on

length scales O(ξb) or smaller, so should not be expected to describe the critical region,

where ξb becomes large. Equally, the SOS description cannot apply there, since the SOS

model has no equivalent critical point. For further comparison of SOS and CWT results

with transfer matrix calculations for the Ising model, see Refs. [74, 75].

3.5.3 Three-dimensional systems and tests of predictions

Equivalent exact results for confined interfaces in the 3d Ising model are not available, since

as mentioned above, the approach used in 2d fails [17]. However, progress can be made

via interface Hamiltonians, and by studying simpler lattice models (e.g., SOS). Studies of

discrete random surface models (including the SOS) [79] show rather different behaviour to

that in two dimensions. Instead of wholescale wandering, the interface interacts with the
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walls via “needle-like” structures. These needles or spikes allow the interface to explore

more configurations, increasing the entropy, and thus lowering the free energy. Their

creation costs internal energy, and a balance is reached at equilibrium. A rigorous analysis

gives w2 ∝ Lz and Lz ∝ ln ξ‖, so that w2 ∝ ln ξ‖, in agreement with CWT, see Eqns. (2.31)

and (2.32).

These predictions can, and have been, verified by Monte Carlo simulations. Kerle

et al. [80] analyzed data from 3d Ising simulations with opposing surface fields, finding

agreement with the theoretical predictions for a good range of values of Lz. Simulation

studies of the 2d Ising system [7] have also found good agreement with CWT and the exact

results described above. What about more realistic model systems, or indeed real systems?

Refs. [36, 80] presented the first experimental evidence for the predicted dependence of

the interface width on film thickness, in a binary mixture of copolymers. Binder et al. [37]

carried out Monte Carlo simulations of polymer blends, finding agreement with CWT at

large length scales. Vink et al. [81] verified CWT predictions at large length scales in

simulations of the Asakura-Oosawa (AO) model of colloid-polymer systems, and observed

the breakdown of CWT at short length scales, where bulk fluctuations become important.

3.5.4 The roughening transition

So far we have described the behaviour of interfaces (be they in fluids or in lattice models),

on large length scales � ξb, as being governed by capillary-wave fluctuations – that is,

elastic distortions of the interface, controlled by surface tension. When this is true, the

predictions of CWT hold – in particular, in the limit of infinite system size and zero gravity

(or other confining field), the interface width diverges; the system is said to be in the rough

state. However, for certain systems it is now known that there is another regime, the

smooth state, where the interfacial width is always finite, and that a transition temperature

known as the roughening temperature TR delimits the phases. What sort of systems

exhibit the roughening transition? Our analysis of continuum capillary wave theory earlier

showed no evidence of any transition point; the dependence of the width on temperature

was smooth, and the state was always rough. Indeed, liquid-gas systems, which are also

continuous, do not exhibit a roughening transition; rather, only systems which are spatially

discrete show roughening [4], such as the Ising model, or its idealisations, the SOS and

DG models. Dimensionality is also crucial – the Ising model only has a finite TR for d = 3

(and therefore a 2d SOS model); in d = 2, the interface is always rough. For d > 3 the
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interface is always smooth (as it is in CWT [27]).

The idea of a roughening transition originated with Burton and Cabrera [82, 83], in

the context of crystal growth. Their argument, which we give below (for a nice summary

see also Ref. [70]), is physically appealing and plausible – by considering layers of the

simple cubic 3d crystal lattice as 2d square-lattice Ising systems, they argued that a

transition should occur near the critical temperature T 2d
c of the 2d Ising model, which

is approximately (1/2)T 3d
c . Specifically, imagine an anisotropic (see Sec. 3.5.1) 3d Ising

system on a simple cubic lattice at low temperature; then the interface will typically be

not too far from its flat ground state. The elementary excitations consist of a spin of the

lower phase appearing in the layer just above the mean interface plane, or a spin of the

upper phase appearing just below (of course, one can also frame this in the lattice-gas

language, as appropriate for crystal growth). The associated energy cost is 4J , where J is

the coupling constant in the x and y directions – quite significant. Within either of these

layers, the interactions are just those of the 2d square-lattice Ising model. If we increase

the temperature, when we pass T 2d
c , the magnetisation vanishes, so that in each of the two

layers there are equal numbers of ‘+’ and ‘-’ spins on the average. At this point, nucleating

a spin on either layer ceases to cost any free energy, and the interface is no longer smooth;

the width diverges.

This argument is clearly not exact – the approximation of independent 2d Ising layers

breaks down before the roughening transition is reached. However, it is consistent with

the observation that 2d Ising interfaces are always rough – the interface would be viewed

as a 1d Ising model, for which there is no critical point, and 〈m〉 = 0 for any T > 0. The

argument also suggests that the coupling in the z-direction, Jz, should not matter, since

it did not appear in the energy cost for creating excitations [70]. This naturally leads one

to study roughening in the simpler SOS and DG models, where Jz →∞ (see Sec. 3.5.1);

indeed this is where much effort has been directed.

The existence of the roughening transition is now established for the 3d Ising and 2d

SOS and DG models via a combination of theoretical and simulation work. It turns out

that the transition is of the Kosterlitz-Thouless [84] class, also exhibited by the XY lattice

model. Indeed, the SOS and XY models may be related by a duality transformation [85].

For some time, however, it was not clear whether the transition really existed. Weeks et

al. [86] performed low-temperature expansions of the 3d simple cubic Ising model, finding

a divergence of the interface width at a temperature slightly above T 2d
c . Chui and Weeks
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[87] used the renormalization-group methods of Kosterlitz and José et al. [88] on a discrete

Gaussian model to find the roughening transition and study its dynamics. Monte Carlo

studies of roughening in the SOS and DG models were carried out by Swendsen [70],

providing good evidence for its existence; however, MC simulations are tricky due to

finite-size corrections which only decay logarithmically with increasing system size [89].

More recent studies have attempted to overcome this problem, and accurate values of TR

in the 3d simple cubic Ising system are now available [89, 90]: TR ≈ 0.54T 3d
c .

Apart from the interfacial width, what are the other physical properties of the rough-

ening transition? The lateral correlation length ξ‖ is another quantity of interest: it is

finite for T < TR, and diverges exponentially with temperature as T → TR [4, 91]. In a

renormalization-group (RG) approach, where one considers successive rescalings to larger

and larger length scales, on scales smaller than ξ‖, the interface is actually rough, and

free to fluctuate. On scales > ξ‖ the interface is smooth; in the RG picture, the strength

of the “lattice potential” which inhibits fluctuations diverges under iteration of the RG

equations. The roughening temperature corresponds to a fixed point of the RG “flow”

(differential) equations. More details of this approach may be found in Ref. [4], and for

more general RG ideas see Ref. [31]. The roughening transition will be relevant in this

thesis when we study the 3d driven Ising model; in particular, the interplay of the action

of the drive with the roughening transition is interesting, although the tricky nature of

the transition makes this challenging.
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Chapter 4

Driven lattice models

4.1 Introduction

In the previous two chapters we have focused on equilibrium systems, where the Gibbsian

statistical-mechanical framework may be applied. The key point is that the probabil-

ity distribution of the states in an equilibrium system is known – the probabilities are

proportional to the Boltzmann factor e−βH , where H is the Hamiltonian, as explained

in Sec. 3.2. By contrast, for non-equilibrium systems, the distribution is not generally

known, and there is no general prescription for finding it. This immediately makes the

statistical mechanics of non-equilibrium systems both difficult and interesting!

This sets up a daunting problem – we should ask what a sensible approach to investigat-

ing non-equilibrium systems might be. Firstly we should recognise the difference between

systems which are evolving, and those in a non-equilibrium steady state. The former in-

cludes systems which are heading towards a final equilibrium state (having, for example,

been quenched from some higher temperature), as well as those which are not, and may

either attain a non-equilibrium steady state distribution, or evolve indefinitely. The latter

is thus a restricted class, where the system can never relax to equilibrium, but where

instead the (generally unknown) probability distribution has become time-independent.

In this thesis we will be almost exclusively concerned with this regime (in simulations we

also have access to the evolutionary behaviour, when desired).

An overarching aim must be to try and the find universal features which seemingly

disparate systems share, which may eventually help to unearth some underlying statistical-

mechanical framework, à la Gibbs. Therefore it seems wise to look at models which are

41
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simple, with “just enough” features to be non-trivial; also, it would be useful to be able

to take an “equilibrium limit” and return to a known model. The Katz-Lebowitz-Spohn

(KLS) model [65, 92], named after its inventors, conforms to these ideals, and has therefore

been extensively studied from its inception right up to the present day. Indeed, the main

model we investigate in this thesis is a slight generalization of the KLS model, and much

of the next few sections will aid its later introduction.

4.2 The Katz-Lebowitz-Spohn model

The KLS model is a non-equilibrium version of the conserved order parameter Ising lattice

gas, which we have discussed in Sec. 3.4. Thus most of the model is already familiar: the

Hamiltonian is just the Ising one, Eqn. (3.1), and we impose the restriction of a fixed

overall magnetisation, as discussed in Sec. 3.3: this means we can take the static magnetic

field B = 0, since this term is a constant in the COP Ising model. As a reminder, in the

lattice gas language, we have fixed the overall particle number or total density, and work

in the canonical ensemble.

The new feature is an external driving field, which affects the transition rates between

different states of the system by biasing the movement of particles in a particular direction.

For suitable boundary conditions this creates a particle current and drives the system into

a non-equilibrium steady state. The KLS model is an example of a “driven diffusive

system”, a term frequently encountered in the literature: the competition of diffusive and

driven dynamics is a key feature. Although designed primarily to be simple and minimal,

the KLS model does bear a relationship to real physical systems. Part of the original

motivation for the model was to describe superionic conductors [93] in the presence of a

static electric field. In these materials, an abundance of vacant lattice sites causes one

or more species of ion to be highly mobile, leading to large conductivities. In a static

field the ions create a constant current, which the KLS model mimics. Additionally, in

superionic systems the conductivity can be strongly temperature-dependent, which points

to the existence of an order-disorder phase transition. Thus, a driven model with a phase

transition – the KLS model – seems to be a good candidate for describing such materials.

However, we stress that this connection is only really an aside (for our purposes): these

superionic materials are of course much more complex than a simple Ising lattice gas, and

many display repulsive interactions between ions, unlike the standard (attractive) KLS
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model [93, 94]. We now discuss some relevant general theory for non-equilibrium lattice

systems.

4.2.1 Master equations, transition rates and detailed balance

Since the external field in the KLS model will enter through transition rates, we need

a dynamical description of statistical-mechanical systems. Such a description may be

provided by writing a master equation [55, 94] which relates the probabilities of states and

the transition rates between them:

dpµ
dt

=
∑
ν

[Rν→µ pν −Rµ→ν pµ] . (4.1)

Here the pµ are the probabilities of individual microscopic configurations, and the Rµ→ν

are the transition rates. Eqn. (4.1) says that the rate of change of probability of a state

µ is equal to the net current into or out of it; the first term in the sum is the flux into µ,

the second is the outward flux. Of course, since the pµ are probabilities, they should be

appropriately normalised:
∑

µ pµ = 1.

A steady state is defined by the condition that the left hand side of (4.1) is zero for

all states µ, so that there is no net current into or out of a state. So far this formalism

applies to both equilibrium and non-equilibrium steady states. If the system is to be in

equilibrium, then the probability distribution must be Boltzmann, so that

pµ
pν

= e−β(Hµ−Hν), (4.2)

where Hµ is the Hamiltonian evaluated in state µ. The steady state condition and the

correct probability distribution may be ensured by imposing the condition of detailed

balance [54, 55, 94]:

Rν→µ
Rµ→ν

=
pµ
pν

= e−β(Hµ−Hν) for all pairs µ, ν. (4.3)

The first equality is just the condition that each term in the sum in Eqn. (4.1) is zero;

clearly this is sufficient to make the LHS of (4.1) zero also. The second equality uses

the known probability ratio (4.2); therefore if the rates obey this, the system will reach

equilibrium (here we assume ergodicity holds [54] for the system of interest). Detailed

balance says that not only is the overall current into or out of a state zero, but that this

is also true for all individual pairs of states – a strong condition!



44 CHAPTER 4. DRIVEN LATTICE MODELS

For a non-equilibrium steady state, the probability distribution is not known, and

(4.2) does not hold. We may still choose the rates to satisfy the exponential ratio in (4.3),

since this makes contact with equilibrium rates, and furthermore will have the correct

equilibrium limit. Indeed, this is done in the KLS model, as outlined in the next section.

Before moving on, we note that the steady state master equation is really a set of linear

equations, so if we specify the rates Rµ→ν then we could in principle solve this system for

the probabilities pµ. The problem is that this is not computatationally practical except

for very small systems (in terms of number of states), in the same way that evaluating

the partition function directly is not possible. This direct, exact, approach can however

be useful for checking results from other methods, such as simulations.

4.2.2 Microscopic dynamics

The above discussion is general in the sense that we have not specified physically how

a system transitions from one state to another; we have only given the mathematical

rates. Some dynamics must be chosen, and in doing so we must ensure that the conserved

magnetisation condition is never violated.

J J
+-

++

+

+- - -

- -

-
Figure 4.1: Illustration of Kawasaki dynamics on a 2d square lattice, in (a) lattice gas and

(b) Ising spin representations. In (a), the particle hops to the right, breaking two bonds

and creating one, with net cost +U2, in the notation of Sec. 3.4. In (b), a ‘+’ and a ‘−’

spin exchange positions; the net cost is +4J . Since J = U2/4, the energy changes are the

same, as they must be.

The dynamics used in the standard KLS model are Kawasaki-type exchange dynamics

[55, 95], which are illustrated in Fig. 4.1. An elementary transition consists of the exchange

of two nearest-neighbour spins on the lattice; in the lattice gas picture, this corresponds
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to a particle moving to a nearest-neighbour unoccupied site. Clearly this satisfies the

magnetisation-conservation condition. Note that since two spins move in a Kawasaki

exchange, the transition rates will depend on the nearest neighbours of both spins, via

the energy change Hµ − Hν in (4.3). An important feature is that particles only move

locally ; they do not “teleport” across the lattice – this helps to make the model somewhat

more physically realistic on a microscopic level than it would be with non-local dynamics.

Adding the effect of the driving field (see below) is also most natural with local exchange

dynamics.

The issue of choice of dynamics is most relevant in Monte Carlo simulations, and we

will return to it later in Chapters 6 and 7, where we will also show the implementation of

Kawasaki dynamics in a simulation.

4.2.3 Driving field and rates

The driving field in the KLS model alters the rates Rµ→ν , which in equilibrium were

functions of the energy difference between states: Rµ→ν = R (β(Hν −Hµ)) ≡ R(β∆H).

Physically, the idea is to bias particle movements in a particular direction, and suppress

movements in the opposite direction. In the other mutually perpendicular directions,

exchanges occur with normal equilibrium rates. In the standard KLS model, the driving

force field is taken to be spatially uniform, and temporally constant – the simplest choice.

Additionally, the field acts along one axis direction, say x. Denoting the field by F , we

define a work term which will enter the transition rates for exchanges in the x direction:

∆W = −J F (σi − σj)/2, (4.4)

The subscripts i and j identify the exchanging spins’ positions; in a 2d system, we take

the coordinates to be i = (x, z), j = (x+ 1, z). Thus for positive F and σi = +1, σj = −1,

we obtain ∆W = −J F < 0, so that this exchange is enhanced – it has a negative work

term associated with it. Thus for this convention, ‘+’ spins (particles) will tend to move

in the positive x direction. Conversely, ‘+’ movements in the negative x direction are

suppressed. Note that since there are just two spin states, this implies that the opposite

is true for ‘−’ spins – they are biased to move in the negative direction. Having defined

the work term, the modified transition rates will take the form

Rµ→ν = R (β(∆H + l∆W )) , (4.5)
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where l simply “turns on” the second term for exchanges in the x direction, l = 1, and

turns it off for other directions, l = 0.

An important effect of the presence of the uniform (in space and time) drive is that

particle-hole (Ising) symmetry is violated – the system is not invariant under flipping all

spins. However, the combined ‘CP’ symmetry, under the operation σi → −σi and reflecting

x → −x, remains intact. Similar symmetry considerations will prove to be important in

the present study, when we investigate capillary wave dynamics under drive in Sec. 9.5.

At this point, we have specified the interactions, inherited from the COP Ising model,

and the dynamics – Kawasaki spin exchanges with a bias due to the force field. What

remains to be specified are the boundary conditions, and a specific functional form of the

transition rates Rµ→ν . We defer the former to the next section; for the rates, the usual

choice in the KLS model are the well-known Metropolis rates, introduced by Metropolis

et al. in the 1950s [96], which here take the form

Rµ→ν ∝ min {1, exp(−β(∆H + l∆W ))} . (4.6)

The min function ensures that the transition probability is never greater than unity; its

presence makes the rates look like rather a strange choice from an analytic perspective. The

“blame” lies with simulators, since this choice is efficient in terms of acceptance ratios [55];

we will return to this in Chapter 6. Physically, Metropolis rates mean that energetically

favourable transitions always occur, while those costing energy have a Boltzmann-like

probability of happening. For ∆W = 0, Metropolis rates satisfy detailed balance [54, 55],

so a system evolving according to these rates will attain equilibrium. For non-zero driving

force, detailed balance may be violated, depending on the boundary conditions imposed,

as we now discuss.

4.2.4 Boundary conditions

In the KLS model, the standard choice of boundary conditions is to make all boundaries

periodic. This means that there will be a particle current through the system, in the

direction of the driving field, and that the system is translationally invariant in this di-

rection. Crucially, the choice of periodic boundaries in this direction ensures that the

system is non-equilibrium – the driving field cannot be subsumed into the definition of

the Hamiltonian. In order to do so, we would require a term like
∑

i F xσi [92] (i.e.,

writing the field as a gradient of a potential F = −∇V (x)); however, this fails across the
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periodic boundaries. Therefore detailed balance, Eqn. (4.3), is violated, since the rates

include a non-Hamiltonian component. Note that we could incorporate the field into the

Hamiltonian for closed (wall) boundaries in the field direction – then the system would be

in equilibrium, and we would be modelling something like sedimentation under gravity.

The choice of boundary conditions in the other lattice directions is more free, and may

be altered to suit a specific investigation – for example, using walls to model confined

systems.

4.2.5 Summary of some selected results

As discussed above, directly solving the steady-state master equation is not feasible for

systems of reasonable size. For the KLS model, the main methods of study are therefore a

coarse-grained Langevin approach, and Monte Carlo simulations. In the former, one con-

structs a Landau-Ginzburg Hamiltonian for the system from the usual kind of symmetry

arguments [17, 31], and then studies the resulting Langevin equation [97] of motion for the

order parameter, which includes a functional derivative of the Hamiltonian with respect

to the order parameter, as well as a noise term, and a term to model the driving field [94].

Microscopic theoretical studies, by contrast, take the form of dynamic mean field theories,

where small clusters of lattice sites are considered, and the probability distributions of

these clusters are derived [94, 98, 99]. This approach has given some good qualitative

results for the phase diagram, but cannot deal with inhomogeneous states, which means

that it is inappropriate for the study of interfaces.

As revealed by simulations and these dynamic mean field theories, the Ising order-

disorder transition is retained in the KLS model at all driving strengths, for the choice of

fixed magnetisation m = 0 (fixed density ρ = 1/2). We will discuss this choice exclusively,

since it is by far the most-studied case, as the equilibrium critical point can be reached for

F = 0. In two dimensions, the critical temperature increases monotonically with F until

it saturates at roughly 1.4 times the (Onsager) equilibrium bulk critical temperature, for

infinite drive. The same trend has been found in 3d via simulations [100], albeit with a

slower increase of Tc(F ). The critical behaviour of the KLS model has been extensively

studied by field theoretic renormalization group methods, and the critical exponents have

been calculated [101]. Since this topic is well beyond our current scope, the reader is

directed to [94] and references therein. Below Tc, as in the Ising model, the system phase

separates and macroscopic interface(s) are formed, their number depending on the geom-
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etry and boundary conditions. Interfaces are always observed to orient themselves along

the drive direction (x, in the convention above), and never in the the perpendicular direc-

tion(s). This makes sense on an intuitive level – an interface initially lying perpendicular

to the drive may easily be broken up by a current passing normal to it. Thus in a fully

periodic 2d system, the steady state has two phases with an upper and a lower interface

separating them, lying along the x direction. If instead ‘+’ and ‘−’ walls are imposed

at the top and bottom, as discussed in Sec. 3.5, there will be just one interface, located

midway between the walls.

Here we are most interested in the structure and dynamics of interfaces in steady

states. Happily this has been the subject of several simulation and theoretical works, for

the KLS model. Leung et al. [102, 103] carried out Monte Carlo simulations of the 2d KLS

model in the sub-critical regime. At the top and bottom boundaries, + and − walls were

used, respectively, with an approximately square geometry, not strongly confined. Leung

et al. noted that owing to the local particle number conservation imposed by Kawasaki

dynamics, the evolution of the system was rather slow, since particles must be transported

“step-by-step” in order to change the large-scale configuration of the interface. This was

also found to be the case in the present study, with long simulation runs required (see

Chapter 9) to first reach a steady state, and then to gather good statistics. In Ref. [103], the

magnetisation profile m(z) (density profile ρ(z) in lattice gas language) between the walls

was found to become much sharper upon increasing the applied drive: |m(z)| stayed close

to unity much further away from the walls as compared to the equilibrium profile, and thus

changed sign much more sharply. This indicates that the interface is less rough when drive

is applied: capillary-wave like fluctuations are suppressed. Leung et al. also investigated

the spatial and temporal correlations of the interfacial height (where the height was defined

by a coarse-graining method), and the finite-size scaling of the interfacial width. From

the behaviour of the latter quantity, they speculated that the interface would in fact

be smooth in the thermodynamic limit – i.e., the width would tend to a finite value

as the system size is increased. This is a striking example of the differences between

equilibrium and non-equilibrium systems – recall from the discussion in Sec. 3.5.4 that

equilibrium interfaces are always rough in d = 2 (TR = 0), so that the width diverges in

the thermodynamic limit. A subsequent simulation study [104], again in an unconfined

system, of the Fourier transform of the height correlation function, C(k) ≡
〈
|hk|2

〉
, showed

C(k) ∼ 1/k0.67, markedly different from the 1/k2 equilibrium (unconfined) capillary-wave
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behaviour, Eqn. (2.14) with ξ‖ →∞. The behaviour in the driven case is consistent with

a smooth interface, since the squared interfacial width w2 can be thought of as just the

zero-separation value of the (real-space) height correlation function, i.e. C(r = 0), and

thus proportional to
∫ 〈
|hk|2

〉
dk (see Eqn. (2.23)), with the usual cutoff considerations.

This quantity is finite even in the thermodynamic limit L→∞; contrast Eqn. (2.19), the

d = 2 CW result.

Although these studies were exclusively two-dimensional, the authors expected the

trend of interface smoothening to extend to three dimensions. This was motivated by a

heuristic argument for the mechanism of the smoothening: the driving field reduces the

time scale for the decay of long wavelength interfacial modes, and thus acts to destroy

such fluctuations, creating a smooth interface on these length scales. This is rather anal-

ogous to the roughening transition, see Sec. 3.5.4. Microscopically, their picture is one

of particles being driven along x continually, preventing the (slow) formation of large (in

the z dimension) deformations. Such an argument applies equally in 3d as 2d, and is

physically appealing, although making it more precise on a microscopic level turns out to

be difficult. Leung and Zia [104] also interpreted the smoothening in terms of an effective

interface stiffness, which grows on large length scales, and thus resists the same types of

long-wavelength fluctuation.

On the theoretical side, one starts with the bulk dynamical (Langevin) equation, and

derives an equation for the interface from this [105–107] – inevitably, approximations

are required. Yeung et al. [107] investigated the stability of the interface under drive;

in particular, they found that driving along the interface (that is, in the usual way as

introduced above) can suppress fluctuations. Zia and Leung [106] studied a randomly

driven variant of the KLS model, where the direction of the drive changes randomly in time

between the positive and negative x directions. For this form the Ising symmetry, which

is lost for uniform drive as discussed above, is restored, and there is no current through

the system on the average. In Ref. [106], suppression of interface roughness was found for

the randomly driven model, with a 1/k decay of C(k); this was subsequently observed in

simulations [104]. Analytic results for the correlations in the standard (uniformly driven)

case are not available, although Zia et al. [108] have argued that the violation of the

fluctuation-dissipation theorem (in both the standard KLS model and the random one)

leads to a modification of C(k) and is thus the common source of roughness suppression.

These studies of the KLS interface are invaluable as a reference point for the current
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work, and we will return to them later when we come to discuss the results. They do,

however, form only a small part of the body of work on driven diffusive systems. Many

other strange and surprising phenomena have been discovered, especially in the sub-critical

regime. For instance, Boal et al. [109] modified the (d = 2) KLS model by imposing open

x-boundaries (i.e., those oriented perpendicular to the drive) in Monte Carlo simulations.

Particles enter through one of these boundaries, and exit at the other, so there is a chemical

potential gradient in the system, in addition to the uniform driving field. As we have

seen, the field tends to create interfaces (for T < Tc) oriented along it, so that there is a

density gradient in the perpendicular direction. The chemical potential gradient has the

opposite effect – it creates a density variation along x. Competition of these forces at low

temperatures produces “finger-like” or “icicle” structures in the system, which are rather

different to the normal KLS steady state. The number of fingers, and their angle with

respect to the drive, is controlled by the drive strength and the chemical potential gradient

– the drive will break up an interface perpendicular to it, but the boundary conditions

do not permit the drive’s preferred parallel orientation. A compromise is reached at the

angle observed in the simulations. Further discussion of chemical potential gradients in

lattice systems, and their interplay with driving fields, may be found in [94].

Other studies of the sub-critical KLS driven lattice gas have investigated topics such as

the dynamics of phase separation after a quench from a random ‘T =∞’ state [10]. The

system initially forms thin stripes along the drive direction, which then grow and coalesce

via a combination of evaporation at the interfaces, and diffusion through the bulk of a

stripe. Recently the finite-size scaling of the interfacial width, and its time evolution in the

critical regime, were also studied [110]. For much more information and many references

on the KLS model and its variants, see the comprehensive review Ref. [94], as well as a

short “taster” review [111].

Finally, besides the KLS model and variants thereof, investigations into other driven

lattice models exist in the literature. Chan and Lin [112] devised a sheared 2d Ising

model with conserved order parameter, and studied the variation of critical temperature

and critical fluctuations with the strength of the applied shear. In their model, the drive

was not implemented as a modification of the transition rates, but instead by periodically

shifting whole rows of spins by different distances according to their vertical coordinate. In

between these “shear steps”, standard equilibrium MC exchange dynamics were applied.

The authors found the critical temperature to increase when shear was applied, and critical
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fluctuations were suppressed. This perhaps seems more obvious than for the KLS model,

since the discrete shear step clearly and suddenly destroys inter-row correlations – this

is perhaps a weakness of the model. However, since the MC rates themselves are not

modified, the model is in some senses simpler than the KLS-type approach. Also, by

decoupling the shear flow and thermal evolution, one can use non-conserved dynamics if

so desired; see [113] for an example of this.
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Chapter 5

Experiments

Fluctuations at fluid interfaces have been studied experimentally for a long time, by the

techniques of light [114] and more recently X-ray scattering [115, 116]. These methods

return Fourier-space information, such as the structure factor; one can obtain a real-space

description via a Fourier transform. However, information on individual particle positions

is lost, so one cannot see what the interface “really looks like”. Observing the interface

directly in real space, as a complementary source of information, is therefore desirable

– not only for the benefit of theorists and simulators who may be more at home in real

space, but also as a tool to capture microscopic events such as coalesence of droplets [117].

Is this a realistic prospect? To answer this we invoke capillary wave theory (CWT)

(Sec. 2.3), which as we have discussed, provides a good description of interfacial fluctu-

ations. The key length scales are the interfacial width (or “roughness”), and the lateral

correlation length ξ‖. If the roughness is too small and the correlation length too long,

then direct visual observation is not possible. For molecular liquids, this is the case –

the roughness is on the order of nanometres, while the correlation length is a few mm, so

their ratio is of order 10−6 [12]. However, if these length scales can be tuned such that

the roughness is increased and the correlation length decreased to appropriate scales for

visual observation, then we will be in luck. This is precisely what can be done in colloidal

systems [12, 118].

Colloids are loosely defined as particles with sizes in the range ∼ 10 nm to 1 µm;

when immersed in a solvent, a colloidal dispersion is formed. These are extremely useful –

canonical examples include milk, paint, and blood. Here we consider in particular mixtures

of colloids and polymers; in such systems, phase separation may occur for appropriate
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densities of the constituents. This transition is entropically driven [119] – the presence of

polymers causes an effective “depletion” attraction between the colloids, “pushing out”

polymers and allowing them more configurational freedom. The system thus separates

into a colloid-rich (polymer-poor) “liquid” phase and a colloid-poor (polymer-rich) “gas”,

separated by an interface. For our purposes, the relatively large size of colloidal particles is

key – the surface tension σ of a phase separated system scales with the colloidal diameter

d as 1/d2 [120]. But from CWT we know that ξ‖ ∝
√
σ (Eqn. (2.15)), and w ∝ 1/

√
σ

(Eqn. (2.16)). Thus by increasing the size of particles, one can simultaneously increase

the roughness and decrease the correlation length. In this way, Aarts et al. [12] were able

to bring both into the µm range, allowing visual observation of a phase-separated colloid-

polymer system by confocal microscopy. Additionally, the greatly reduced surface tension

increases the characteristic decay time for capillary-wave fluctuations [121] τ ∝ σ−1/2,

up to the order of seconds for the system in question. This means that the dynamics

of capillary waves are also accessible experimentally – for example one can measure the

time-displaced height correlation function. In Ref. [12], the colloids (the widely used

poly(methly methacrylate), PMMA) were fluorescently tagged so that the phases could

be distinguished. Using this technique, the authors were able to capture striking images

of the interface, and analyze these to test the predictions of CWT in the system, finding

agreement.

This leads us to one of the initial motivations for the work presented here: a subse-

quent experiment by Derks et al. [13, 118], where the same colloid-polymer system was

prepared, but this time placed in a shear cell and driven out of equilibrium. The authors

studied the static height-height correlation function, Eqn. (2.20), obtaining results for the

width of the interface w and lateral correlation length ξ‖. The dynamic height-height au-

tocorrelation function (temporally-displaced, equal position) was also measured, in order

to obtain characteristic decay times for height fluctuations. The central result of the paper

is however visible from images of the experimental system itself [13] – under shear, the

colloid-polymer interface becomes significantly smoother, i.e., capillary wave fluctuations

are suppressed. The effect was observed to be greater for higher shear rates. The width

measurements support the visual impression: the width reduces when shear is applied to

the system. As the authors pointed out, suppression of thermal capillary waves by shear

in a real system is rather counter-intuitive (and therefore interesting) – for example, wind

at a water surface creates (macroscopic) waves.
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A natural question is whether this phenomenon is just specific to the experimental sys-

tem used, or whether it is a more general feature of non-equilibrium fluid interfaces. This

question provided the initial basis for the investigations presented in this thesis. A hint

that this phenomenon might not just be specific to the experimental system was already

available from the simulations of Leung et al. [102, 103] (Sec. 4.2.5), where smoothening

was found in the driven Ising lattice gas (KLS model). These results were, however, for a

2d system, while the experimental system is of course three-dimensional. Also, the driving

field is uniform in the KLS model, but the form of the field could conceivably be important

in determining the interface structure and dynamics (as we shall see, this is indeed the

case for the dynamics). Finally, larger and more accurate simulations have been made

possible in the 20 years since the Leung study. For these reasons, a new investigation

with greater scope was certainly worthwhile. Furthermore, very recently, a theoretical

study of a sheared fluid interface in d = 3 was conducted [122], using the framework of

fluctuating hydrodynamics. In that work, Thiébaud and Bickel compared their findings

to the experiment of Derks et al. and to MC simulations [123] – we shall discuss this in

Chapter 10. This third independent point of comparison is valuable, and is encouraging

evidence of continued activity in this field.

As mentioned, Derks et al. measured the static height correlation function – note

that this was C(x, y = const) in the notation of Sec. 2.3, because the focal plane of the

microscope is rather thin (< 1µm), so it picks up a 2d “slice” of the full 3d system. They

found that the experimental data could be fitted by the Bessel function CWT form (in fact

Eqn. (2.24), but without the shift λ) rather well, by using the correlation length ξ‖ and the

pre-factor as fitting parameters. This is remarkable – CWT is only expected to be valid

in equilibrium, which the sheared colloid-polymer mixture is not. The ξ‖ extracted from

the fits was found to increase with applied shear, as was the effective “surface tension”

from the pre-factor.

The dynamic height-height autocorrelation function,

C(r = 0, t) = 〈h(r′, t′)h(r′, t′ + t)〉,

measures the average correlation between interface heights at the same point in space,

but separated in time by an interval t. The typical decay time τcap of this function in

equilibrium is the “capillary time” – the lifetime of capillary wave fluctuations. In [13],

the decay times of the equilibrium system were measured, and used with hydrodynamics
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results for CW dynamics [124] to obtain decay times τq for individual Fourier modes. It

was then argued that the shear affects only modes with a decay time τq > γ̇−1, where γ̇ is

the shear rate (which has units of inverse time); physically, the slow modes are “washed

away” by the current along the interface. Finally, this relation was applied to a calculation

of an effective non-equilibrium surface tension σ(γ̇), which was found to increase under

shear, in agreement with the surface tension obtained from the fits of the static height

correlations. The physical ideas of large, slow fluctuations being washed away, and the

increase in effective stiffness remind us of the arguments of Refs. [103] and [104], which

are appealing. However, since the surface tension is a free energy, which is an equilibrium

notion, caution is required in the interpretation of the quantity measured in experiment.

In summary, the experiment described above is very intriguing, and led to the initial

simulations in the present work. However, it should be emphasised that we do not seek

to model such a complex fluidic system accurately, but rather investigate non-equilibrium

interfaces on a more generic and hopefully more fundamental level.



Chapter 6

Monte Carlo Methods

6.1 Introduction

The term “Monte Carlo methods” forms a rather large umbrella over a wide variety of

specific applications, from condensed matter physics, to electrical engineering, to financial

markets [125] and many more. The unifying feature is the use of random numbers to

perform sampling and so to compute quantities of interest. In condensed matter physics,

these are observables of a system – for example, energy, order parameter, two-body corre-

lation functions, etc. The use of random sampling sets Monte Carlo (MC) methods apart

from molecular dynamics, where the equations of motion of the system are numerically

integrated forward in time [54].

The general prescription for an MC simulation of a condensed matter system is as

follows. Firstly the system is prepared in some initial state, and parameters (temperature,

etc.) are chosen. The system is then evolved from one state to another via some choice of

simulation dynamics, and observables may be measured periodically in order to perform

averages. Generally MC simulations use importance sampling : the system’s states are

sampled according to the desired probability distribution (which for an equilibrium system,

is Boltzmann). This (natural) choice makes MC simulations powerful – we do not try to

sample all states of a system during a simulation (if we could, we may as well just calculate

the partition function directly – the huge number of states makes this impractical, e.g.,

2N for an Ising system with N spins), but rather we sample the more likely states more

often, since these contribute the most to observable averages. Indeed, the vast majority

of possible states will never be visited at all in an MC simulation, yet the results can still
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be extremely accurate.

States are generated as a Markov chain, possessing the key property that the transition

probability from a state µ to a state ν depends only on these configurations, and not on

the past history of the system [54, 55]. The condition of detailed balance, which we have

discussed in Sec. 4.2.1, ensures that the Markov process reaches a steady state probability

distribution, rather than a limit cycle [55]. For an equilibrium simulation, this distribution

is of course Boltzmann; out of equilibrium, it is generally unknown. The other requirement

for equilibrium is ergodicity : the system must be able to reach any allowed state from any

initial state. This condition has to be proved for individual MC algorithms [55].

For the moment we consider equilibrium systems. Since detailed balance, Eqn. (4.3),

only fixes the ratio of transition rates, some freedom is allowed in choosing their specific

form. We now rewrite the transition rate Rµ→ν in the form

Rµ→ν = sµ→νAµ→ν , (6.1)

where sµ→ν is the “selection probability”, which specifies the probability of choosing ν

as the candidiate for the new state, and Aµ→ν is the “acceptance probability”, which is

the likelihood that the transition is actually accepted. In a simulation, the idea is to

explore the state space efficiently, so the acceptance probability should be made as large

as possible, while still obeying detailed balance and normalisation. The famous Metropolis

algorithm [96] is a particular choice of sµ→ν and Aµ→ν , which is both rather simple, and

reasonably efficient, in the sense that the acceptance ratio is chosen optimally, given the

enforced selection probability. Specifically, one chooses a uniform selection probability, so

that if there are N states, sµ→ν = 1/N . The acceptance ratio has already been given on

the RHS of Eqn. (4.6); it is:

Aµ→ν = min {1, exp(−β(∆H))} . (6.2)

∆H is the change in internal energy resulting from the transition. According to (6.2),

moves which lower the system’s energy are always accepted, while other moves are accepted

with a Boltzmann factor probability. This is the optimal choice for the selection probability

given [55]. For the Ising model, the Metropolis algorithm is usually implemented via the

simplest choice: single spin-flip dynamics, where the new state is obtained by flipping one

spin on the lattice (in principle many spins could be flipped, since this still obeys the 1/N

selection probability, but cluster algorithms [54, 55] are a better approach if one wishes to

go down this avenue).
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Here we are interested in the conserved order parameter (COP) Ising model (or lattice

gas) introduced in Sec. 3.3. For this model, flipping a single spin is not permitted, since this

changes the overall magnetisation. Instead one can employ Kawasaki exchange dynamics,

which were introduced in Sec. 4.2.2. Since an elementary move consists of exchanging a

nearest-neighbour pair, the selection probabilities are not 1/N , but 2/zN , where z is the

number of nearest neighbours of a site, the lattice coordination number (4 for a 2d square

lattice). This number comes about because there are N choices for the first site, and z for

the second, but the pair can be chosen in either order. This sµ→ν is still uniform, so for

the acceptance probability, the Metropolis form (6.2) is again optimal. This constitutes

the Kawasaki algorithm for an MC simulation of the COP Ising model.

6.2 Non-equilibrium Monte Carlo

Although the majority of MC simulation studies are focused on systems in thermal equi-

librium, a significant number consider non-equilibrium systems. As discussed in Sec. 4.1,

this class includes systems approaching equilibrium, as well as those which are driven

such that they reach a non-equilibrium steady state. For example, studies of the COP

Ising lattice gas approaching equilibrium from a high-temperature quench [126] have ad-

vanced our understanding of the dynamics of phase separation in fluids. The KLS model

(Sec. 4.2) is an example of a system reaching a non-equilibrium steady state, with a variety

of interesting phenomena.

The key issue in non-equilibrium MC is the choice of dynamics. Generally one is

interested in observing not only static observables, but quantities which depend on the

dynamics, such as currents, or time correlation functions – for equilibrium MC, static

observables such as the energy or the pair correlation function are frequently the only

quantities of interest. For this reason, the dynamics must be chosen to be at least somewhat

physically realistic, so that these dynamic observables are meaningful. In particular, some

of the rather efficient algorithms which have been developed for equilibrium systems,

such as cluster algorithms for the Ising model, involve non-local movements of spins,

i.e. “teleportation” across the lattice, and are thus unsuitable. Additionally, often the

dynamics should be conservative – for example, in the KLS model, two spins have to

be exchanged in order to implement the effect of the driving field. This means that

the choice of algorithm is generally much more restriced than if one is only interested
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in static equilibrium properties. In the KLS model, the dynamics are of the Kawasaki

exchange type, with Metropolis acceptance ratios, extended to incorporate the driving

field. Kawasaki exchange dynamics are both local and conservative, and are therefore

physically reasonable for a simulation of a driven diffusive model such as the KLS model,

or indeed of phase separation in the equilibrium Ising lattice gas.

The problem with this restriction to local, conservative algorithms is one of efficiency

– they are slow to evolve the system through phase space. A particle hopping to a

neighbouring lattice site corresponds to a very small displacement in phase space – to move

the system a significant “distance” requires many individual hops, and therefore takes a

long time. In the case of spinodal decomposition in the COP Ising model, the typical

domain size grows as t1/3 [55], compared to t1/2 for even the single-spin flip (i.e., non-

conservative) algorithm. Thus observing the latter stages of separation takes a relatively

large computational effort. This also applies to driven systems such as the KLS model,

although the presence of an external field will alter the situation. Furthermore, in a fully

phase-separated COP Ising system with an interface, the dynamics become even slower –

the majority of nearest neighbours in the bulk are spins of the same sign, so exchanges

between these do not change the configuration. Thus evolution must primarily proceed via

the interface, which is also slow, because detaching a spin from its bulk phase costs energy.

This was experienced by Leung et al. [102, 103] in their simulations of the steady-state

interface of the KLS model, as discussed earlier.

Apart from the distinction between conservative and non-conservative, and local and

non-local dynamics, there also exists a classification for transition rates into soft and hard

[127–130]. If we consider rates with both internal energy and external (static) magnetic

field energy terms, then for “soft” rates, Aµ→ν factorizes into separate contributions due

these sources, while for “hard” rates, it does not. Rikvold and Kolesik [127–129] studied

SOS and Ising interfaces growing (i.e., moving vertically) in MC simulations under both

soft and hard rates, and found significant differences in the structure and mobility of the

interface depending on the type of rate used. For example, the average height difference

between neighbouring columns in the SOS model depends strongly on the static magnetic

field B for hard rates, but is independent of it for soft rates. The authors make the point

that when conducting MC simulations of non-equilibrium interfaces, the choice of rates, as

well as the choice of dynamics (as discussed above) matters. In our case, the situation is

somewhat different, since we will not consider a static external magnetic field, but rather
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a KLS-like field. However, an analogous classification is possible [131].

Another issue relating to choice of simulation dynamics is the non-equivalence of en-

sembles in finite systems. In the thermodynamic limit, the canonical and grand canonical

ensembles become equivalent, so that static observables attain the same average values.

However, we can only simulate a finite system, so this equivalence is not exact. Thus even

for an equilibrium simulation, the choice of dynamics can have an effect. As shown later

in Sec. 9.4, the difference is especially pronounced for systems with an interface, where

the extra freedom of interface wandering allowed by non-conserved Glauber (spin-flip)

[132] dynamics can significantly affect values of static observables, as compared to using

Kawasaki dynamics.
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Chapter 7

The main model

We now define the primary model that has been investigated in this work. Consider a

conserved order parameter Ising model (lattice gas) on a 2d square lattice, or 3d simple

cubic lattice. We fix the magnetisation m = 0 (ρ = 1/2), so that there are equal numbers

of up and down spins, and in equilibrium, the critical point is accessible. We consider

only sub-critical temperatures, and avoid close proximity to the critical point, since the

associated phenomena would drastically complicate the situation. The static external field

term, which simply shifts the zero of the energy in the COP Ising model, is set to zero. The

lattice has dimensions Lx × Lz (2d), or Lx × Ly × Lz (3d). Periodic boundary conditions

are applied in the x and (if applicable) y directions. Spin lines (layers) in 2d (3d) are

located at half integer z coordinates

z = −Lz − 1
2

,−Lz − 3
2

, · · · − 1
2
,
1
2
, . . .

Lz − 1
2

, (7.1)

for a total of Lz layers; we will take Lz to be even. The z boundaries consist of walls of

fixed spins σ = +1 at the top (z = (Lz+1)/2) and σ = −1 at the bottom (z = −(Lz+1)/2)

edges of the lattice. As discussed earlier, for sub-critical temperatures, these boundary

conditions induce an interface aligned parallel to the x-y plane on the average, with the

‘+’ phase in the upper half of the volume, z > 0. We focus on slit-like (2d) or slab-like

(3d) lattice geometries, with Lx � Lz in the 2d system, and Lx, Ly � Lz with Lx = Ly in

the 3d system, so that the system is confined between the two walls, and the scaling length

scale for the interfacial width is Lz ≡ L⊥ (Sec. 2.3.3). As discussed in Chapter 2, confined

systems are relevant experimentally, are rich theoretically, and useful exact results are

available for the 2d confined (infinite-strip) Ising model, providing an important reference
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point.

Time evolution of the system proceeds under Kawasaki spin-exchange dynamics, which,

as discussed earlier, conserve magnetisation or density locally (and globally). These dy-

namics are modified by an external force field F(z) = [Fx(z), Fy(z), 0] which acts on the

system, driving in the x-y plane. This field alters the Monte Carlo acceptance rates, to

produce a modified Metropolis rate as in the KLS model,

p = min {1, exp [−β(∆H + ∆W )]} . (7.2)

As usual β = 1/kBT is the inverse temperature (the Boltzmann constant will be set to

unity), and ∆H is the change in internal energy from the proposed exchange. ∆W is the

work done by or against the external force field; for ∆W = 0, the above rate reduces to

the standard Metropolis one, which samples thermal equilibrium states. We are interested

in the case of non-zero ∆W , when the system will reach a non-equilibrium steady state.

The system is immersed in a heat bath at constant temperature T , into which the work

done is dissipated. The driving field is related to the work term by

∆W = −J δ · F(z)(σi − σj)/2, (7.3)

where i and j label the positions of the spins:

i = (x, y, z),

j = (x+ δx, y + δy, z + δz) (7.4)

and δ is the displacement vector between spins i and j:

δ ≡ (δx, δy, δz)

= (±1, 0, 0) or (0,±1, 0) or (0, 0,±1), (7.5)

where the last equality holds because only nearest-neighbour exchanges are allowed. Note

that since Fz ≡ 0, then ∆W = 0 when the two spins are displaced in z – the exchange

occurs with the equilibrium rate. These modified Kawasaki dynamics simulate the com-

petition between diffusive motion and driven motion in the system.

At this point there is still a lot of freedom in choosing the specific form of the driving

field – there are, in principle, two components Fx(z) and Fy(z), both functions of z. We

will thus consider a few simple choices for the field, motivated by those which are likely

to be the most relevant experimentally, and by what has been studied before. Our main
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focus will be the case of ‘shear-like’ linear variation of the driving field with z, and the

field acting in the x-direction only, such that the field components are

Fx(z) = γz, (shear-like drive)

Fy(z) = 0, (7.6)

where γ is the field gradient in z. With this choice, exchanges along x are enhanced or

suppressed, while exchanges in both the y and z directions proceed with equilibrium rates

(∆W = 0). We also study the closely-related case of a V-shaped spatial dependence,

Fx(z) = γ |z| , (V-shaped drive)

Fy(z) = 0, (7.7)

such that the drive acts in the same direction throughout the system. These choices are

motivated by an attempt to model experimentally-realisable situations – for example a

sheared colloidal system. In an experiment, one applies a force to the walls of the shear

cell, rather than throughout the bulk – hydrodynamic interactions then set up a velocity

profile. In the Ising model, by contrast, there is no inertia and there are no hydrodynamic

interactions. In the 2d system, we do also consider the case of driving purely in the layers

next to the walls, to mimic the experimental situation:

Fx(z) = ±fw, z = ±(Lz − 1)/2 (boundary drive)

Fx(z) = 0, elsewhere

Fy(z) = 0, (7.8)

such that the layer next to the upper wall is driven with constant field +fw, the layer next

to the lower wall is driven with field −fw, and the exchanges at all other z values occur

with equilibrium rates. As we shall see, there is no bulk current in this case, as expected;

however, the boundary field still has an effect on the structure of the system. We also

consider other forms of drive. To make a connection to the KLS model, spatially uniform

drive in the x direction,

Fx(z) = f = const. (uniform drive)

Fy(z) = 0, (7.9)
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is a natural choice to study. In addition we consider a “step-like” driving field, which

swaps direction at the mean interface position, z = 0:

Fx(z) = f · sgn(z) (step-like drive)

Fy(z) = 0. (7.10)

These five forms of driving field are illustrated in Fig. 7.1. A first glance reveals that

the bulk driving forms (i.e., all except the boundary drive) are all either even or odd in

z. Indeed, the symmetry of the field will turn out to be crucial for the dynamics of the

interface. The parameters γ, fw and f control the strengths of the various forms of drive,

and the properties of the interface will depend strongly on their values.

Lz

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +  

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

γzγ|z|f.sgn(z)f f

-f

w

w

Figure 7.1: Illustration of the drive variants in the driven Ising model, as defined in the

text. From left to right: uniform, step-like, V-shaped, shear, and boundary drive. The

midline of the system is indicated with a dashed line, and a schematic interface is sketched.

With the driven dynamics fully specified, we can now construct the list of actions that

constitute a single time-step in the MC simulation. We work in spin language:

1. Choose a random spin i, the first candidate exchangee.

2. Choose a random nearest-neighbour of i (j), the other candidate exchangee.

3. Compute ∆H, ∆W , and use these in the Metropolis rate (7.2) to decide whether to

accept the exchange.

4. If the move is accepted, swap the values σi and σj . If not, do nothing.

The above ignores efficiency considerations – for example, if the chosen spins i and j actu-

ally have the same values, then their exchange has no effect on the system configuration,

so we can skip steps 3− 4. Note that we cannot exclude such choices from occuring when
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using a nearest-neighbour algorithm, if we wish the F = 0 case to be equilibrium: exclud-

ing like-spin pairs from the candidates has been shown to violate detailed balance [133].

For a system with N lattice sites, completing the above sequence N times corresponds

to one Monte Carlo sweep (MCS) of the lattice – this is a standard unit of time in MC

simulations, since on the average, each spin is visited once in step 1 per MCS.

MC simulations of the above model have been carried out in 2d and 3d, for a variety

of system sizes, temperatures, and driving strengths, from equilibrium to strongly driven.

The simulations were implemented using both the simple single-spin algorithm, as well

as a more advanced multispin method [55, 126]. We explain the meaning of this term,

and set out the algorithmic details, in the next chapter, and present results in Chapters 9

and 10. At this point we introduce a closely related secondary model which has also been

investigated.

7.1 The driven Blume-Capel model

The Blume-Capel (BC) [134–136] model may be thought of as a spin-one version of the

Ising model (which is spin-1/2), or as a (crude) lattice model of an AB binary mixture.

In the BC model spins therefore have three states, σ = +1,−1, 0; in the binary mixture

picture, the ±1 states correspond to species A and B, and the 0 state corresponds to the

absence of a particle at that lattice site. This is a fundamental change to the model: the

Ising up-down symmetry is broken, and richer phenomenology is possible – for example,

the BC model exhibits a tri-critical point which divides a first-order transition line and a

line of continuous (critical) transitions from the paramagnetic to the ferromagnetic state.

The general Hamiltonian for the Blume-Capel model is

HBC [{σi}] = −J
∑
〈ij〉

σiσj +D
∑
i

σ2
i −B

∑
i

σi, (7.11)

with σi = ±1, 0. The new term compared to the Ising model is the “crystal-field coupling”

with D ≥ 0, which favours the presence of σ = 0 spins and gives an equal penalty D

for the ±1 spin states. Often in the literature the magnetic field term involving B is

not included in the definition of the Hamiltonian, and is assumed to be zero implicitly.

Here, as for the Ising model, we will be interested in fixed numbers of all three spin states

(fixed numbers of species A and B), so in fact both the second and third terms are simply

constant anyway. The form of the Hamiltonian is then precisely Ising. As an aside we note
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that the BC model is actually a special case of the Blume-Emery-Griffiths (BEG) model,

which has an additional “biquadratic” (spin-squared coupling) term in the Hamiltonian

[137].

At D = 0, B = 0, the BC model exhibits an order-disorder transition at a critical

temperature kBTc/J ≈ 1.69 on a 2d square lattice, and at kBTc/J ≈ 3.19 on a simple

cubic lattice [138]. With the restriction of fixed numbers of each spin species, much of the

rich phase behaviour of the full BC model is inaccessible, but this is not the focus here.

Studies of the phase diagram and critical properties may be found in Refs. [135–139].

Here we study a 2d driven BC model to a) serve as a somewhat better model of driven

binary mixtures than the Ising model, by allowing for vacancies, and b) to test whether

results found in the driven Ising model have wider applicability, or are just special to that

system. As mentioned, we fix the number of σ = +1 and σ = −1 spins (which in turn fixes

the number of σ = 0 spins); equivalently in the binary mixture picture, we fix ρa and ρb,

the densities of the A and B species. We consider the same sort of (confined) geometries

as in the driven Ising model, and apply the same boundary conditions. Together with

the choice of temperature T < Tc, this induces phase separation with an interface lying

parallel to the x direction, in a similar way to the Ising case. Simulations were again done

using Kawasaki exchange dynamics with a work term ∆W to account for the drive, as

in the Ising system. An important difference, however, concerns the choice of the driving

direction for the ±1 spin species. In the Ising model, there are just two states, so if, say,

+ spins are driven in the positive x direction, − spins must go the other way. However,

in the BC model we may co-drive the + and − species in the same direction, by virtue of

the vacancies. For co-drive, the appropriate work term is

∆Wco = −J δ · F(z)(σ2
i − σ2

j ). (7.12)

Note that now +/− exchanges occur with equilibrium rates, and only +/vacancy and

−/vacancy exchanges are subject to drive. Of course, we may choose to apply the drive

as in the Ising model (“counter-drive”), where the ±1 spin species are driven in opposite

directions; then the work term is just (7.3). We will study both the counter- and co-driven

cases in Sec. 9.8.
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7.2 The driven discrete Gaussian model

The third model we consider is a driven version of the discrete Gaussian (DG) model

introduced in Sec. 3.5.1. We consider a 1d DG model, so that the system consists of a

one-dimensional array of heights hi, modelling the interface in a 2d Ising system. In the

DG Hamiltonian (3.18) we set the static external field B = 0, and we enforce conservation

of the total height:
∑

i hi ≡ 0. The choice of constant, zero, ensures that the zero-

temperature (flat) interface lies at h = 0. Analogously to the other models, simulation

dynamics then consist of particle movements from one column i to a nearest-neighbour

column j. The source column loses a unit of height: hi → hi − 1, which moves to the

neighbour: hj → hj + 1. We again use modified Metropolis rates, with a work term ∆W

due to the drive. The work couples to the height variables in the DG model; to produce a

linear shear-like variation of driving strength with height, to drive in the x direction, we

use

∆W = −(x′ − x)
[h(x) + h(x′)]

2
Jγ, (7.13)

where x and x′ are the source and destination column positions, respectively. This form

uses the mean of the heights in the two columns to determine the work; of course, other

choices are possible – e.g., just one of the heights. We will come back to this briefly in

Sec. 9.6. A spatially uniform drive may be set up with the work term

∆W = −(x′ − x)Jf, (7.14)

and so forth. The internal energy change term ∆H depends on the the heights at x, x′,

and their other nearest neighbours (each column has two nearest neighbours in the 1d

model), which we denote xn and x′n:

∆H = 3
[
1 + h(x′)− h(x)

]
+ h(xn)− h(x′n) (7.15)

A simulation time-step then consists of the following actions:

1. Choose a random column i, the candidate source column.

2. Choose a random nearest-neighbour of i (j), the candidate destination.

3. Compute ∆H, ∆W , and use these in the Metropolis rate (7.2) to decide whether to

accept the move.
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4. If the move is accepted, decrement the height hi, and increment hj . If not, do

nothing.

The DG model is less computationally expensive than the COP Ising lattice gas to simulate

for a long time, and so a simple single-spin (see Chapter 8) implementation proved sufficient

to obtain good quality data. Finally, note that it is easy to substitute the SOS Hamiltonian

(3.17) for the DG one, and simulate a driven SOS model – indeed we investigate this

possibility in Sec. 9.6.



Chapter 8

Computational details

We now give details of the “specialized” computational techniques used in the driven Ising

model simulations, namely the multispin coding method, and parallelization via domain

decomposition. We first address multispin coding.

8.1 Multispin methods

Multispin coding is a computational technique which can speed up Monte Carlo simula-

tions for some systems (typically spin systems, as the name implies). Essentially it follows

the single instruction, multiple data (SIMD) paradigm, although no special instructions

(e.g., Streaming SIMD Extensions [SSE]) are required, only standard bitwise operations

(AND, OR, NOT, XOR) and shifts. The idea is to hold the state of several degrees of

freedom (spins) within a single unsigned integer variable, and update their values simul-

taneously using the mentioned bitwise operators, in order to evolve the system(s). In

fact there are two main approaches to using this underlying idea: either the spins in the

variable may all belong to the same system, in which case multispin coding allows one to

simulate a larger system, or they may belong to different systems (of the same dimensions)

which are evolved in parallel (though of course, not identically). The latter approach al-

lows us to average observables over all systems in the “multispin ensemble”, and thus gain

improved statistics (which would otherwise require very long runs). This second technique

has also been termed “multilattice coding” [54]. Here we concentrate on this method; for

more information on the single-system technique we refer to [55].

Multispin coding is only applicable to a restricted class of systems. The degrees of

71
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freedom must take discrete values (preferably as few as possible) – the values must be

representable in just a few bits. Assuming this is the case, one can attempt to create a

multispin version of the desired simulation algorithm (for example, single spin-flip, spin

exchange, or even a cluster algorithm). This is not necessarily straightforward, and natu-

rally, more complex algorithms are more difficult to transcribe to multispin “language”. A

single time-step in a multispin algorithm always involves more instructions than a simple

single-spin version, and so for an especially complex algorithm, the gains may be out-

weighed by the overheads. Perhaps more importantly, additional complexity introduces

bugs in code, and experience has shown that these bugs can be subtle and hard to find.

Nevertheless, multispin coding is a powerful and elegant technique, and with carefully

planned algorithms accompanied by a single-spin implementation as a check, it can be

very beneficial. Additional words of caution may be found in Ref. [55].

The Ising model is the ideal candidate for multispin coding, since the spins take just

two values ±1, which means one spin corresponds to a single bit. This has the dual bene-

fits of simplifying the algorithm, and maximising the number of systems in the multispin

ensemble: on a 64-bit CPU and operating system, we can efficiently simulate 64 systems

at once. A multispin version of the Metropolis spin-flip algorithm for the two-dimensional

Ising model may be found in textbooks [55]; equilibrium Kawasaki dynamics in two di-

mensions have also been implemented [126]. Here we extend the algorithm detailed in

Ref. [126] to include the effect of the driving field F , in order to simulate the driven Ising

lattice gas model defined in the previous chapter.

8.2 Equilibrium multispin Kawasaki dynamics

To introduce the method, we first cover the equilibrium case, following and expanding on

[126]. Our goal is to construct a variable peq whose bits are one with the correct Metropolis

acceptance probability, for each system. Once we possess this variable, the actual spin

exchanges may be carried out by the operation

S′1 = S1 ⊕ peq

S′2 = S2 ⊕ peq, (8.1)

where S1 (S′1) and S2 (S′2) refer to the initial (final) values of the variables containing

the two spins being exchanged, and ⊕ is the exclusive-or (XOR) bitwise operation, which
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returns 1 if the two argument bits are unlike, and 0 if they are the same. Each bit in S1

and S2 corresponds to a different system, but at the same spatial location. The bits of

peq must be generated such that all the systems evolve independently. We now introduce

auxiliary variables Pi and Qi (abbreviating nearest-neighbours to “nns”):

Pi: bits 1 if at least i nns of S1 are anti-parallel to S1, excluding S2.

Qi: bits 1 if at least i nns of S2 are anti-parallel to S2, excluding S1.

For a 2d square lattice, i takes values 1, 2, 3; for a 3d simple cubic lattice, i = 1, . . . 5. We

also define the variables Ri, which have each bit 1 with probability exp(−4βJ); i runs

over the same numbers as for the Pi and Qi. Gemmert et al. [126] show how to obtain

the variables Pi and Qi from the spin configuration; this is done in the following way. One

constructs variables Ai and Bi,

Ai = S1 ⊕N1,i,

Bi = S2 ⊕N2,i,

where the N1,i (N2,i) are the nearest neighbours of S1 (S2), excluding the other exchangee

S2 (S1). The Pi and Qi then follow by a series of bitwise AND and OR operations on

the Ai and Bi; in the 2d square-lattice case, the optimal procedure obtains them in six

operations [126]. Once the Pi and Qi variables have been calculated, the acceptance

probability variable peq can be computed using the following formula in the 2d case:

peq = (S1 ⊕ S2) ∧ (P1 ∨Q3 ∨R1) ∧ (P2 ∨Q2 ∨R2) ∧ (P3 ∨Q1 ∨R3). (d = 2) (8.2)

Here the symbols ∧ and ∨ represent the bitwise AND and OR operations, respectively.

In the following we talk in terms of a single bit, although of course all bits are operated

on at the same time. The first set of parentheses simply filters out the cases where the

relevant bit of S1 and S2 is the same. The second set evaluates to one if either S2 has three

anti-parallel neighbours, or S1 has at least one anti-parallel neighbour, or if the relevant

bit of R1 is one. Now, if the bit of Q3 is one, then the same is true for Q2 and Q1, so we

immediately see that in this case, the bit of p will be set. This is because the maximum

∆H for this case is zero, which is always accepted under Metropolis rates.

The same argument applies if the relevant bit of P3 is one – then all the brackets again

give one. If neither P3 nor Q3 have the bit set, then the exchange may occur, but requires

one or more of the R variables to have the appropriate bit set. As an example, consider
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the case where the bit of P2 is one; then the exchange depends on the last bracket – it

requires either Q1 or R1 to have their bit set. If Q1 has the correct one-bit, then we know

that S2 has at least one anti-parallel neighbour, and S1 has at least two. This means that

max(∆H) = 0, so the exchange suceeds. If however Q1 is not set, then we know that

S2 has no anti-aligned spins, so ∆H = +4. Thus the Metropolis exchange probability

is exp(−4βJ), which is just the probability that R1 has its bit set. Thus we see that

peq has its bits one with the correct probability for this case. The same argument can be

applied to all other cases; when multiple Ri are required, this corresponds to the Metropolis

probabilities exp(−8βJ) and exp(−12βJ), using the identity prob(a∧b) = prob(a)prob(b),

for two bits a and b, where prob() gives the probability of its argument being one.

In three dimensions, the form of the algorithm is exactly the same, with more Pi, Qi

and Ri to account for the greater number of neighbours. The acceptance probability is

just

peq =(S1 ⊕ S2) ∧ (P1 ∨Q5 ∨R1) ∧ (P2 ∨Q4 ∨R2) ∧ (P3 ∨Q3 ∨R3)∧

(P4 ∨Q2 ∨R4) ∧ (P5 ∨Q1 ∨R5). (d = 3) (8.3)

Having computed peq, the exchange operation on the bits of S1 and S2 can be carried out

according to Eqn. (8.1) – we have then completed a step of the Kawasaki MC algorithm

outlined in the previous chapter, but on many systems at once.

8.3 Driven multispin algorithm

We now modify the above algorithm to include the effect of the work ∆W done by the

driving field F . First of all we recall that exchanges perpendicular to the drive direction

occur with equilibrium rates, so for these cases (8.2) or (8.3) apply. We now consider

exchanges in the driving direction, where new expressions are needed. Due to the form

of the Metropolis rates, which plateau at 1 for ∆H + ∆W ≤ 0, we consider the cases

where the first-chosen spin S1 is moving against and with the field, separately. One might

initially think that we could avoid this by simply swapping the identities of S1 and S2,

but recall that each bit of these variables is a spin in an independent system – an against-

drive move in one system may be a with-drive move in another. Thus the full exchange

operation will actually consist of a “superposition” of the two cases. We first consider

against-drive moves.
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8.3.1 Against-drive S1 moves

In this case, ∆W > 0, so that the exchange probability is reduced compared to the

equilibrium case. Consider the specific case where the bit of Q1 for the system we are

considering is zero. Then, depending on the Pi, ∆H = 0,+4,+8, . . . , up to +12(+20)

for d = 2 (d = 3). When we incorporate the drive, the resultant ∆H + ∆W > 0. Thus

the exchange never automatically succeeds, so we can write the against-drive exchange

probability variable pa as a simple bitwise AND with the equilibrium variable peq:

pa = peq ∧ V0, (8.4)

where V0 has bits one with probability exp(−β∆W ). This is the simplest case; if the bit

of Q1 is set (but that of Q2 is not, for now), then ∆H may be negative, so ∆H + ∆W

may be also. Additional terms are required to handle this possibility – we cannot simply

bitwise AND with V0. A suitable expression for pa in d = 3 is

pa = peq ∧
{[
Q1 ∧ V0

]
∨
[
Q1 ∧Q2 ∧ ((P5 ∧ V1) ∨ (P5 ∧ V0))

]}
, (8.5)

where Q1 (for example) represents the bitwise NOT operation, and V1 has bits one with

probability min[1, exp(−β(−4 + ∆W ))]. The first term in the {...} encapsulates the pre-

vious case, where Q1 was not set; the second term handles the new case, where Q1 is set,

but the Q>1 are not. In equilibrium, for this situation, only when P5 is set is ∆H < 0 –

therefore if P5 is off, then the expression is like (8.4) (last term). When P5 is set, then

the V1 variable gives the appropriate probability of success.

This line of logic may be continued to cover the remaining cases, i.e., the other Qi

having the appropriate bit set. For example, when Q2 is set, there are now two cases

where automatic acceptance (∆H+∆W ≤ 0) is possible, and we require another auxiliary

variable like V1, which has bits one with probability min[1, exp(−β(−8 + ∆W ))]. The

structure of the expression is a series of sub-expressions which each handle a different

physical configuration of spins; the results of these sub-expressions are OR’ed (∨) together

to produce the final result. The full acceptance probability expression for against-drive

moves may be found in Appendix A.

8.3.2 With-drive S1 moves

Now the exchange probability is larger than in the equilibrium case. This means that

the above approach of extending peq with additional terms via a bitwise AND no longer
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works. Instead we generate the with-drive probability variable pw independently. The

general structure of the expression is the same as before: sub-expressions handling different

physical cases, which are OR’ed together. For the case where Q1 is not set, we have (again

for d = 3):

pw =(S1 ⊕ S2) ∧
{
Q1∧[

(P5) ∨ (P5 ∧ P4 ∧ U1) ∨ (P4 ∧ P3 ∧ U2) ∨ (P3 ∧ P2 ∧ U3)∨

(P2 ∧ P1 ∧ U4) ∨ (P1 ∧ U5)
]}
, (8.6)

where the Ui have bits 1 with probability min[1, exp(−β(4i − ∆W ))]. Each inner set

of parentheses handles a different Pi case; the first deals with P5 set, in which case the

exchange automatically succeeds. In the second, P4 is set, but P5 not; now ∆H = +4, so

we AND with U1 to get the correct exchange probability. The other parentheses follow

similarly.

When Q1 is set, but not Q2, both the cases P5 set and P4 set correspond to automatic

exchange success. We thus replace the first expression in parentheses in (8.6), (P5), with

P5 ∨ P4, and “shift along” the variables U1...4; U5 now does not appear, since ∆H is at

most +16 in this situation. The expression that handles both cases is then

pw =(S1 ⊕ S2)∧{[
Q1 ∧ ((P5) ∨ (P5 ∧ P4 ∧ U1) ∨ (P4 ∧ P3 ∧ U2) ∨ (P3 ∧ P2 ∧ U3)∨

(P2 ∧ P1 ∧ U4) ∨ (P1 ∧ U5))
]
∨[

Q2 ∧Q1 ∧ ((P5 ∨ P4) ∨ (P4 ∧ P3 ∧ U1) ∨ (P3 ∧ P2 ∧ U2)∨

(P2 ∧ P1 ∧ U3) ∨ (P1 ∧ U4))
]}
. (8.7)

The first and second lines are just (8.6); the third is the new part. Now that the structure

is defined, the full expression which deals with all cases can be built up simply; this is

given in Appendix A.

We now have the exchange probabilities for both against- and with-drive moves of S1;

what remains is to combine these to produce the final p for use in (8.1) (with peq replaced

by p). To do this we need knowledge of the relative positions of S1 and S2. We now

assume that the driving field acts in the x direction only (since this is true of the forms of

field defined previously), and that it is directed in the positive x direction. We label the

variable of the pair which has the smaller x coordinate by Sl (“left”), and the other by Sr
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“right”); if the x coordinates are the same, the choice of labelling does not matter. Thus

for example if S1 is positioned to the left of S2, we identify Sl with S1 and Sr with S2. Now

the appropriate test can be applied to each spin in the ensemble by creating “with-drive”

and “against-drive” masks, Mw and Ma: the former has bits one only in positions where

the bit of Sl is set, and the latter has bits one only in positions where Sr is set. We can

arrange this via

Mw = Sl ∧ Sr

Ma = Mw. (8.8)

Finally, we can construct the full exchange probability variable p:

p = (Mw ∧ pw) ∨ (Ma ∧ pa). (8.9)

Note that if we wish to swap the field direction, we can simply take the bitwise NOT

of Mw and Ma; this makes it easy to implement a shear-like drive, for instance. This

concludes the specification of the driven multispin Kawasaki algorithm; what we have

not covered is the generation of the various random variables required. Recall that we

need variables R, Vi, Ui which have their bits set with several different probabilities. A

thorough discussion of how to tackle this problem may be found in Ref. [55]; essentially

one starts from the “easy” case, where the bits are set with probability 1/2. An integer

pseudo-random number generator is a suitable source for this; in this project the primary

generator used was a C++ implementation [140] of the Mersenne Twister algorithm [141],

which is a reliably uniform generator with an extremely long period, and good speed. The

results were also checked with other generators [142]. Random unsigned integer variables

obtained from the generator can then be combined appropriately to generate the desired

probabilities [55].

8.4 Parallelisation

In three dimensions, the sheer number of lattice sites makes even simple systems such

as the Ising model computationally demanding. This is especially true for the present

case: long runs are required in systems with an interface evolving under the local, slow,

Kawasaki dynamics. Additionally, while the multispin algorithm will prove to be valuable

in obtaining precise results for observables, a single Monte Carlo step does take significantly
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longer (approximately twice as long) than with a single-spin implementation. For these

reasons the 3d driven Ising simulations were parallelised, both by domain decomposition

for running the actual MC algorithm, and also separately for data processing.

Domain decomposition, as the name implies, is the technique of splitting the lattice up

into several sub-domains [55], which are then worked on (semi-)independently by different

threads/processes/cluster notes (depending on the details of the parallelisation employed).

In the ideal case, the real (“wall-clock”) time taken for a simulation of given length is

reduced by a factor Nt, where Nt is the degree of parallelisation (number of threads, or

similar). Of course, in practice, this is not the case, because the different sub-domains

are not entirely independent, so that there is some degree of synchronization overhead.

Therefore, when implementing parallelisation via domain decomposition, we wish to keep

this overhead small, whilst still producing a correct MC algorithm. The choice of how

the lattice is divided up, and the number of sub-domains used, affects the overhead.

For the driven Ising system being simulated here, the basic (Kawasaki) dynamics are

local, so communication and synchronization between sub-domains is only necessary at the

boundaries between them. We therefore wish to keep the inter-domain contact boundary

area-to-domain volume ratio small; of course, there is a trade-off here, because minimizing

this quantity corresponds to just one sub-domain! In practice, testing is required to

determine a good balance.

In any case, for the driven Ising system with x and y boundaries periodic, a simple

and efficient choice for how to effect the decomposition is to divide the lattice along x.

Then, for an Lx×Ly ×Lz lattice (recall Lz � Lx, Ly), the contact area is LyLz per sub-

domain, and sub-domains are of dimensions (Lx/Nt)× Ly × Lz. The parallelisation must

then be implemented such that at least in equilibrium, detailed balance and ergodicity are

respected. One method to do this, as explained in [55], is to not perform any exchanges

for which ∆H depends on the value of a spin in a neighbouring sub-domain. The other

(“interior”) spins can be exchanged without any synchronization or communication with

other sub-domains. Then, periodically, the borders of the domains are translated, so all the

spins are given the chance to be updated (otherwise the algorithm would be non-ergodic).

In fact, here we do not do this, but instead allow all spins to be exchanged, and perform

the necessary synchronization if neighbouring domains choose to update spins at or near

their border at the same time. This approach was taken in view of the presence of drive

(and therefore current) in the system: if the border regions are fixed, then a “build-up” of
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spins at a border could take place, which would be contrary to the aim of the microscopic

dynamics.

In the approach used, each domain runs in its own thread, and neighbouring pairs of

domains share a locking primitive [143] (chosen to be a spinlock, after testing different

solutions), which is used to provide mutual exclusion during the update of lattice sites

near their border. The parallelised algorithm for each sub-domain proceeds as follows:

1. Choose a random spin i, the first candidate exchangee.

2. Choose a random nearest-neighbour of i (j), the other candidate exchangee.

3. If either of these is in a border region, then acquire the appropriate lock. This

prevents the neighbouring domain from updating spins in the sensitive region until

the lock is released. If the lock is currently held by the neighbour domain, the thread

will block here until it can acquire it.

4. Calculate the acceptance probability and carry out the exchange if it is accepted

(this could be a multispin implementation, or a single-spin – it makes no difference

at this level).

5. If a lock was acquired, release it.

Due to the vagaries of the operating system scheduler and the hardware, the threads will

not all run at exactly the same speed (measured in MC steps per unit time). If some

threads lag behind significantly, the driven dynamics begin to be affected. Therefore in

the implementation, the threads are periodically made to wait at a barrier [143] synchro-

nization object. When all threads have reached this barrier, the “local” MC time in each

is known to be synchronized. The interval between barrier synchronizations is chosen as

a balance between efficiency and minimizing any effect on the dynamics. If the interval is

too long, “build-ups” similar to that mentioned above may occur; we have observed that

this has a small but observable effect on interface time correlation functions. In practice,

one must carry out preliminary tests, by comparing data from a single-threaded run with

that from a parallel run, to ensure there are no anomalies.

The barrier is also a convenient point to measure observables required from the sim-

ulation. When using a multispin algorithmic core, a large amount of data is produced

(i.e., 64 systems’ worth). This means that a relatively large amount of processing must
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be done in order to calculate observables – therefore this part of the program was also

parallelised. A classic producer-consumer approach was used, with a pool of threads being

“fed” a lattice configuration snapshot periodically, which could then be used to calculate

any observable of interest. Different observables were divided among the threads in the

pool in a reasonably fair way, such that the more computationally expensive observables

were shared out. For the actual calculations, the multispin data were “demultiplexed”

into separate single-spin lattices for processing – although for some quantities, direct cal-

culation from the multispin state is possible, it is extremely inconvenient, or impossible,

for others.

This concludes the details of the computational methods used. The simulation code was

written in C++, making use of the Blitz++ [144], Boost [145], FFTW [146], RapidXML

[147] and CImg [148] libraries, as well as the previously-mentioned random number library

[140]. We now turn to the results of the Monte Carlo simulations.



Chapter 9

Results in two dimensions

We first discuss the two-dimensional driven Ising lattice gas. All simulations were done

on a 2d square lattice. For the majority of the simulations, Lx = 200 was chosen for the

lateral system length, with the wall separation distance Lz varying from 10 to 40, allowing

a variety of aspect ratios and degrees of confinement. Some results are also shown for

systems with larger Lx; simulations were carried out at up to Lx = 1250. As mentioned

earlier, the fixed total magnetisation was chosen to be m = 0. Simulations were carried out

at T/T 2d
c = 0.75, 0.85, 0.95, where T 2d

c = 2.269 . . . is the bulk equilibrium 2d Ising critical

temperature [51]. In this chapter we abbreviate T 2d
c to Tc, since we exclusively discuss

two-dimensional systems. The time required to reach a steady state was measured by

carrying out test runs of several different lengths, and comparing the results to determine

whether they agreed to within statistical errors. The initial state was chosen to be the

T = 0 ground state, i.e. all ‘+’ (‘−’) in the upper (lower) half of the system – since

the system is expected to phase separate, this choice should reduce the time to reach a

steady state. Quenching from a random (T =∞) initial configuration was also tested, and

confirmed to give the same steady state. The pre-measurement period in the “production”

runs was then chosen to be the minimum time required as determined by these tests, plus

a significant extra amount, in order to be safe. The time to reach a steady state was found

to vary significantly with applied drive, being longest for zero drive, i.e., equilibrium.

This longest steady state time was 108 Monte Carlo sweeps (MCS), where as defined

earlier, 1MCS corresponds to N = Lx × Lz trial moves – one per spin, on the average.

Measurements were then taken over another 108 MCS in the steady state, a sufficient

length of time to produce good statistics (especially when combined with the multispin
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method) for all observables.

Statistical errors were estimated primarily by the bootstrap technique [55, 149], a flex-

ible method which can handle errors on observables which have more than one correlated

element, as well as providing a reliable error estimate when measurements are taken more

frequently than the autocorrelation time for a particular observable in the system. The

bootstrap method is one of a family of “resampling” methods, where one repeatedly cal-

culates the relevant observable from samples taken from the full data set, and calculates

the standard error of these results; this converges to the true standard error. The blocking

technique [150, 151] was also experimented with. Finally, in some cases, quantities were

averaged over multiple runs, in which case the usual direct error calculation method was

applied (checking consistency between independent runs also provides a test of the accu-

racy of the error estimations). For most observables and parameter sets, the statistical

errors are rather small (and highly consistent between different runs), with the multispin

method proving to be a great help – indeed, when checking results with a single-spin

algorithm, the errors and variance between runs were found to be much greater.

9.1 Simulation snapshots

We first present some simulation “snapshots” to give the reader an idea of what the system

really looks like. In Fig. 9.1 we show snapshots of steady state systems in equilibrium,

and under both moderate and strong shear-like drive.

Comparing Fig. 9.1a-c, the most striking change when the system is driven is that the

interface becomes smoother ; in the γ = 2 case, the smoothening is quite dramatic. The

large fluctuations present on the equilibrium interface seem to be destroyed by the drive

(although they are for a single time, these snapshots are representative of the steady state

behaviours). At this point we can already say that the interface of a system driven by the

shear-like drive is “less rough” than its equilibrium counterpart. Indeed, these snapshots

are rather reminiscent of the experimental system of Derks et al. [13]. We next develop

this quantitatively, via the various observables which probe the system’s structure. First

we address the current in the system, since this provides a good introduction to the action

of the drive.
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(a)

(b)

(c)

Figure 9.1: Snapshots taken in the steady state from MC simulations of an Lx = 200,

Lz = 20 system at temperature T/Tc = 0.75. (a) Equilibrium, no drive applied: the

interfacial fluctuations are strong. (b) Shear-like drive of moderate strength, γ = 0.5: the

largest fluctuations present in (a) are absent here. (c) Strong shear-like drive with γ = 2.0:

the interface is now quite smooth.

9.2 Current profile

Driving in the x direction creates a non-vanishing current profile jx(z) in this direction

(parallel to the walls). We define the full (vector) order parameter current profile as

j(z) = j+(z)− j−(z) (9.1)

where the jσ(z) are the current profiles of the ±1 spin species. The x-component jxσ(z)

of jσ(z) is the net number of spins of that species moving in the positive x direction per

unit time (MCS) at perpendicular coordinate z. The Ising symmetry means that the

current profile can also be written as j(z) = 2j+(z); the definition (9.1) may be applied to

systems lacking the Ising symmetry, such as liquid-gas or liquid-liquid interfaces, or the

Blume-Capel model. This definition also generalizes to three dimensions.

In Fig. 9.2 we display results for the current profile as a function of the scaled variable

z̃ ≡ 2z/Lz, for equilibrium and for various types and strengths of drive. When no drive is

applied, the system reaches a thermal equilibrium steady state, with zero average current

for all z̃. For the boundary-driven case, the current is localized at the walls and vanishes in

the middle of the system. This lack of a bulk current highlights the lack of hydrodynamic

interactions in our system – only in layers where the drive is applied locally can there be a

non-zero current. In the shear-like drive case jx(z̃) varies smoothly with z̃, see Fig. 9.2a.

For small values of γ, a near-linear behaviour is observed. For strong drive the current
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saturates upon approaching the walls, and |j(z̃)| displays pronounced maxima either side

of the mean interface position (z̃ = 0) at the center of the system. This change in shape can

be explained by recalling that the observed current depends on not only drive strength, but

also on carrier density (particle-hole or ±1 pairs). For the larger values of γ, the interface

is less rough (as we saw in Fig. 9.1), and so there are fewer particle-hole pairs available for

exchange at z values far from the centre of the strip (this point will be reinforced by the

magnetisation profiles shown in the next section). Therefore, despite the smaller driving

strength near the centre, the large carrier density can “win” and produce maxima at these

locations.

Fig. 9.2b shows the form of the current for the other drive types. For a spatially uniform

drive, the current takes the same sign throughout the system. Despite the homogeneity of

the field, the current displays a maximum at the centre of the system (the mean interface

position). As for shear, this reflects the greater carrier density in this region. Indeed, for

the f = 0.5 and f = 1.0 cases shown, by only three or four lattice spacings away from the

maximum the current has decayed significantly and plateaued, indicating that the carrier

density is essentially constant in the rest of the system for these parameters. This suggests

a sharp magnetisation profile, which is indeed the case (see next section). The data for

the step field of strength f = 0.5 follow the uniform drive data closely for z̃ > 0, deviating

only slightly at the middle of the system. Due to the symmetry of the field, the current

then swaps sign around z̃ = 0 (the connecting line, as with all lines in the figure, is purely

a guide to the eye). The current profile for the V-shaped field looks rather odd at first,

but comparing with the data for shear-like drive in Fig. 9.2a, one sees that they really

have the same shape for z̃ > 0 (and are reflections of one another for z̃ < 0), apart from

the points directly next to the midline. Indeed, plotting the data together shows close

agreement. Due to the even symmetry, a strange “valley” shape is induced around the

midline of the system for the V-shaped field.

These trends extend to larger system sizes: Fig. 9.3 shows results for an Lx = 450,

Ly = 30 system at T/Tc = 0.75. At small shear-like drive strength γ, the current is very

close to linear; for stronger drive, maxima develop near the middle of the strip, as before.

The magnitude of the current also attains similar values to those in the smaller system.
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Figure 9.2: Current profiles jx(z̃) for an Lx = 200, Lz = 20 system at temperature

T/Tc = 0.75. Error bars are of order or smaller than the symbol size. (a) Results for

equilibrium (where the current is zero), and several values of shear-like drive strength γ.

(b) Results for other drive types: spatially uniform drive, step-like drive, the V-shaped

drive, as introduced in Chapter 7.
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Figure 9.3: Current profiles jx(z̃) for a system of dimensions Lx = 450, Lz = 30 at

temperature T/Tc = 0.75. Results are shown for several values of shear-like drive; there

is good agreement with the data from the smaller 200 × 20 system, both in shape and

amplitude.



9.3. STATICS: INTERFACE STRUCTURE 87

9.3 Statics: interface structure

9.3.1 Magnetisation profile

We now turn to the static, structural properties of the driven Ising system, starting with

the magnetisation profile between the lower and upper walls, m(z); in lattice-gas language,

this is the density profile. In two dimensions, this is calculated as

m(z) =
1
Lx

〈∑
x

σ(x, z)

〉
, (9.2)

where the angles denote a time average in the steady state. For each z, m(z) is just the

average magnetisation in that layer. In a phase-separated system m(z) changes sign across

the interface, and attains values close to +1 (−1) near the upper (lower) walls. In Fig. 9.4

we plot the magnetisation profile, scaled by the spontaneous (bulk) magnetisation of the

infinite system mb, as a function of the scaled variable z̃. Recall from Sec. 3.5 that in

2d in equilibrium, exact results for the magnetisation profile are available for the infinite-

strip geometry Lx →∞, Lz finite. For large enough aspect ratio Lx/Lz in the simulation

system, the equilibrium simulation data should follow this closely – indeed from the inset

of Fig. 9.4a we see that this is the case for Lx = 200, Lz = 20, corresponding to an aspect

ratio of 10. The agreement is not perfect even for this reasonably large aspect ratio; this

is due to the nature of the Kawasaki dynamics; we discuss this issue in Sec. 9.4. Going

to larger aspect ratios does improve the agreement, but then either larger systems are

required, which are slower to simulate, or one must use a rather small Lz, which gives few

data points to work with along the z axis.

For the equilibrium system, we see that the variation of m(z̃) with z̃ is rather slow,

and that m(z̃) does not really plateau at a “bulk” value away from both the middle of

the strip and the walls in either phase. This is due to strong capillary-wave fluctuations,

which cause the local interface position to explore the entire strip. In a van der Waals-style

mean-field treatment (Sec. 2.2), these fluctuations are absent, and so the profile is very

sharp – see the figure for an example of a profile from a mean-field theory [123].

When drive is applied to the system, the shape of the profile changes. In all cases, the

profile becomes sharper compared to the equilibrium case: m(z̃) changes sign more rapidly

in the interfacial region, and the absolute value |m(z̃)| near the walls is larger. In the case of

boundary drive, this effect increases with increasing fw up to a saturation point at fw ≈ 5,

beyond which there are no further changes to the profile, within error bars. Fig. 9.4a shows
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this limiting behaviour, for fw = 50 (essentially infinite, since particle moves against the

field are suppressed by a factor of the order e−50). For weak shear-like drive, γ = 0.025,

we see that the effect on m(z̃) is rather similar to that of the boundary drive. For larger

γ, the profile is very strongly affected: for γ = 1.0, m(z̃) becomes almost kink-like, which

is reminiscent of the mean-field profile obtained by neglecting CW fluctuations. It also

mimics the effect of a reduced temperature (the zero-temperature profile is a strict step

function) in an equilibrium system. The other types of drive illustrated in Fig. 9.4b show

similar effects on m(z̃). Comparing the shear-like and V-shaped drive, we find that for

given γ, the V-shaped field produces a slightly larger effect on the profile than its odd-

symmetric counterpart. For uniform and step-like drive, the situation is not so simple: we

find that at small field strength f , the latter has a stronger effect, but as f increases, the

uniform “catches up”, and for f & 0.25, shows a greater effect than the step field. For

these bulk-driven cases (i.e., all except the boundary drive), the limiting behaviour of the

profile for strong drive appears to be almost step function-like – the profile shape attains

its limiting form. This is in contrast to the boundary-driven case, where the maximum

effect is limited by the fact that the system is only driven in two layers next to the walls.

What is common to all cases is that capillary-wave fluctuations, which broaden the profile,

seem to be suppressed, to a greater or lesser degree. This finding is in agreement with the

KLS simulations of Leung et al. [103], where the magnetisation profile was also measured.

Similar behaviour is also seen in the energy bond profiles between the walls; we have also

presented [68] data for these quantities in our system.

A natural question to ask is: what is the microscopic physical mechanism responsible

for this behaviour? Part of the answer lies in the competition between advection and

diffusion. In the system there are always “intruders” of one phase into the other. These

may be single spins, or clusters. In equilibrium, a cluster of two or more intruders is much

less mobile than a lone intruder – this is because bond(s) must be broken in order to

move any member of the cluster. The driving field helps to break up clusters into their

constituents, because its effect can counteract the cost of bond-breaking, if the move is in

the favoured direction. The resulting lone intruders can diffuse freely in the other phase,

and finally coalesce with their own phase. This reduction (on the average) in intruders

will contribute to the sharpening of the magnetisation profiles. However, this argument is

certainly not the whole answer, at least for the bulk-driven cases – it does not address the

interfacial fluctuations themselves directly. Unfortunately, we are not able to provide a
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quantitative microscopic argument for how the bulk drive suppresses capillary waves. It is

physically plausible, however, that the drive detaches particles from the “leading edge” of a

fluctuation, which then become intruders – the previous mechanism could then be applied.

What is missing is a calculation to make the details precise – unfortunately, attempts at

this either by a dynamic mean-field approach, or considering microsopic transitions, have

not yielded a solution.

Rescaling and effective confinement

However, we do have a strong and appealing physical interpretation of the effect of drive

on the profile, as well as on other structural observables. This is that the drive acts to

produce an effective increase in confinement of the equilibrium system, by reducing the

effective distance between the walls [123]. In terms of the finite-size scaling function for

the profile (see Eqn. (3.20)), this argument may be summarized as:

m(z, T, Lz)
mb(T )

≈Meq

(
z

L∗z
,
Lz∗
ξb(T )

)
+Mcorr(z) with L∗z < Lz. (9.3)

Here Meq is the equilibrium finite-size scaling function of Eqn. (3.20), Lz is the actual

wall separation, L∗z is the effective wall separation under drive, and Mcorr is a boundary

correction that decays away from the walls on the scale of the bulk correlation length

ξb. Eqn. (9.3) says that the non-equilibrium profile m(z) is controlled by the equilibrium

scaling function, with a smaller wall separation. For the simulation data, this corresponds

to the scaling m(a⊥z) ≈ meq(z), where a⊥ = L∗z/Lz is the ratio of the effective and actual

wall separations. In the 2d system, we neglect the boundary correction term, and use the

full range of the profile data in the rescaling. In the 3d system we treat the process rather

more systematically, as will be explained later, but this is not critical to the conclusions.

For limiting boundary drive, rescaling the driven profile to the equilibrium one is possible,

as shown in Fig. 9.5, with a⊥ = 0.83; interestingly, this value is the same for all values of

T and Lz tested. Rescaling is also possible for the other drive types. In Fig. 9.5 we give

examples for shear-like drive for a wide variety of γ – note that rescaling is possible for

the profile even in the strongly-driven case γ = 1, where the effective wall separation L∗z is

greatly reduced (a⊥ = 1/3.4 ≈ 0.29 for γ = 1.0). For shear and the other bulk driven cases,

a⊥ does depend on the temperature and wall separation, unlike for boundary drive. With

increasing wall separation Lz at fixed T and drive strength, a⊥ decreases, showing that the

confinement effect of drive becomes larger. This will be seen again when we discuss the
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interface width in the next section. For fixed Lz and drive strength, increasing T to 0.85Tc

leads to a slightly weaker confinement effect, while decreasing the temperature to 0.6Tc

increases the effect fairly significantly. These changes are greater for weak driving fields: in

the case of shear-like drive with γ = 0.025, a⊥ = 0.93, 0.87, and 0.67 for T/Tc = 0.85, 0.75

and 0.6, respectively. Next, we investigate other observables in order to develop the

effective-confinement idea further.
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Figure 9.4: Magnetisation profiles m(z̃) scaled by the spontaneous (bulk) magnetisation

mb(T ), as a function of the scaled coordinate z̃. The system is Lx = 200, Lz = 20 at

temperature T/Tc = 0.75. (a) Results for Kawasaki dynamics in equilibrium, as well from

(equilibrium) mean-field theory, and both boundary and shear-like drive. Inset: compari-

son of the exact result from transfer matrix diagonalization, and from Kawasaki dynamics

simulations. (b) Results for the uniform and step-like bulk drive variants, compared to

the equilibrium result. Error bars are of order or smaller than the symbol size.
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Figure 9.5: Results of rescaling on the magnetisation profile according to m(z) ≈

meq(a⊥z). The system size and temperature are the same as in Fig. 9.4. The equilib-

rium profile with Kawasaki dynamics is shown, as well as the results of rescaling the data

from several values of shear-like drive, as indicated, and also the boundary drive data. The

values of a⊥ are 1/1.15, 1/1.7, 1/2.05, 1/2.5 and 1/3.4, for γ increasing as in the figure.

For the limiting boundary drive, a⊥ = 0.83.
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9.3.2 Interface width

These results for the profile have implications for the width of the interface. Previously in

Sec. 2.3.1 we defined the (squared) interfacial width w2 by C(r = 0), the zero-separation

value of the static height-height correlation function. An alternative definition may be

made from the second moment of ∂m(z)/∂z:

w2 ≡ 2

∫
dz z2 ∂m(z)

∂z∫
dz ∂m(z)

∂z

, (9.4)

where the integrals extend between the walls. From earlier, Eqn. (2.35), we have w ∝ Lz

for equilibrium confined Ising interfaces. We therefore expect the width to reduce when

drive is applied (this is also obvious from visual inspection of the driven configurations

and profiles). Fig. 9.6a, where we plot w versus driving strength parameter (γ or f) for

several system sizes and temperatures, shows that this is indeed the case. The trend is

rather similar in all shear-like cases shown with Lz > 10. The gradient is nonlinear, as

the width reduces rapidly as the drive is increased from zero, and then falls more slowly

in the strongly driven region. This is to be expected from the results for the profile – the

effect of the drive (on this quantity, at least) begins to saturate as we approach γ ≈ 1. For

Lz = 10, the variation is closer to linear, since the system is already quite strongly confined

in equilibrium, so again we experience “diminishing returns”. Increasing the temperature

to 0.85Tc increases the interfacial width, since thermal fluctuations are stronger, but the

effect of the drive is qualitatively the same.

The rescaling and effective-confinement idea which we applied to the magnetisation

profile says that the structure of the driven system should be like that of an equilibrium

system with a smaller wall separation. According to this, the width should vary linearly

with the effective wall separation L∗z – a prediction we can test here. Indeed, a plot of w

against L∗z for fixed actual wall separation Lz may be well-fitted by a straight line, albeit

with a non-zero intercept (this is not a big concern, because at extremely small Lz, the

whole concept of an interface is not particularly meaningful). This result strengthens the

effective-confinement picture, and is a rather more stringent test than rescaling the profile,

since w ∝ L∗z would seem harder to find fortuitously.

Unexpectedly, we are also able to obtain data collapse for the width from several

different system sizes and shear-like drive strengths for given temperature, when w/Lz

is plotted as a function of a scaling variable θ = Lzγ
s, see Fig. 9.6b. Here s is an



94 CHAPTER 9. RESULTS IN TWO DIMENSIONS

adjustable exponent; data collapse is achieved for s = 0.3. The division of the width by

Lz corresponds to the equilibrium scaling, as long as the system is in the confined regime

Lx � Lz. Thus as θ → 0, the w/Lz → constant. As shown in the figure, the data collapse

is rather good over a wide range of γ from 0.025 to 1.0 and several values of Lz from 10 to

40 (as detailed in the figure caption). The equilibrium data themselves deserve comment:

clearly w/Lz = const. does not hold for this whole range of Lz (10 to 40) – this is shown

by the inset of Fig. 9.6b, where w/Lz does not vary much with Lz for Lz ≤ 20, but drops

sharply for Lz = 30, 40. This suggests that the system is no longer fully in the confined

regime for Lz & 20 when Lx = 200 – there should be some crossover region where w is still

dependent on Lz (unlike for fully free, unconfined, interfaces – Eqn. (2.18) with g → 0),

but with a different functional dependence. In any case, for Lz ≤ 20, the driven data

available do seem to be approaching the equilibrium limit.

Although the origin of this scaling is mysterious, the existence of a scaling variable

coupling Lz and γ is intriguing. It seems likely that the scaling is part of the effective-

confinement picture of the action of drive on the system, but it is not clear whether this is

indeed true, and if so, what the physical meaning of the scaling variable θ is. To cloud the

issue further, it seems to be possible to include the reduced temperature |t| ≡ |(T − Tc)/Tc|

in the scaling variable, so that θ becomes Lz(γ|t|)s; again s = 0.3. See Fig. 9.7, which

demonstrates data collapse for a variety of Lz and γ, as before, and now also a second

temperature T/Tc = 0.85 (|t| = 0.15). Data from T/Tc = 0.6 do not follow the scaling,

suggesting that it only applies in reasonably close proximity to the critical point. It is

interesting to compare our findings for the width to the KLS results of Leung et al. [103].

Firstly, as discussed in Sec. 4.2.5, the interface width was also found to be reduced by

driving in that study (recall that their system was not strongly confined, so there is some

difference from the uniform field case in the present work). Furthermore, those authors

found a similar data collapse for the width results, as a function of a scaling variable

involving Lx, their (uniform) driving field strength E (equivalent to f in our notation),

and the temperature. On the scaling plot the width data were also scaled differently, by

Lx, and w2 rather than w was used. The appearance of Lx and w2 rather than Lz and

w is due to the absence of strong confinement for their system geometries, so that the

lateral correlation length ξ‖ is limited by the finiteness of Lx, and w2 ∝ Lx [7]. Despite

the differences, it seems likely that the scaling in [103] is related to the one shown here

(indeed, inspiration for investigating this aspect came from that paper!).
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Figure 9.6: (a) Interface width w plotted against driving strength parameter (γ for shear,

f for uniform drive) for various Lz values and two temperatures T/Tc = 0.75, 0.85. The

lateral system length Lx = 200 in all cases. (b) Variation of the scaled interfacial width

w/Lz as a function of the scaling variable θ = Lzγ
s, with s = 0.3. Data are shown

for systems with Lz = 10, 14, 20, 30 and 40, and shear-like drive strengths γ = 0.025

(green diamonds), γ = 0.1 (blue crosses), γ = 0.15 (filled red squares), γ = 0.2 (green

open circles), γ = 0.25 (violet triangles), γ = 0.5 (orange open squares), and γ = 1.0

(blue stars). Also shown, intersecting with the y-axis, are the equilibrium results. Inset:

equilibrium data plotted as a function of Lz – the infinite-strip result is w/Lz = const.
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separation Lz and shear-like drive strength γ as in Fig. 9.6b; here data from a second

temperature T/Tc = 0.85 are also included (blue crosses), in addition to that from T/Tc =

0.75 (black triangles).
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9.3.3 Spin-spin correlation function at the interface

More information about the structure of the interface under drive can be gained by study-

ing two-body quantities, which measure the correlations between spatially separated parts

of the system. We first consider the microscopic interface pair correlation function, which

is the spin-spin correlation function evaluated at the mean interface position (the middle

of the system). In 2d this is defined as

G(x, z = 1/2) =
1
Lx

〈∑
x′

σ(x′, z = 1/2)σ(x′ + x, z = 1/2)

〉
. (9.5)

We focus on this function since it should reveal the interface-mediated correlations most

clearly. Note that there is a two-fold degeneracy in the choice of the z value, for a half-

filled (m = 0) system with even Lz. Since the T = 0 (flat) interface lies between two

lattice rows, one may measure G at either of the layers just above and below; due to the

symmetry in the system, the choice does not matter. Note that due to the measurement

location, G as defined in (9.5) will not quite decay to zero, even in an infinite system, since

it approaches 〈σ(z = ±1/2)〉2 6= 0 for x → ∞. Independent measurements of this latter

quantity from the simulations showed it to be consistently extremely small, so we neglect

it.

The results in Fig. 9.8a show that when shear-like drive is applied, G(x) (we suppress

the constant z value) decays more quickly with distance than in equilibrium, with the effect

becoming stronger for larger γ. The same is true for the boundary drive, with fw = 50

having a similar effect to shear-like drive with γ = 0.025. These trends hold for the other

drive types, as for the magnetisation profile, see Fig. 9.8b; the shapes of the correlation

functions are similar for all variants. In the equilibrium case, G(x) displays significant

anti-correlations, becoming negative at x/Lx ≈ 0.2. This can be attributed to strong

finite-size effects, which we discuss in Sec. 9.4. When drive is applied, the negative regions

become less deep, and for shear-like drive with γ & 0.25 or uniform drive with f & 0.5,

disappear entirely. Thus it seems that driving reduces the severity of the finite-size effects.

Furthermore, the idea of drive acting as effective confinement can also be successfully

applied to G(x), this time by rescaling the lateral coordinate x:

G(a‖x) ≈ Geq(x) (9.6)

with

a‖ = ξ‖/ξ
eq
‖ , (9.7)
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where ξ‖ is the (non-equilibrium) lateral correlation length, and ξeq
‖ its equilibrium coun-

terpart. This relationship comes about by assuming that the non-equilibrium correlation

function is a function of x/ξ‖, and then requiring equality with the equilibrium correlation

function. The parameter a‖, the ratio of the lateral correlation lengths in and out of the

equilibrium, is the fitting parameter in the procedure. Fig. 9.9 shows some example results

of the rescaling; the procedure only works well for boundary drive and weak bulk drive

(e.g., γ ≤ 0.1 for shear). The failure for stronger drive is perhaps to be expected, given

the shapes of G(x) in those cases (Fig. 9.8), which are markedly different from that of

the equilibrium data. In the cases where rescaling applies, we find a‖ < 1, implying that

the lateral correlation length is reduced by the application of drive – this tallies with the

faster decay already observed. Example values of the rescaling parameter a‖ are given in

the caption to Fig. 9.9.

How does the reduction of ξ‖ relate to increased confinement? In equilibrium confined

Ising systems, or from capillary wave theory, ξ‖ ∝ L2
z (see Eqn. (2.34) and Sec. 3.5.2). If

the effective wall separation is reduced to L∗z, then this relation predicts a reduction of

the correlation length. This of course assumes that the equilibrium result approximately

holds when the system is driven out of equilibrium (we already assumed that the profile is

controlled by the equilibrium scaling function). Note that the one-body rescaling worked

for strong as well as weak bulk drive, which is not the case here – this suggests that a

violation of Eqn. (2.34) may be the “culprit”. Finally, one observes that the rescaling

does not work for large x/Lx – this is mainly due to the equilibrium finite-size effects

already mentioned, and tests for driven systems with larger aspect ratios Lx/Lz show

better agreement at large separations; see Sec. 9.4 for a comparison of the equilibrium

G(x) at different aspect ratios.

We also measured the spin correlations in the x-direction at z values away from the in-

terface: G(x, z 6= ±1/2). These show much less structure than the interfacial correlations:

even a few lattice spacings away from the interface, the short-range bulk correlations are

dominant, resulting in faster decay of G. This is especially striking in the driven cases, e.g.,

for shear-like drive with γ = 1, measuring at three lattice spacings away from the centre,

G decays to its asymptotic value only only two lattice spacings. This occurs because the

strong drive suppresses interfacial fluctuations to such an extent, that even quite near the

centre of the system, they cannot be felt. For equilibrium, there is a much smaller effect,

because the far stronger interfacial fluctuations exert an influence well into the two phases.
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Finally, the aysmptotic value of G increases as we move further from the midline – this is

just because 〈σ(z)〉2 (the squared magnetisation profile) increases towards the walls.
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Figure 9.8: Spin-spin correlation function at the interface, G(x, z = 1/2) as a function of

scaled coordinate x/Lx, for a 200 × 20 system at temperature T/Tc = 0.75. Error bars

are of order or smaller than the symbol size. (a) Results for equilibrium, for limiting

boundary drive, and for three values of shear-like drive gradient γ, as indicated. (b) The

same equilibrium result is compared to data for uniform and step-like driving fields.
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Figure 9.9: Results of the rescaling G(a‖x) ≈ Geq(x), for limiting boundary drive and
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eq
‖ . The system is again

200 × 20 at temperature T/Tc = 0.75. In the case of boundary drive, a‖ = 1/1.4 ≈ 0.7;

for shear-like drive, a‖ = 1/1.27, 1/2.2 for γ = 0.025, 0.10 respectively; for step drive with

f = 0.10, a‖ = 1/1.41; for uniform drive with f = 0.15, a‖ = 1/1.25, and for V-shaped

drive with γ = 0.025, a‖ = 1/1.86.
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9.3.4 Interface height-height correlation function

In our discussion of equilibrium interfaces in Sec. 2.3, the interface was described by a

height variable h(r), where r are the coordinates in the plane of the interface. The height

also appeared in the KLS model with an interface in Sec. 4.2.5, and in the experimental

work described in Chapter 5. We would therefore like to be able to measure the correlations

of some suitably-defined height variable in the driven Ising system. As discussed in the

context of the SOS and DG models in Sec. 3.5.1, no direct measure of the height from

the microscopic Ising configurations is generally possible, due to bubbles and overhangs,

so one must coarse-grain the system in some way. Coarse-graining involves tracing over

(eliminating) some degrees of freedom to produce a cruder, larger scale picture. Here, we

use two methods to obtain the interface height h.

The first method is to simply define the height at x by a sum over the spins in that

column:

h(x, t) = − 1
2mb

∑
z

σ(x, z, t), (9.8)

where the height is measured with reference to the midline between the walls, and so the

1/2 factor ensures that the maximum height is ±Lz/2. Since the ‘+’ phase is in the upper

half of the system, the negative sign is also required. When there are equal numbers of

‘+’ and ‘−’ spins in a column, h(x) = 0, while when there is a majority of one species,

h 6= 0. The presence of the bulk magnetisationmb may be justified by viewing h(x, t) as the

solution of an ideal equation for the magnetisation of a column: mcol = mb(Lz−h)−mbh.

This equation assumes that the two phases have their respective bulk magnetisations ±mb

throughout, which is clearly not the case – however, it is appropriate for the purpose of

coarse-graining. For the second method, we follow the method of Ref. [7]. In this method,

for each column we evaluate the sum

v(h) =
∑
z

[σ(x, z)−Θ(z − h)]2 , Θ(ζ) = ±1 for ζ ≷ 0. (9.9)

The value of h which minimizes v(h) defines the position of the interface in this column x.

Essentially one places the interface at a “trial” position, and then penalizes the appearance

of “intruder” spins; the choice with the smallest penalty is the final height h. This method

is clearly more complicated than the first, but deals with bulk intruders in a more robust

fashion. For instance, given an initial “ideal” column with no intruders, if we introduce

a single ‘+’ intruder into the ‘−’ phase (by swapping one spin’s sign), then by (9.9), the
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optimal interface position will be unchanged, as seems most reasonable. This is because

moving h down would create an additional ‘−’ intruder, which is penalized in (9.9). By

contrast, using (9.8), h would indeed be reduced by one unit. Despite this, in fact we

will find that the two methods give very similar results for most quantities (though not

all). In the following, we use the simple sum definition unless otherwise stated, but for all

height-dependent quantities we check the effect of the choice of definition.

The general height-height correlation function in 2d depends on spatial separations x

and on temporal displacement t:

C(x, t) =
1
Lx

〈∑
x′

h(x′, t′)h(x′ + x, t′ + t)

〉
, (9.10)

where the angles indicate an average over time. Note that 〈h〉 = 0 always for the COP

Ising model with m = 0 (by either height definition), so no 〈h〉2 is subtracted in the

definition (9.10). We first consider the equal-time correlations C(x, t = 0), which we

abbreviate to C(x); this is directly related to the spin-spin correlation function: C(x) =

(4m2
b)−1

∑
z,z′ G(x, z, z′). The zero-separation value, C(0) =

〈
h2
〉
, is a measure of the

squared width w2 of the interface; indeed this is the definition used in the capillary-wave

description. We can check the reliability of the results for the width shown earlier, by

substituting this definition; when this is done, the same trends are seen, including the

scaling of Figs. 9.6 and 9.7. This shows that those findings were not just the result of

some peculiarity in the second-moment definition of w.

Turning to the full C(x), we see from Fig. 9.10a that when boundary drive is applied

to the system, C(x) decays more quickly with separation than in equilibrium. As for the

other quantitites, shear-like drive with γ = 0.025 has a similar effect to strong boundary

drive. Larger values of γ produce a much stronger effect; C(0) is greatly reduced, and

C(x) decays significantly more quickly. Results for other drive types in Fig. 9.10b show the

same trend, with the V-shaped drive showing a slightly stronger effect than the shear-like

field (as was the case for the magnetisation profile) – compare the γ = 0.1 results in (a)

and (b). Comparing the uniform and step-like drive, we also find the same trend as we

did for the magnetisation profile: at small field strength f , the step-like field suppresses

correlations more strongly (see Fig. 9.10b), but beyond f & 0.25, the uniform drive shows

the greater effect. These results are consistent with the behaviour of the spin-spin corre-

lation function, and indicate that driving the system either at the boundaries or in bulk

suppresses capillary-wave fluctuations.
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The anti-correlations ofG(x) present in equilibrium also persist to C(x). The statistical

errors on C(x) for equilibrium and for weak drive are relatively rather larger than for the

previous quantities, although still small in absolute terms. For stronger drive, the errors

are much smaller, due to the reduced interfacial fluctuations – it is a general trend that

the system is “easier” to simulate when more strongly driven.

From the scaling of m(z) and G(x), we might expect that rescaling might be possible

for the height correlations too. What sort of form might this take? To answer this, we

appeal to the (Weeks) scaling of C(x) in equilibrium [27]:

Ceq(x) ≈ w2
eqC(x/ξ

eq
‖ ), (9.11)

where C is a scaling function, and weq the width in equilibrium. In confined 2d Ising sys-

tems, we know weq ∝ Lz. Assuming that the scaling form (9.11) applies out of equilibrium,

we can rescale the driven results to equilibrium as follows:

a−2
⊥ C(a‖x) ≈ Ceq(x), (9.12)

where we have also invoked a⊥ = L∗z/Lz ∼ w/weq, which was tested in Sec. 9.3.2. Note

that the values of the parameters a⊥ and a‖ are obtained from the rescaling of the profile

and spin correlation function, respectively, so when we rescale C(x), there are no free

parameters. This therefore provides quite a strong test as to how well the “effective-

confinement” picture works. Fig. 9.11 shows some example results. The procedure works

well for small and intermediate separations, in the cases of boundary drive and weak bulk

drive, as expected from experience with G(x). The success of the rescaling for the height

certainly reinforces the idea that the interface of the boundary driven or weakly bulk

driven Ising lattice gas behaves like an equilibrium interface under a greater degree of

confinement (smaller distance between the walls). While the rescaling for the profile could

perhaps be regarded as “accidental”, combining it with the result from G(x) to produce

a testable prediction for C(x), suggests that this is not the case. The rescaling of C(x) is

rather sensitive to changes in both a⊥ and a‖, so the fact that the values obtained earlier

“work” provides further evidence that the argument has a physical basis.

Comparing the behaviour of C(x) to the experimental results of Ref. [13] discussed

in Chapter 5, we find both similarities and differences. The reduction of the interfacial

width C(0) when drive is applied is in agreement with experiment; in both cases, the

effect is greater for stronger drive. These findings also agree with the KLS simulations
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of Leung et al. [103], see also Sec. 4.2.5. However, Derks et al. found an increase of

the lateral correlation length ξ‖ for the sheared system, whereas the rescaling results

shown here imply a reduction of this quantity in the driven Ising system. Of course, the

experimental system is three-dimensional, and dimensionality plays an important role in

interfacial fluctuations. Also, the correlation length in the experiment was obtained via

a fitting to the (3d) CWT for C(x) – a different procedure to that used here. Finally,

the experimental system is of course much more complex than our simple driven Ising

lattice gas, and effects not accounted for in our model could be at work in determining

interfacial correlations. Nevertheless, the mix of agreement and disagreement between

the simulations and experiment is intriguing, and raises the question of which features

of driven interfaces are universal, and which are special to a particular dimensionality or

system. At this stage, we may hypothesize that the suppression of interfacial roughness

by lateral drive is a universal feature, and given that the qualitative effect is the same for

all drive types considered, it seems likely that its presence does not depend on the specific

form of field. The strength of the effect does depend on F (z) – compare the boundary

and bulk driven cases; also, the symmetry of the field seems to have a small effect. In the

light of these findings and questions, it seems natural to investigate the structure of the

interface in a 3d driven Ising system – indeed we shall do this in Chapter 10. For now,

however, we remain in two dimensions, since novel features remain to be discussed.

Finally, as stated earlier, the results shown above are based on the sum definition of the

height; however, in all cases C(x) was also calculated for the other height definition (9.9).

Fig. 9.12 compares results for equilibrium and shear-like drive from the two definitions;

as per the earlier assertion, the data agree rather closely. Indeed, one should expect the

specific method of coarse-graining to be unimportant, at least for static quantities, since

any valid method should pick up the same large length- and time-scale features.
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Figure 9.10: Spatial height-height correlation function C(x, t = 0) ≡ C(x), for an Lx =

200, Lz = 20 system at T/Tc = 0.75, as a function of scaled coordinate x/Lx. (a) Data for

equilibrium, as well as boundary and shear-like drive of various strengths, as indicated.

(b) Results for uniform, step-like, and V-shaped driving fields, as well as the equilibrium

result for reference. The effect of the f = 0.1 step field is slightly greater than the f = 0.15

uniform field; as discussed in the text, this reverses at larger f .
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Figure 9.11: Results of rescaling the data for the driven spatial height correlation function

back to the equilibrium result, according to a−2
⊥ C(a‖x) ≈ Ceq(x), where a⊥ and a‖ were

obtained from the rescaling of m(z) and G(x), respectively. The system parameters are

the same as in Fig. 9.10; the procedure works for all boundary drive strengths and for

weak fields in the bulk driven cases.
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Figure 9.12: Comparison of the height correlation function C(x) obtained from the sum

definition of the height, Eqn. (9.8), and the “minimization” definition, Eqn. (9.9). The

system parameters are Lx = 200, Lz = 20, T/Tc = 0.75; results are shown for equilibrium

and for shear-like drive.
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9.4 Kawasaki and Glauber dynamics in equilibrium

We now change tack slightly and concentrate on equilibrium systems. In spin systems,

the most common type of dynamics are non-conserving spin-flip or Glauber dynamics,

mentioned in Chapter 6. One may use any acceptance rates satisfying detailed balance,

the most common choice being Metropolis rates; another are Glauber rates [132]; the lat-

ter, unlike the Metropolis rates, are continuous in the internal energy change for a move,

∆H. Note that the nomenclature can be a little confusing (and indeed inconsistent in the

literature!) – here we use the term Glauber dynamics to mean non-conserving spin-flip

dynamics, as opposed to Glauber rates, which are a particular choice of transition rate.

Glauber dynamics generate microstates of an ensemble where the total magnetisation

can fluctuate; in lattice gas language, this corresponds to a grand canonical description.

Kawasaki exchange dynamics sample an ensemble with fixed total magnetisation, corre-

sponding to a lattice gas in the canonical ensemble (see also Sec. 3.4), and so may be

used to simulate the conserved order parameter (COP) Ising model. We have previously

discussed (Secs. 3.4 and 6.2) the equivalence of ensembles in the thermodynamic limit:

static (but not dynamic) observables must attain the same averages in the normal and

COP Ising models for infinite systems. However, in MC simulations we fall some way short

of this limit(!), so one should not necessarily expect agreement. In particular, for systems

with an interface, the constraint on m in the Kawasaki case restricts the mean interface

position to be at the centre of the system, which is not the case for spin-flip dynamics.

Unfreezing this “zero mode” may lead to significant differences in static observables. We

note that results for time-dependent quantities also depend on dynamics, but this is to

be expected, whereas for statics, the issue is more subtle. Here we compare and contrast

the results for one- and two-body functions obtained from equilibrium simulations using

Kawasaki and Glauber dynamics (with Metropolis update rates). We have already de-

scribed the method for the former case in Chapters 7 and 8. For the latter, a single-spin

implementation was used; the algorithmic steps are similar to the Kawasaki case, though

simpler, since one only has to consider one spin and its neighbours, rather than a pair.

Further details be found in standard Monte Carlo references [54, 55].

A selection of results for the magnetisation profile is shown in Fig. 9.13 where Lx = 200

is fixed and Lz is varied, and in Fig. 9.14 where Lz = 20 is fixed and Lx is varied. As

a benchmark we compare to results from the exact diagonalisation of the transfer matrix
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for an infinite strip, Lz = const and Lx = ∞. We have also tested the effect of changing

the temperature of the system (not shown for the profiles). In general, we find that

with decreasing scaling variable (see Eqn. (3.20)) Lz/ξb(T ) ∼ Lzt
ν at fixed Lx, where

the reduced temperature t = |T − Tc| /Tc, and ν is the bulk correlation length critical

exponent introduced in Sec. 3.2, the shape of the profiles for the two dynamics agree more

closely. For example, for Lz = 40 in Fig. 9.13a, the Glauber and infinite-strip results agree

well, but the Kawasaki profile shows a pronounced difference in shape; by contrast, for

Lz = 10 in Fig. 9.13b, the profiles coincide. It is also interesting to note that effects on

the magnetisation profiles due to Lx being finite are rather strong – see Fig. 9.14. For

Lz = 20 at T/Tc = 0.75 one has to consider strips as long as Lx = 800 to find an agreement

with the transfer matrix results for infinite strips! On the one hand this might not seem

surprising because of the very large lateral correlation length; for infinite strips ξ‖ ∼ L2
z in

two dimensions. On the other hand, for Glauber dynamics the limit of the infinite strip

at the same temperature and the same width of the strip is already achieved for Lx = 200

(not shown), so the nature of the dynamics seems to be important.

The differences between results from Glauber and from Kawasaki dynamics are even

more pronounced on the level of two-body functions. Results for the spin-spin correlation

function at the interface, G(x), are shown in Fig. 9.15. As observed in the earlier results

for G(x), a striking feature of the correlation functions for Kawasaki dynamics is that they

cross zero at some x = x0 and saturate at a negative value Gsat for larger values of x.

Both x0 and Gsat depend on the temperature and on the size of the system. At fixed Lx

and T , a wider (larger value of Lz) strip gives a larger value of x0 and a more negative

saturation value (Fig. 9.15c). At fixed Lz and T , a longer (greater Lx) strip gives a smaller

x0 and a less negative saturation value (Fig. 9.15a). At fixed Lx and Lz, the higher the

temperature, the smaller x0 and the less negative Gsat (Fig. 9.15b). As mentioned earlier,

we associate these negative correlations with finite-size effects; on a coarse-grained level,

these cause the interface to cross the mid-line z = 0 on average at intervals in lateral

separation of x = x0.

For Glauber dynamics, the results are rather different – negatively correlated regions

are absent for all parameter combinations investigated. For shorter systems at fixed Lz

and T (Fig. 9.15a), G(x) decays much more slowly, and significant correlations are evident

even at the maximum separation. Note that as in Sec. 9.3.3, 〈σ(z = 1/2)〉2 was measured

independently to be small in all cases, so these large asymptotic values are not simply the
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result of a large average (squared) magnetisation at the interface. In Glauber dynamics

simulations, the interface may sweep up and down in z as a whole, so at a particular time,

σ(z = 1/2) may be significant, but over the course of the simulation, equal positive and

negative contributions should be recorded, so on that the average 〈σ(z = 1/2)〉2 � 1. The

large asymptotic values of G(x) indicate that finite-size effects are still significant in the

Glauber dynamics simulations, although they take a very different form to those in the

Kawasaki case. This effect is also found for larger wall separations Lz at fixed Lx and T

(Fig. 9.15c) – the larger Lz causes a greater lateral correlation length ξ‖ via Eqn. (2.34),

and this becomes of order Lx for Lz & 20 (we saw this also when discussing the results

for the interface width in Sec. 9.3.2).

As expected, G(x) from the two types of dynamics becomes similar only when the

finite-size effects are not severe. This occurs for long strips (Lx = 800) in Fig. 9.15a, and

to a lesser extent for small Lz in Fig. 9.15c. Unlike in the case of the magnetisation profiles,

there is still a significant difference in the results even for Lx = 800, with the Kawasaki

data showing a small negative correlation (this also occurs in Figs. 9.15b and c) – this

would seem to suggest that the finite-size effects are more severe for Kawasaki dynamics.

For even longer systems, the agreement should become better. Moreover, we observe that

the differences in G(x) at fixed Lx and Lz reduce as we approach Tc, where the interface

becomes more diffuse and interfacial fluctuations become less important relative to bulk

fluctuations. Indeed for both dynamics G(x) decays more quickly at higher temperatures,

and the negative regions in the Kawasaki case reduce – for T/Tc = 0.95 in Fig. 9.15b, the

results are more similar than at T/Tc = 0.75.

These results show that even for static observables, Kawasaki and Glauber dynamics

can give quite different results for the same system sizes and temperatures, due to the

change in the nature of interfacial fluctuations when the restriction of fixed magnetisation

is imposed by using exchange dynamics. In Ref. [68], results are also shown for the

height-height correlation function, for which similar conclusions apply. The disagreements

are larger for simulation parameters where finite-size effects are strong, and so could

be controlled and minimised if necessary. Finally, we note that for driven Kawasaki

dynamics, as we have already observed, finite-size effects are less severe – however, lacking

an equivalent way of applying drive in the spin-flip case, we are unable to generate “driven

Glauber” results for a like-for-like comparison.



112 CHAPTER 9. RESULTS IN TWO DIMENSIONS

−1

−0.75

−0.5

−0.25

0

0.25

0.5

0.75

1

−1 −0.5 0 0.5 1

m
(z̃
)/
m

b
(T

)

z̃

(a)

Kawasaki L
z
= 40

Glauber L
z
= 40

Transfer matrix

−1

−0.75

−0.5

−0.25

0

0.25

0.5

0.75

1

−1 −0.5 0 0.5 1

m
(z̃
)/
m

b
(T

)

z̃

(b)

Kawasaki L
z
= 10

Glauber L
z
= 10

Transfer matrix

Figure 9.13: Magnetisation profiles m(z̃), scaled by the bulk magnetisation in equilibrium

mb(T ), obtained from equilibrium simulations with Kawasaki and Glauber dynamics, for

Lx = 200 and T/Tc = 0.75, for two different wall separations Lz = 40 in (a) and Lz = 10

in (b). The simulation results are compared to profiles obtained via exact diagonalization

of the transfer matrix for infinite strips Lx =∞.
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Figure 9.15: Interfacial spin-spin correlation functions G(x) obtained from simulations

with Kawasaki and Glauber dynamics, plotted as a function of scaled separation x/Lx.

In (a), the temperature T/Tc = 0.75 and wall separation Lz = 20 are fixed, and the effect

of varying the system length Lx is shown. In (b), Lx = 200 and Lz = 20 are fixed, and

data are shown for two different temperatures. Finally in (c), we have fixed Lx = 200,

T/Tc = 0.75, and two wall separations Lz = 10 and 40.
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9.5 Dynamics of the driven interface

9.5.1 Space-time height correlations

We now investigate the effects of the driving field upon the dynamics of confined Ising

interfaces, via the full space-time height correlation function C(x, t), Eqn. (9.10). This

measures correlations between the interface height at spatially and temporally displaced

points. Due to translational invariance in the x direction, C(x, 0) = C(−x, 0) (negative

x separations were therefore not plotted in Sec. 9.3.4). Additionally, in equilibrium, we

expect this to hold for time separations t > 0, since there is nothing to break the symmetry.

C(x, t) was measured for time displacements of up to approximately 105MCS, so as to

assess both short- and long-time dynamics. In order to show the behaviour clearly, in

Fig. 9.16a we plot C(x, t) as a function of x, for several fixed values of time difference t,

for the case of shear-like drive with γ = 1.0. At t = 0, the curves correspond to the C(x, 0)

results already discussed, and exhibit the expected reflection symmetry across x = 0. For

time differences t > 0, the position of the peak moves towards negative values of x, while

its height decays, and its width increases; at t > 0 the strongest correlations are between

points displaced in both time and space, and the spatial separation increases with time.

This clearly indicates the existence of damped propagating thermal capillary waves on the

interface, which move in the negative x direction [131]. The decay of the correlations

with increasing time difference is due to the random rearrangements (noise) in the MC

simulation. The position of the peak varies linearly with time, enabling us to infer a

velocity vpeak by plotting the position of the maximum against time, and measuring the

gradient. For the parameters in the figure, vpeak = 0.009 in units of the lattice constant

per MCS. We find that transport occurs for all strengths of shear-like drive, with vpeak

varying approximately linearly with γ.

Very different behaviour occurs for V-shaped drive – see Fig. 9.16b. Here the peak

decays and broadens without lateral motion, so the symmetry around x = 0 is preserved at

all times. The decay rate is similar to shear-like drive (slightly greater). These results are

similar to the equilibrium case, shown in the inset: as required, the peak shows no motion

in this case. The decay is extremely slow in equilibrium – the peak has only decayed to

approximately three-quarters of its initial value at t ≈ 5× 104MCS; this reflects the slow

nature of Kawasaki dynamics. The boundary drive (not shown) shows behaviour very

similar to equilibrium. For step-like drive, the situation is different again – we observe
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wave motion similarly to shear-like drive, see Fig. 9.17; to “complete the set”, with uniform

drive we find that no transport occurs, and the results (not shown) are similar to those

for V-shaped drive. These findings also hold for the alternative (minimization) definition

of the height, Eqn. (9.9); as in the case of the static height correlation function C(x, 0),

the results from the two definitions show good agreement.

We now ask: what are the criteria for capillary wave transport? Clearly the phe-

nomenon is not linked to a specific functional form of driving field F (z), but it does seem

to depend on the symmetry of the field with respect to z: motion occurs for cases of odd

symmetry. The symmetry of the field is directly inherited by the current profile jx(z) in

the Ising model, so in fact we may talk in terms of symmetry of the current – this is ap-

pealing, since we relate the large-scale transport phenomenon to the microscopic motion.

Let us make the following conjecture: [131] the lateral order parameter current at a planar

interface induces lateral motion of the thermal capillary waves, provided that j(z) has a

component which is an odd function of distance z from the interface. This is quite a general

proposal: we do not specialise to a particular model or dimensionality, and so it requires

testing on systems besides the 2d driven Ising lattice gas – we shall do this in subsequent

sections. Note that the above conjecture does not require purely odd current profiles, but

instead only profiles which are not even in z; the justification for this generalisation was

based on tests for fields with both odd and even components, which give rise to transport

in C(x, t). We cover this further in the context of the 3d driven Ising model in Chapter 10.

For now, we consider more closely the symmetries of the model in order to shed light on

the transport. In particular, the equilibrium system is invariant under the combined oper-

ation of species inversion σi → −σi, and spatial reflection x→ −x, z → −z. When drive

is applied, this also holds for the even current cases (i.e., uniform and V-shaped fields).

The sequence of operations is illustrated in Fig. 9.18: after the combined operation, the

‘+’ species (say) move in the same (positive) x-direction as they did originally. For the

odd current profiles, the situation is different: the ‘+’ spins have reversed their directions,

so that in their phase (z > 0), they move in the negative x-direction. Therefore, in the

cases where we observe CW transport, there is a broken symmetry under species inversion

and spatial (x and z) reflection, as compared to the non-transport cases. These symmetry

considerations come directly from the definition of our model, and do not depend on any

simulation results – in contrast with the motion conjecture above, which depends explicitly

on the current profile results (but not a particular model).
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Another way to express the difference is in terms of the movement directions of the

“intruders” in the system. In the cases where capillary-wave transport occcurs, the ‘−’

spin intruders in the region z > 0 (the ‘+’ phase) move in the same negative x direction

as ‘+’ spins do in the region z < 0 (the ‘−’ phase). Thus intruders move in the same

direction throughout the system (which is also the direction of wave motion, and opposite

to that of the “velocity profile” of the order parameter, jx(z)/m(z), which is positive for

all z), whereas for even current profiles, the directions are opposite in the upper and lower

halves. This coherent movement of intruders seems to be important in the transport of

interfacial fluctuations. On an idealised level, it means that the positive and negative

fluctuations (“troughs” and “humps”) move in the same direction, and thereby show net

transport. However, although this is a hint towards a fully microscopic mechanism for

CW motion, one must remember that the Ising spins have no inertia, and spin/particle

movement occurs only by exchanges, so it is not obvious that “pushing” on one side of a

hump or trough induces motion of the whole object. This simple nature of the lattice gas

means care is required in carrying over concepts familiar in real, inertial systems – there

is of course always a trade-off between retaining a connection to the dynamics of real fluid

interfaces, and the complexity of the model.
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Figure 9.16: Space-time height correlation function C(x, t), for an Lx = 200, Lz = 20

system at temperature T/Tc = 0.75, plotted as a function of spatial separation x, at

various fixed time separations t, as indicated. (a) Results for shear-like drive with γ = 1.0,

showing capillary wave transport. (b) V-shaped drive with γ = 1.0, where no transport

occurs; in the inset, the equilibrium result is shown for the same time displacements as

the main figure.
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Figure 9.18: The effect of the sequence of operations σi → −σi, x→ −x and z → −z upon

the driven Ising model for uniform and shear-like drive. At the top, the initial system is

shown, with the phases marked, and individual +− pairs in the upper and lower halves

picked out. The work terms ∆W = −J δ ·F(z)(σi−σj)/2 are shown for both drive types.

The first operation is species inversion, after which the orientation of the +− pairs has

changed, and ∆W has changed sign for both drive types, according to the above equation.

After spatial reflection x → −x (third system down), the orientation of the +− pairs

is restored, and ∆W reverses again, due to δ changing sign. Finally, reflection in z is

performed. Now the ‘+’ phase is in the z > 0 half of the system, as originally, and the

pair orientation is also unchanged. For uniform drive, ∆W is also invariant through this

step, since F (z) ≡ f ; however, for shear-like drive F (z) = γz, so ∆W swaps sign once

more, thus reversing the directions of movement of each species with respect to the original

system. In this way, the odd-current cases, where capillary-wave transport is seen, have a

broken symmetry under this sequence of operations.
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9.6 Wave propagation in the driven discrete Gaussian model

In order to test the conjecture on the criteria for occurrence of capillary wave transport,

we now consider the 1d discrete Gaussian (DG) model with conserved dynamics under

drive. The equilibrium DG model was discussed in Sec. 3.5.1, and the driven variant we

simulate here was introduced in Sec. 7.2. The results in this section are from systems

of length Lx = 200 (which proved sufficient to prevent noticeable finite-size effects) at a

temperature T = 0.75T Ising,2d
c , where T Ising,2d

c is the bulk, equilibrium d = 2 Ising critical

temperature encountered earlier. Most of the simulations were therefore carried out at

the same temperature as the majority of those in the driven Ising system – this seems a

reasonable choice, given that the DG and SOS models may be viewed as coarse-grained

Ising models, and that they have no equivalent critical point of their own. We have

checked, however, that the findings discussed below apply across a range of temperatures

from 0.5T Ising,2d
c to 0.85T Ising,2d

c . Before investigating whether transport itself occurs, we

first consider the current in the system, as well as the magnetisation profile.

In the conserved height DG model, the elementary move consists of a single unit

of height moving from one column to one of its nearest neighbours – in this way, the

interface configuration defined by the set of heights {hi} evolves in time. The current in

the x direction at a particular height, jx(h), is just the average net flux of “height units”

at that height. However, there is some ambiguity here, because two columns are involved

– at which height should the contribution be recorded? In order to avoid asymmetry

around h = 0 in the measured current profiles (which we expect to have either even or odd

symmetry, depending on the driving field), we can record the contribution at the average

of the two heights – we therefore apply this method. Fig. 9.19 shows results for jx(h) for

the DG model under shear-like (linearly height-dependent) drive, and spatially uniform

drive. The current was recorded for heights |h| ≤ 100, but beyond the displayed region,

jx(h) is essentially zero, because individual heights reach these values extremely rarely (the

constraint
∑

i hi = 0 makes it especially difficult for such events to occur, since for example

a strong positive region must be balanced by strong and/or numerous negative regions).

For the linearly height-dependent drive, the current has opposite signs for positive and

negative h, and is strongly peaked at two values of h close to and either side of the h = 0

line. These peaks reflect the fact that the rms height is rather small, only a few height

units – as for the Ising model, there is competition between carrier availability (column
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with the correct height) and drive strength; however, in the DG model the current always

shows strong peaks near the centre and no plateaus. The peaks move slightly towards the

midline for stronger drive, as in the Ising model. For uniform drive, the sign is constant

throughout, and the maximal current occurs at the midline, since carrier availability is

the only factor in this case.
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Figure 9.19: Current profiles jx(h) for the driven discrete Gaussian model with conserva-

tive dynamics, as a function of height h. The h axis is cut off at |h| = 20, beyond which

the current is essentially zero. In all cases, the system has length Lx = 200 and is at

a temperature T/T Ising,2d
c = 0.75. Data for shear-like and uniform drive are shown, the

former with odd symmetry around h = 0, and the latter with even symmetry.

Structural information in the DG model may be gleaned from the magnetisation (den-

sity) profile. The definition of this quantity is perhaps less obvious than for microscopic

models, since we do not have any microscopic density variable. However, the height h at

a particular position defines an interface dividing an upper and a lower phase (‘+’ and

‘-’ respectively in our Ising wall convention), so at a particular height h = z, we record

a positive contribution to the magnetisation profile if the column height hi < z (since we

are in the ‘+’ phase at z), and a negative contribution if hi > z. In this way we generate

a magnetisation profile as a function of height, for which results are shown in Fig. 9.20;
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as for the current, the displayed region is limited to |h| ≤ 20. When the interface is sub-

ject to weak or intermediate shear-like drive, the profile becomes sharper, reminiscent of

the results for the Ising model. However, beyond a certain drive strength (approximately

γ = 2), the profile begins to become more diffuse, and for very strong drive, eventually

crosses back past the equilibrium result - the figure shows this for γ = 20. This phe-

nomenon also occurs, if rather than using the average of the two column heights in the

work term, as in Eqn. (7.13), we use just one of the heights (in fact, the effect sets in for

smaller γ in this case). For uniform drive, the situation is similar – for weak drive there is

a (very slight) sharpening of the profile, but for larger f , the driven m(h) becomes more

diffuse than the equilibrium case. An interpretation of these results is that the interface is

somehow destabilised by strong driving fields, so that the width increases with respect to

equilibrium (direct measurement of 〈h2〉 confirms this). Further evidence for destabilisa-

tion is found in simulations of the same dynamical model but with the SOS Hamiltonian,

where the driven interface width appears to be larger than the corresponding result for

equilibrium even for weak drive. Fig. 9.20b shows the SOS equilibrium profile, which itself

has a large width, and varies almost linearly with h. The larger width in equilibrium in

the SOS case is consistent with the weaker energetic penalty for height differences greater

than unity (recall that the SOS Hamiltonian is linear in height differences, while the DG

is quadratic).

The above issues of interface instability are certainly interesting, if somewhat murky,

and deserve further investigation. For now we return to our primary aim, and study

the behaviour of the space-time height-height correlation function C(x, t), for choices of

parameters where the interface is stable under drive. Fig. 9.21a shows that, as for the Ising

model, capillary wave transport occurs for a system driven by a shear-like field [131]. For

given γ, the peak velocity vpeak is much greater in the DG model (0.103 lattice constants

per MCS for γ = 1) – indeed, by t = 1000MCS, the peak has wrapped around the periodic

boundaries in the figure. The function also exhibits much shorter tails than for the Ising

model, and the lateral spreading with time is slower. For uniform drive with f = 0.25,

Fig. 9.21b, wave motion is absent, and C(x, t) decays (slowly) while remaining peaked at

x = 0, consistent with the findings in the Ising model. The amplitude in this case is much

greater, as expected from the results for m(h) – the interface width is very close to the

equilibrium value. Since the symmetry of the current j(h) in the DG model is the same

as that of the applied field, these findings support our earlier conjecture: for odd current
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profiles, capillary wave transport occurs. We may also apply similar symmetry arguments

to those in the driven Ising model, to differentiate between the cases where motion does

and does not occur. Here, the model is one-dimensional, and we have only heights rather

than spins, so the sequence of operations is different. The equilibrium system is invariant

under the spatial reflections h → −h, x → −x and exchange of source and destination

columns x and x′. For uniform drive, the work term ∆W changes sign twice, due to the

last two operations, to return to its original sign, whereas for shear, an additional reversal

is incurred due to the h dependence of the field. Thus for uniform drive, the system as a

whole is invariant under these operations (as in equilibrium), but this is not the case for

shear-like drive, where CW transport is found.
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Figure 9.20: Magnetisation profiles m(h) for the discrete Gaussian model simulated with

conservative dynamics, as a function of height h. As in Fig. 9.19, the system has length

Lx = 200, and is at a temperature T/T Ising,2d
c = 0.75. In (a), the equilibrium profile is

compared to the profiles obtained from systems driven by various strengths of shear-like

drive. For weak and intermediate drive, the profile becomes sharper than in equilibrium,

but for very large γ, it crosses back, becoming more washed-out. (b) The same effect is

seen for a uniform driving field, although the re-crossing occurs for much weaker drive.

The equilibrium profile from simulating with the SOS Hamiltonian is also shown – this is

almost linear in h, and very diffuse.
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Figure 9.21: Space-time height correlation function C(x, t) for the driven discrete Gaussian

model, for various fixed time differences t, as a function of spatial separation x. The system

size and temperature are the same as Figs. 9.19 and 9.20. In (a), results for shear-like

show evidence of capillary-wave transport, as observed in the Ising model. Note that for

the last two times t, the peak has crossed through the periodic boundary to appear at the

other end of the system. Results for a uniform field f = 0.25 are shown in (b): as for the

Ising model, no movement occurs.
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9.7 Dispersion relation for travelling capillary waves

In order to characterize the dynamics of the capillary waves in both the Ising and DG

models, we consider the evolution of the spatial Fourier modes h̃(nx, t) of the height

function h(x, t), defined by:

h(x, t) =
Lx∑
nx=1

e2πi(nx/Lx)x h̃(nx, t). (9.13)

The summation is over integer nx from 1 to Lx; because h(x, t) is a real function, the

Fourier transform has the conjugate symmetry h̃(nx, t) = h̃∗(Lx − nx, t), i.e., there are

Lx/2 independent terms in (9.13). Defining the scaled wave number kx = (2πnx/Lx), each

complex Fourier component h̃(kx, t) can be written in terms of its modulus and its phase

φ(kx, t):

h̃(kx, t) = |h̃(kx, t)|eiφ(kx,t), (9.14)

where −π ≤ φ(kx, t) ≤ π. The form φ(kx, t) = ω(kx)t corresponds to a travelling wave at

constant velocity, with dispersion relation ω(kx). In a steady state, the phase shift of each

mode is a fluctuating quantity, with a distribution which when measured with increasing

time intervals spreads and decays quickly to zero due to noise. However, at short times,

we are able to measure its mean value in unit time to obtain the dispersion relation of the

frequency ω as a function of kx as:

ω(kx) = arg
(
〈h̃∗(kx, t)h̃(kx, t+ dt)〉

)
/dt. (9.15)

In the simulation one calculates the Fourier transform of the heights h(x, t) at time t, and

stores the phases of these complex numbers. At time t + dt, the procedure is repeated,

and the difference in phase in the interval dt can be calculated; ω(kx) is then the average

of this difference, normalised to unit time. The interval dt must be rather short, otherwise

we cannot reliably measure the phase shift: φ may “wrap around” from +π to −π between

measurements, and if the shift is too large, then it can become ambiguous. Here we use

the value Lx/10 attempted spin exchanges (for a 200× 20 Ising system, this corresponds

to 0.005 MCS). Fig. 9.22 shows results for waves induced by shear-like drive of strength

γ = 1.0, for both the Ising, using the simple sum height definition, and the DG model.

In the case of the DG model, ω(kx) shows linear behaviour at small kx, and is symmetric

around kx = π/2. The data can be fitted excellently by the simple form [131]

ω(kx) = vDG sin(kx), (9.16)
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which for small kx reduces to the linear form ω(kx) = vDGkx. The fitting parameter

vDG = 0.760(1) is in reasonable agreement with the peak velocity (0.08) measured from

C(x, t).

For the Ising model, the dispersion relation is non-linear even for small kx; indeed we

find that ω(kx) may be fitted to the form

ω(kx) = (v + 2u) sin(kx)− u sin(2kx) + s sin2(kx), (9.17)

as shown in Fig. 9.22. The values of the fitting parameters are v = 0.0175(1), u =

0.0402(4), s = 0.0262(0). Expanding (9.17) for small kx, we have

ω(kx) = vkx + sk2
x + (u− v/6)k3

x, (9.18)

showing that the quadratic and cubic terms are indeed important. In order to investigate

the origin of the fitting forms, the dynamics were modelled by a linear transport operator

(propagator) L̂ acting on plane-wave modes h(x, t) ∝ exp(i(ωt+ kxx)). In the case of the

DG model, the simple form

L̂ = ∂t − vDG∂x, (9.19)

with continuous time derivative but discrete (mid-point) spatial deriative

∂xh(x, t) =
[h(x+ 1, t)− h(x− 1, t)]

2
, (9.20)

yields the fitting form (9.16). For the Ising model, the first two terms in the dispersion

relation (9.17) may be obtained from the operator

L̂ = ∂t − v∂x + u∂3
x, (9.21)

where a 5-point stencil is used for ∂3
x:

∂3
xh(x, t) =

h(x+ 2, t)− 2h(x+ 1, t) + 2h(x− 1, t)− h(x− 2, t)
2

(9.22)

However, the third term, which for small kx gives the quadratic dependence in (9.18)

cannot be generated by a linear transport operator with purely real coefficients. It may

be obtained by allowing an imaginary contribution is(∂2
x + ∂4

x/4) (with 3- and 5-point

stencils) to L̂.

In the Ising model, the prescription of interface height h(x, t) is not unique. Using the

minimization procedure rather than the column-sum as input for the calculation of ω(kx)
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yields a dispersion relation which can be fitted by (9.17) with s = 0, and different values

of v and u: v = 0.0133(1), u = 0.0128(49). Thus in this case no imaginary contributions

to the transport operator are required. For previous quantities we have studied, both

static and time-dependent, the two height definitions gave consistent results, but here

this is not the case. The difference is due to the very short time scales involved in the

measurement of the phase shift – small differences in the heights from the two procedures

can have a significant effect, because the system configuration changes very little from

one measurement to the next (on a strictly microscopic level rather than larger rearrange-

ments). What then is the origin of the s term in the sum-height dispersion relation? A

possible argument is that the sum is more susceptible to picking up bulk rearrangements

in h(x, t); this will be amplified when measuring at short time intervals. The minimization

definition is less sensitive to bulk movements, since typically (say) a few exchanges will

not change the value of h which minimizes the quantity v in Eqn. (9.9). By this argument,

the s sin2(kx) term may be in fact a bulk effect, or a sign of bulk-interfacial coupling –

however, these arguments are somewhat speculative. We defer further discussion of the

presence of complex coefficients in the transport operator to the three-dimensional Ising

results (Sec. 10.2.3).

For those cases where capillary wave transport does not occur (i.e., even order param-

eter current profiles), the average phase shift was measured to be zero – this is expected,

since there is no lateral motion on the average. According to earlier results, we should

however see a non-zero average phase shift for step-like drive Fx(z) = f · sgn(z). Indeed,

for the Ising model, using the column-sum height and f = 1.0, this produces a disper-

sion relation which can be fit by the same form (9.17) as for shear, with v = 0.0100(4),

u = 0.01802(2), and s = 0.0071(2). Varying the strength of the shear- or step-like field

alters the magnitude of ω(kx), but not the shape, and the same fitting form applies, with

a reduced value of v for smaller γ or f , as expected from the trend observed in the peak

velocity vpeak of C(x, t). However, unlike vpeak, the dependence of v upon γ does not seem

to be linear – although the data available are limited.
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Figure 9.22: Dispersion relation ω(kx) for the travelling capillary waves in the Ising lattice

gas and discrete Gaussian models driven by a shear-like field with γ = 1, as a function of

scaled wave number kx = (2πnx/Lx). Data for systems with Lx = 100, 200, and 400

(with fixed Lz = 20 in the Ising case) collapse on top of each other. The fitting forms

described in the text are also plotted in both cases.
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Finally, we return to the simple DG transport operator (9.19). We may in fact derive

this form, for a shear-like field, via an approximate microscopic approach, in the strong-

drive limit [131]. As defined in Sec. 7.2, an elementary move consists of a column at x

losing a unit of height to one of its neighbours, at position x′. In the strong-drive limit,

the work done by the driving field is much greater than the work to overcome surface

tension: ∆W � ∆H. Thus the Metropolis update rate becomes

p(x→ x′) = min {1, exp [−β∆W ]} . (9.23)

The change of height at position x per unit time is given by the net flux of “height units”

into x:

∂th(x) = 2 · 1
4

[p(x− 1→ x)− p(x→ x− 1) + p(x+ 1→ x)− p(x→ x+ 1)] . (9.24)

The pre-factor of 2 accounts for the fact that each p term can come about in two different

ways, by swapping x and x′. Now, the work ∆W for shear-like drive is given by Eqn. (7.13),

which involves the expression [h(x)+h(x′)]/2, the average of the heights in the source and

destination columns. We may re-write this in terms of discrete derivatives of h(x):

h(x) + h(x± 1) =
1
2
∂2
xh(x)± ∂xh(x) + 2h(x), (9.25)

where, as above, we use the mid-point (two-point stencil) first derivative formula, and a

three-point stencil for the second: ∂2
xh(x) = h(x+ 1)− 2h(x) + h(x− 1). At this point we

introduce the abbreviation α ≡ βJγ, and substitute the rates (9.23) into (9.24), dealing

with the cases h(x), h(x± 1) > 0 and h(x), h(x± 1) < 0 separately:

∂th(x) =


1
2

(
1− e−

α
2

(h(x)+h(x−1)) + e−
α
2

(h(x)+h(x+1)) − 1
)
, h(x) > 0

1
2

(
e−

α
2

sgn(h(x))(h(x)+h(x−1)) − 1 + 1− e−
α
2

sgn(h(x))(h(x)+h(x+1))
)
, h(x) < 0,

(9.26)

or simply

∂th(x) =
1
2

sgn(h(x))
[
−e−α

sgn(h(x))(h(x)+h(x−1))
2 + e−α

sgn(h(x))(h(x)+h(x+1))
2

]
. (9.27)

Note that we have assumed that both involved columns have the same sign, and we do not

consider the case where they have opposite signs – this is, of course, a potentially serious

restriction, since this is a common case. Using (9.25) yields

∂th(x) =
1
2

sgn(h(x))e−α(|h(x)|+ 1
4

sgn(h(x))∂2
xh(x))

[
−e+α

2
sgn(h(x))∂xh(x) + e−

α
2

sgn(h(x))∂xh(x)
]

≈− 1
2
αe−α(|h(x)|+ 1

4
sgn(h(x))∂2

xh(x))∂xh(x) (9.28)
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for α∂xh(x)� 1. To linear order in h (we assume ∂2
xh(x)� h(x)), one finally obtains

∂th(x) = −α
2
∂xh(x), (9.29)

which is the form of the transport equation produced by the operator (9.19). In arriving

at this form, we did impose several restrictions: in particular, the strong drive limit,

the condition that both column heights have the same sign, and the assumption of small

height gradients. Consequently, in this form the above is not a general derivation of

the transport operator, but rather a plausibility argument; its appeal is its origin in the

microscopic dynamics, as opposed to coming from a continuum description. For the more

complex Ising model, the type of approach we have used here would be far more difficult

– one would have to account for how individual spin exchanges from a given configuration

affect the height, which involves dealing with many more degrees of freedom.
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9.8 Interface structure and dynamics in the driven Blume-

Capel model

The addition of the third spin state (or vacancy in binary mixture language) σ = 0 in

the Blume-Capel (BC) model has important effects on the structure and dynamics of

the interface. In equilibrium, simulations on (non-conserved) phase-separated systems

(with magnetic field B = 0) below the critical temperature for given crystal field D show

adsorption of σ = 0 spins at the interface [137, 152] – this layer provides a “buffer”

between the ±1 species, and so lowers the energy of the system. The thickness of the layer

depends on D, as well as system size and temperature. We observe the same phenomenon

to occur in the BC system evolving under conservative dynamics, where the numbers of

σ = +1,−1, 0 spins are fixed at all times, in both the equilibrium and driven cases. This

is demonstrated by the simulation snapshot in Fig. 9.23a, and confirmed by the vacancy

density profile ρ0(z̃) in Fig. 9.24a, which exhibits a peak at the centre of the system. In

both the figure and the snapshot, the vacancy concentration is 20%, the system dimensions

are Lx = 128, Lz = 16, and the temperature is kBT/J = 0.75 (absolute), far below the

equilibrium critical point. The system is driven by a co-drive uniform field of strength

f = 0.125 - recall from Sec. 7.1 that in this case, both the ±1 species are driven in the

same direction, in contrast to the Ising model. The density profiles for the ±1 species

in Fig. 9.24a are mirror images of one another across the z̃ = 0 line, since we fix their

total densities to be equal, ρ+ = ρ− (= 0.4 each in this case). Also shown is the order

parameter profile

Φ(z̃) = ρ+(z̃)− ρ−(z̃), (9.30)

the equivalent of the magnetisation profile in the Ising model, which varies from a negative

value in the bulk ‘−’ phase to a positive one in the ‘+’ phase, passing through zero at the

interface.

The sharpening of the order parameter profile observed in the driven Ising model

also occurs in the BC system, as shown in the main panel of Fig. 9.24b, where order

parameter profiles for co-driven systems are compared to the equilibrium result. In all

cases, the vacancy concentration is 20%, so the system is significantly different from the

Ising model even in equilibrium. For these co-driven systems, the sharpening of Φ(z̃)

increases with stronger driving fields. However, when the system is subject to counter-

drive, where the ±1 species move in opposite directions, it transpires that the interface



134 CHAPTER 9. RESULTS IN TWO DIMENSIONS

can become destabilized, for sufficiently large vacancy concentrations. Fig. 9.23b shows

a simulation snapshot for parameters where this phenomenon occurs; the corresponding

time-averaged density profiles are shown in the inset of Fig. 9.24b. The vacancy density

is almost constant for all z, due to the block-like structures visible in the snapshot. The

phase separation is severely affected, with large regions of the ±1 species in contact with

the opposite wall (i.e., ‘+’ next to the ‘-’ wall, and vice-versa). We explore these strange

effects further in Appendix B; for now, we confine our attention to the cases where the

system is stable under drive.

(a)

(b)

Figure 9.23: Snapshots from Monte Carlo simulations of the driven, conservative Blume-

Capel model. In both cases the system has dimensions Lx = 128, Lz = 16, the temperature

is kBT/J = 0.75, and the vacancy concentration is 20%. The ‘+’ spins are shown in grey,

the ‘−’ in black, and the vacancies are white. (a) Uniform co-drive field of strength

f = 0.125: the interface is stable, and vacancies (σ = 0 spins) form a buffer layer between

the ±1 phases. (b) Uniform counter-drive with f = 0.25 – the interface is unstable, and

the vacancies form a long-lived block or plug-like structure, which travels through the

system.
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Figure 9.24: Density profiles for the Blume-Capel model with driven, conservative dynam-

ics. (a) Results for an Lx = 128, Lz = 16 system at temperature kBT/J = 0.75, driven

by a co-drive uniform field of strength f = 0.125, with vacancy concentration 20%, and

equal concentrations of the ±1 species. The individual species’ density profiles ρσ(z̃), as

well as the order parameter profile Φ(z̃) = ρ+(z̃)−ρ−(z̃), are shown. (b) Order parameter

profiles for the same system, but driven by different field strengths and types, including

zero field (equilibrium). In the inset, density profiles for a counter-drive uniform field with

f = 0.125 show the instability of the system for this combination of parameters.
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A key difference between co-driven BC systems and the driven Ising model concerns

the symmetry of the order parameter current j+(z̃) − j−(z̃) (cf. Eqn. (9.1)). Fig. 9.25

shows current profiles for the cases of uniform and shear-like driving fields. For a uniform

field in (a), the individual currents for the ±1 species are always positive (due to co-drive)

– consequently, the vacancy/hole current is negative, since the vacancies are effectively

driven in the opposite direction via exchanges with the ±1 species. The ±1 species’

currents are strong in their own phase, where there is a large carrier density. The order

parameter current therefore attains an odd symmetry in this case, in contrast to the

situation in the Ising model. For shear-like drive in (b), j+(z̃)− j−(z̃) is even in z̃, again

opposite to the Ising case. This means that our choice of the appearance of the symmetry

of the current, rather than the field, in the earlier conjecture for the occurence of travelling

capillary waves, may be tested.

We do this by coarse-graining the BC model in the same way as the Ising model,

via the simple sum definition of the interface height, and measuring the space-time height

correlation function C(x, t). Based on the symmetry of the order parameter current profile,

we expect motion to occur for uniform co-drive, but not for shear-like co-drive. This is

indeed the case: in the main plot of Fig. 9.26, where results for uniform drive are shown,

the peak moves to the right with increasing time, whereas for shear-like drive in the inset,

there is no evidence of motion. As in the Ising model, the direction of movement is the

same as that of the “intruders” – in this case, the intruders move in the same direction

as the local majority species (the positive x direction). The relevance of the direction of

motion of the vacancies is not clear, but seems difficult to assess, due to the nature of

the exchange dynamics on the lattice: if one species is driven in a particular direction,

another species which does not explicitly interact with the field (as for the vacancies here)

will effectively feel a force in the opposite direction. Thus co-driving the vacancies with

the ±1 species is not possible (just as we could not co-drive the ±1 spins in the Ising

model). The peak velocity vpeak is larger than in the Ising model – for example, with

vacancy concentration 20% and f = 0.25, vpeak ≈ 0.009, whereas for step-like drive in the

Ising model with f = 1 (as in Fig. 9.17), vpeak ≈ 0.0064. For smaller vacancy densities, we

observe that vpeak is smaller – this is natural, since the action of the drive depends entirely

upon the presence of vacancies in the case of co-driving. The nature of the drive also means

that if we consider the same symmetry arguments applied to the Ising model in Sec. 9.5.1,

we find that for uniform co-drive (where CW motion occurs), the directions of movement
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of the ±1 species are unchanged after species inversion and x, z spatial reflection – in

contrast with the cases where motion occurs in the Ising model. This highlights the fact

that the symmetry considerations are strongly model-dependent, whereas the relationship

between the order parameter current and CW motion is less so.
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Figure 9.25: Current profiles for the co-driven Blume-Capel model. As for Fig. 9.24, the

system is Lx = 128, Lz = 16 with kBT/J = 0.75, and the vacancy concentration is 20%.

(a) Results for uniform drive of strength f = 0.125, showing individual species’ currents,

as well as the order parameter current profile j+(z̃)− j−(z̃); the latter has odd symmetry

in z̃. (b) Profiles for shear-like drive with γ = 0.075; the order parameter current is now

even.
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Figure 9.26: Space-time height correlation function C(x, t) for the Blume-Capel model

with conservative dynamics, for different time differences t, as indicated, as a function of

spatial separation x. In the main plot, results for uniform co-drive of strength f = 0.125

and vacancy concentration 20% are shown: the peak decays and moves to the right,

indicating lateral capillary wave motion. In the inset, data for shear-like co-drive with

γ = 0.075 and vacancy concentration of 8% show that for this case, no transport occurs.

In both plots, the system has dimensions 128× 16, and kBT/J = 0.75.
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Chapter 10

Results in three dimensions

We now consider the driven Ising lattice gas in three dimensions on a simple cubic lattice,

as introduced in Chapter 7. We wish to investigate whether the suppression of capil-

lary waves, and the transport phenomenon, which we discovered in 2d, persist in three

dimensions; simulating a 3d system enables a more direct comparison with the experi-

mental results of Ref. [13]. Furthermore, the problem of non-equilibrium fluctuations of

a liquid-liquid interface in a 3d system under shear has recently been addressed theoret-

ically [122] within the framework of fluctuating hydrodynamics. This approach leads to

a mode-coupling equation for the interface height which was solved using a perturbation

theory. Results for the interfacial width are in agreement with the experiment of Ref. [13],

but the results for the interfacial correlation length in the flow direction are not. The

theoretical height-height correlation function and the structure factor imply a decrease of

the correlation length in the direction of flow. Interestingly, in the direction perpendicular

to the flow (vorticity direction), the correlation length seems to increase. In light of these

theoretical results, studying the 3d driven Ising system is all the more valuable.

The majority of the results shown here are for a system size Lx = Ly ≡ L = 128

and Lz = 10 or Lz = 20, at a temperature T/T 3d
c = 0.75, where kBT

3d
c ≈ 4.5115

(β3d
c = 1/kBT 3d

c ≈ 0.22165) is the bulk critical temperature of the equilibrium 3d Ising

system [57]. We abbreviate T 3d
c to Tc in the rest of this chapter except when this notation

is ambiguous. The effect of going to larger values L ≤ 192 was checked, and generally

found to be small, except for the largest wall separations (recall that the lateral correlation

length ξ‖ grows exponentially with Lz; once this becomes comparable to L, the effects of

finite L will be noticeable). We will see evidence of this when we discuss the interfacial

141
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width. We also vary the temperature, firstly to investigate the effect of an increase to

T/Tc = 0.90, and secondly to study the behaviour near and below the roughening transi-

tion. For an equilibrium system in the thermodynamic limit, the roughening temperature

is kBTR ≈ 2.454J [90]. In a finite system, the (pseudo-)transition will occur at a shifted

value of temperature TR(L,L,Lz), governed by the system size [153]. As temperature is

increased in the smooth regime, either the interfacial width will reach the scale of Lz, or

the lateral correlation length will reach Lx or Ly – in either case, the interface reaches the

rough regime. We therefore cover a range of temperatures around the roughening temper-

ature in the simulations, from T/Tc = 0.4 to T/Tc = 0.6. As mentioned in Sec. 3.5.4, the

roughening transition belongs to the universality class of the Kosterlitz-Thouless transi-

tion [84]. The renormalization group method of Kosterlitz [154] showed that the lateral

correlation length ξ‖ diverges very rapidly as T → TR from below:

ξ‖ = A exp

[
B√

(TR/T − 1)

]
, (10.1)

where A and B are non-universal parameters. The numerical values for these constants

obtained from MC simulation studies of the Ising interface in 3d are A = 0.80(1) and

B = 1.01(1) [90]. The shift of the pseudo-roughening temperature can be estimated from

the condition ξ‖ ' Lx(= Ly = L), which yields (TR − TR(L,L,Lz))/TR(L,L,Lz) ≡ ∆T '

(B/ ln(L/A))2. This is a very weak dependence on L and for our system size it gives

∆T ' 0.04. At the same time the width of the interface diverges upon approaching

the bulk roughening temperature, as w2 ∼ ln(ξ‖). The condition w ' Lz yields ∆T '(
B/(L2

z − lnA)
)2, which is a much stronger dependence on the finite dimension Lz than

that obtained on L from the condition involving ξ‖. For Lz = 10, ∆T ' 10−4, therefore

we conclude that the shift of the roughening transition is governed by ξ‖. Using that

estimate of ∆T gives TR(L,L,Lz)/Tc ' 0.52, so the range of simulation temperatures

should include the equilibrium pseudo-transition temperature.

As in two dimensions, the time for the system to reach a steady state was estimated,

and run lengths chosen accordingly. Results reported here are from total run lengths

of 2 − 4 × 107 MCS (Lx × Ly × Lz trial moves in the 3d system), of which the last

1− 2× 107 MCS were used for capturing data. These run lengths are much shorter than

in 2d – even allowing for some over-estimation in the relaxation time in that case, it is

clear that the slow evolution of Kawasaki dynamics to a steady state is less of a problem

in 3d than in 2d. Errors were estimated in the same ways as they were in two dimensions.
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10.1 Statics: interface structure

10.1.1 Magnetisation profile

We first investigate the interfacial structure of the driven 3d Ising model in order to see

whether in three dimensions the effective action of drive is to increase the confinement

of the interface, as it was in two. The magnetisation profile m(z) between the walls is

calculated in the 3d system as

m(z) =
1

LxLy

〈∑
x,y

σ(x, y, z)

〉
, (10.2)

where the angles denote an average in the steady state (see also Eqn. (9.2)). In Fig. 10.1a

we plot profiles from both equilibrium and driven systems, making use of the same scaled

variable z̃ = 2z/Lz as before in 2d. Upon applying drive to the system, the magnetisation

profile becomes sharper: m(z̃) changes sign more rapidly in the interfacial region, and

there is a more extended flat region near either wall. The size of this effect increases

with increasing driving strength, γ or f . These trends are the same as in two dimensions,

but for given driving strength, the magnitude of the effect is smaller in 3d. This latter

finding is consistent with the fact that in equilibrium, CW fluctuations at interfaces in

d = 3 systems are much weaker than in d = 2 (for example, the interface width follows

w ∝
√
Lz in d = 3, while w ∝ Lz in d = 2). Therefore there are fewer large-scale CW

fluctuations for the drive to destroy in the 3d system; the destruction of such fluctuations

is the biggest contributor to the profile sharpening / interface smoothening when drive is

initially applied.

As in two dimensions, it is possible to rescale the driven profiles to collapse back onto

the equilibrium result: see Fig. 10.1b. We again interpret this as the drive acting to reduce

the effective distance between the walls from Lz to L∗z, and thus to effectively increase

the confinement of the system. As mentioned in Sec. 9.3.1, the estimation of the rescaling

factor a⊥ = L∗z/Lz was obtained systematically for the 3d system. This was done by

rescaling the driven data to spline-interpolated equilibrium curves and minimizing the

associated chi-squared statistic by varying a⊥ – the value of a⊥ at the minimum being the

optimal value. Points near the upper and lower walls, where wall-interaction effects are

important (which would ideally be handled by the unknownMcorr(z) term in Eqn. (9.3))

were excluded from the procedure, although this was observed to have a rather minor effect

on the resulting optimal a⊥ values. Applying the crude “manual” rescaling procedure used
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for the 2d system also gave similar results to the more systematic procedure, although

clearly the latter should be preferred.

For shear-like drive with γ = 1.0, we find a⊥ = 0.71(8), whereas for two dimensions,

for the same value of γ and Lz we had a2d
⊥ = 1/3.4 = 0.29 (Sec. 9.3.1) – this highlights

the greater effect of drive in the 2d case. Although the lateral dimensions of the 2d and

3d systems are different (Lx = 200 in 2d, while Lx = Ly = 128 here), this should not be

especially important, since the controlling length scale in the confined regime is the wall

separation Lz. For given γ at T/Tc = 0.75, shear-like and V-shaped drive yield rather

similar rescaling factors. More pronounced differences are observed for smaller values of γ

and lower temperatures, suggesting that effective confinement is stronger for the V-shaped

drive – this was also observed in 2d. Rescaling fails for lower temperatures closer to and

below the equilibrium bulk roughening transition temperature. For these temperatures,

the equilibrium profile is already almost step-like, since thermal capillary-wave fluctuations

are much weaker; driving the system therefore has a much smaller effect on the profile

than at higher temperatures.
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Figure 10.1: Magnetisation profiles m(z̃) as a function of the scaled coordinate z̃ between

the walls. The system is Lx = Ly = 128, Lz = 20, at a temperature T/Tc = 0.75. Results

for equilibrium simulations (γ = 0) with Kawasaki dynamics (solid line) are shown in

(a), as well as for shear-like, V-shaped and uniform drive (symbols). In (b) results of

rescaling to equilibrium are plotted; rescaling factors are a⊥ = 0.87, 0.70, 0.60 for shear

with γ = 0.25, 1.0, 2.0, respectively, a⊥ = 0.57 for V drive with γ = 1.0, and a⊥ = 0.72 for

uniform drive with f = 1.0. Error bars are of order or smaller than the line thickness or

symbol size.



146 CHAPTER 10. RESULTS IN THREE DIMENSIONS

10.1.2 Interface width

As in 2d, we measure the width via the second moment of ∂m/∂z and study its variation

with driving strength, wall separation Lz, and temperature. Upon increasing driving

strength γ or f , the width reduces, as expected from the results for the full profile. For

shear-like and V-shaped drive, we are also able to obtain data collapse for the behaviour

of w/
√
Lz as a function of the same scaling variable θ = Lzγ

s as in the 2d driven Ising

system with, remarkably, the same exponent s = 0.3. The division of the width by
√
Lz

corresponds to the expected d = 3 equilibrium behaviour (Sec. 2.3.1, Sec. 3.5.3), so that

for θ → 0, w/
√
Lz → constant. The scaling behaviour of the width is shown in Fig. 10.2,

for fixed temperature T/Tc = 0.75, and a variety of wall separations and drive gradients in

the ranges 10 ≤ Lz ≤ 20, 0 < γ ≤ 2. From Fig. 10.2 we see that for small γ at the larger

values of Lz = 16 and 20, the data collapse is lost – we believe that this is because the

system starts to move out of the confined regime with w ∼
√
Lz for these parameters. For

these wall separations, the lateral correlation length ξ‖ becomes comparable to the linear

dimension L of the interface, and the system begins to cross over to the regime where

the dominant length scale is L. This does not require a large increase in Lz, because

from Eqn. (2.31), ξ‖ ' exp(κLz/4), where the transverse length scale κ−1 is of order the

bulk correlation length ξb. Data collapse is regained for larger values of γ, because the

effective wall separation L∗z < Lz is the controlling length scale (from the discussion of the

magnetisation profile above), and L∗z is small enough for the system to be in the “confined

regime”. The inset of Fig. 10.2 shows the variation of the width with drive gradient γ for

shear-like and V-shaped drive. The trends are rather similar, with the width for given γ

very slightly smaller for V-shaped drive – this is consistent with the previous conclusion

that confinement is stronger for this drive type.
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Figure 10.2: Scaling behaviour of the interfacial width w, as a function of the scaling

variable θ = Lzγ
s, with s = 0.3, for systems driven by a shear-like field. The width is

scaled by
√
Lz according to the equilibrium relation w/

√
Lz = const., as discussed in the

text. Different point types correspond to differing values of Lz, from 10 to 20, as indicated.

In all cases, the lateral system length is L = 128, and the temperature is T/Tc = 0.75.

Inset: variation of the width with drive gradient γ, for shear-like drive (filled circles, solid

line) and V-shaped drive (open circles, dashed line), at fixed Lz = 10.
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10.1.3 Interfacial spin-spin correlation function

The spatial spin-spin correlation function at the midplane is defined in the 3d system as

G(x, y, z = 1/2) =
1

LxLy

〈∑
x′,y′

σ(x′, y′, 1/2)σ(x′ + x, y′ + y, 1/2)

〉
, (10.3)

which depends on separations in both the x and y directions. We suppress the fixed z

coordinate in the following. Comparing the specific cases G(x, y = 0) and G(x = 0, y)

provides information on the anisotropy between the x and y directions. In equilibrium, the

system should be isotropic in the lateral plane, so G(x, 0) = G(0, y) for Lx = Ly, but for

driven systems, the two functions may differ. Results in Fig. 10.3a show that shear-like

drive causes both G(x, 0) and G(0, y) to decay more quickly and for larger separations

to saturate at larger asymptotic values than in equilibrium. In the x direction, this

finding is in agreement with recent hydrodynamics results [122]; however in that study,

the correlation length in the y direction was found to increase under shear, contrary to

the trend in our system. We defer further exploration of this difference to the discussion

of the height correlations below, since the height variable provides a more direct point of

comparison between the systems.

As in the 2d case, the spin correlation functions at intermediate separations may be

transformed to the equilibrium result via a rescaling of the lateral coordinate, x or y:

G(ax‖x, 0) ≈ Geq(x, 0) and G(0, ay‖y) ≈ Geq(0, y), see Sec. 9.3.3. In the driven 3d system,

separate parameters ax‖ and ay‖ are required for the x and y directions due to the anisotropy:

the lateral correlation lengths in the two directions may be different. Fig. 10.3b shows

rescaling results for G(x, 0) in the main figure, and for G(0, y) in the inset, from an

L = 128, Lz = 10 system at T/Tc = 0.75 at various driving strengths. The rescaling

factors were obtained via the same method as for the magnetisation profile; in this case,

very small values of x or y were cut off in the procedure, as were the tails of the functions,

so that the rescaling procedure was carried out over 2 ≤ x, y ≤ 16. As in 2d, the a‖

parameters may be interpreted as ratios of lateral interfacial correlation lengths in and

out of equilibrium: ax‖ = ξx‖/ξ
x,eq
‖ and ay‖ = ξy‖/ξ

y,eq
‖ Rescaling the driven data produces

ax‖ < 1 and ay‖ < 1, so that the correlation length is reduced under drive – this tallies with

the faster decay evident from Fig. 10.3a. The x-y anisotropy may be measured by the ratio

ay‖/a
x
‖ ; this is consistently slightly smaller than unity, leading to the surprising conclusion

that the correlations are slightly more suppressed in the y (vorticity) direction. As with the
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magnetisation profile, the effect of drive is much weaker in three dimensions than in two –

for example, in 2d, ax‖ = 1/1.27 for γ = 0.025, while in 3d, ax‖ = 0.78 ≈ 1/1.28 for γ = 0.25:

a ten times larger field gradient is required to produce a comparable confinement. As a

result, the rescaling procedure works for much larger values of γ than in 2d – a stronger

drive is required to push the system into a regime which is too far from equilibrium

for rescaling to be possible. The V-shaped drive has a similar effect on the interfacial

correlations: for example, with γ = 0.25, ax‖ = 0.74, corresponding to a slightly stronger

confinement effect than with shear, consistent with the findings for the magnetisation

profile.

Fig. 10.4 shows the effect of varying the temperature on the interfacial correlations.

Lowering the temperature to T/Tc = 0.5 (below the roughening transition in a bulk

equilibrium system) in equilibrium results in correlations G(x, 0) that decay to only ∼ 0.6

for the largest separations. Since on the lattice the average interface position lies between

two lattice points (for zero overall magnetisation), one measures the correlations just

either side of the interface (which side does not matter, due to symmetry). Thus at zero

temperature, G(x, y, z = 1/2) = 1 for all x, y, since the interface is perfectly flat at T = 0.

This explains the observed increase of asymptotic values of G(x, 0) for low T . Moreover,

the width of smooth interfaces is of order of the bulk correlation length, which at low

temperatures is ∼ 2-3 lattice spacings. Therefore, for low temperatures G(x, 0) essentially

measures correlations in the bulk-like phase. We also see from Fig. 10.4 that driving the

system enhances the asymptotic value further for T/Tc = 0.5, which indicates that at fixed

temperature the bulk-like phase is more ordered under drive than in equilibrium. As for

the magnetisation profile, rescaling does not work for the low temperatures – the drive

affects the asymptotic value more than the decay rate for these temperatures.



150 CHAPTER 10. RESULTS IN THREE DIMENSIONS

0

0.25

0.5

0.75

1

0 0.05 0.1 0.15 0.2 0.25 0.3

G
(x
,y

=
0)
,
G
(x

=
0,
y
)

x/Lx, y/Ly

(a)
equilibrium

G(x, 0), γ = 0.05

G(x, 0), γ = 0.25

G(x, 0), γ = 0.50

G(0, y), γ = 0.50

0

0.25

0.5

0.75

1

0 0.05 0.1 0.15 0.2

G
(x
,0
)

ax‖x/Lx

(b)

0

0.5

1

0 0.1 0.2

G
(0
,y
)

ay‖y/Ly

(b)

equilibrium
shear, γ = 0.05
shear, γ = 0.25
shear, γ = 0.50

V, γ = 0.15

Figure 10.3: Spin-spin correlation functions G(x, y = 0) and G(x = 0, y) as a function of

scaled separation x/Lx or y/Ly. (a) Results for a 128× 128× 10 system at T/Tc = 0.75.

The equilibrium result is shown, as well as driven results for shear-like drive at several

values of drive gradient γ, as indicated. The behaviour of G(x, 0) and G(0, y) for γ = 0.5

may be compared. In the main panel of (b), the driven results for G(x, y = 0) are rescaled

via the parameter ax‖ = ξx‖/ξ
x,eq
‖ , as described in the text; rescaling factors are ax‖ = 0.95,

0.78, 0.69 for shear-like drive with γ = 0.05, 0.25, 0.5, respectively, and ax‖ = 0.80 for V

drive with γ = 0.15. In the inset, the corresponding rescaling results for G(x = 0, y) are

shown; ay‖ = 0.95, 0.74, 0.64 for the same values of shear-like drive, implying a slightly

greater reduction in correlation length ξy‖ .
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roughening temperature, i.e., for T/Tc = 0.5, the asymptotic value is large, and increases

for stronger drive.
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10.1.4 Height-height correlation functions

We now turn to the interfacial height-height pair correlation function. Motivated by

the success of the simple column-sum coarse-graining method used in the two-dimensional

driven Ising system, we adopt the same method here, such that h(x, y, t) = −(1/2)
∑

z σ(x, y, z, t).

The height-height correlation function in 3d depends on spatial separations x and y in the

drive and vorticity directions respectively, and on temporal displacement t:

C(x, y, t) =
1

LxLy

〈∑
x′,y′

h(x′, y′, t′)h(x′ + x, y′ + y, t′ + t)

〉
, (10.4)

where the angles indicate an average over time. We first consider the equal-time cor-

relations, with one of the spatial separations set to zero: Fig. 10.5 shows results for

C(x, y = 0, t = 0); in the rest of this section we suppress the (zero) time coordinate. In two

dimensions, we saw that C(x) (also G(x)) in equilibrium exhibited strong anti-correlated

regions for medium-to-large separations, presumed to be finite size effects. These features

are not present in 3d for the system sizes considered – the functions decay to zero without

becoming significantly negative, indicating less severe finite size effects; an explanation

may be the following. With conservative dynamics, a positive-height ‘bump’ must be ac-

companied by one with negative height, since
∑
h ≡ 0. In 2d, these must lie on the same

x-z layer (the only one), so an anti-correlation is measured in C(x). However in 3d there

are Ly x-z layers, so the pair may be located in different layers, meaning C(x, y = 0) does

not necessarily display anti-correlations.

Turning to the driven cases, we see from both the main plot and the inset of Fig. 10.5a

that applying shear-like or V-shaped drive leads to a more rapid decay of C(x, 0), as well

as a smaller initial value C(0, 0) (a measure of the interfacial width). The magnitude of

this effect increases with increasing γ. Comparing the results from the two drive types

at γ = 0.5, we see that the effects are very similar, though slightly greater for the V-

shaped drive. This trend seems to hold for all values of γ. In the vorticity direction the

findings are similar to those for the spin-spin correlation function: we see correlation-

suppression in C(0, y), and this effect is slightly greater than for C(x, 0). As for other

quantities, rescaling to the equilibrium result is possible in the same manner as in 2d.

For the height correlations, the rescaling takes the form a−2
⊥ C(ax‖x) ≈ Ceq(x). The values

of a⊥ and a‖ are those obtained from the rescaling of the magnetisation profile and the

spin-spin correlation function for given simulation parameters. In 2d this procedure was
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motivated by the scaling form Eqn. (9.11) for the equilibrium height correlation function

from capillary wave theory in d = 2. In d = 3, this scaling form does not hold, because the

width does not appear as a multiplicative factor with the scaling function; nevertheless,

the rescaling procedure works reasonably well for γ . 0.5. As with the spin correlations,

this range of validity is much greater than in two dimensions.

Furthermore, we are able to fit the results for C(x, 0) and C(0, y) for small-to-intermediate

separations to the equilibrium capillary wave result for the height correlation function in

3d: see Fig. 10.6 for results for shear-like drive. This procedure was used previously by

Derks et al. to describe their experimental data, where an excellent fit was obtained

[13]. For reference we quote the CWT result for C(x, 0) in the limit Lx = Ly → ∞, cf.

Eqn. (2.24):

C(x, 0) =
kBT

2πσ
K0

(√(
x

ξ‖

)2

+ λ2

)
. (10.5)

From the discussion around Eqn. (2.24) in Sec. 2.3.2, the shift λ ≈ 1/(kmaxξ‖). Combining

(10.5) with the CWT result for the interface width, Eqn. (2.17), we are able to substitute

for the (unknown) kmax in terms of the (measurable) width, and obtain a fitting form

with two parameters: the correlation length ξ‖ and the pre-factor kBT/σ. Note that in

(10.5), we have specialised to separations in x rather than the radial distance r usual in

CWT, since isotropy is broken in the non-equilibrium situation. For separations in y,

the form for C(0, y, 0) is the same, but different values of the parameters are expected –

i.e., the correlation length (ξy‖) will be different, as will the pre-factor. The interpretation

of the latter quantity is difficult. Indeed, the interface tension is an equilibrium concept

and cannot be carried over directly to non-equilibrium situations, so the meaning of the

pre-factor is not initially clear – here we just note its anisotropy.

The equilibrium fit in Fig. 10.6 wanders off the data for larger separations; this may

be due to a (less serious) manifestation of the finite size effects encountered in 2d, which

were mentioned above, and the conserved order parameter. (This is most obvious for

the equilibrium data on the log scale, where the data diverge as they approach zero and

become negative). For the driven cases, as drive becomes stronger, the fit works for a

smaller range of separations – the example of shear-like drive with γ = 1 is given in

Fig. 10.6. This trend is expected from the findings for the rescaling procedures applied

above – initially the system is “close enough” to equilibrium for CWT to be approximately

applicable, but as drive increases, this ceases to be true. From the fits we obtain the
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equilibrium and non-equilibrium correlation lengths in the x and y directions, ξx‖ and ξy‖–

see the inset of Fig. 10.6 for their variation with γ in the case of shear-like drive. The

trend of decreasing correlation length with increasing drive strength mirrors the one found

in 2d, although there we were not able to obtain the correlation length reliably, due to

the difficulty of fitting the correlation function data over a reasonable range. We also note

that ξy‖ is consistently smaller than ξx‖ , in agreement with the earlier conclusions, based

on the behaviour of the spin-spin correlation functions, that correlations are slightly more

strongly suppressed in the vorticity direction than in the driving direction.

The suppression of correlations we find in the drive (x) direction is in agreement with

the hydrodynamics work of Thiébaud and Bickel [122], who studied phase separated fluids

between two walls under shear. This trend is also the same as in the 2d Ising system,

and both microscopic (G(x), spin-spin) and coarse-grained (C(x), height) measures of

correlations give the same conclusion. Both the theoretical and simulation findings dis-

agree, however, with the experimental results of Derks et al. [13], who found an increase

of correlation length in the flow direction when shear was applied to a phase-separated

colloid-polymer mixture. The fact that we have used the same method of fitting the height

correlation data to the equilibrium capillary wave form as Ref. [13], makes the method of

comparison the same, at least.

Finally, we consider the pre-factor resulting from the fit of the height correlation data

to the CWT form (10.5). In equilibrium, the pre-factor is proportional to kBT/σ, where

σ is the surface tension (or more generally, surface stiffness Γ, which allows for anisotropy

in the lattice axis directions, and for a continuum fluid becomes the surface tension) – in

an equilibrium statistical-mechanical description, this is the free energy associated with

the interface. Out of equilibrium, this free energy is not defined, so the meaning of the

pre-factor resulting from the fit is not clear from the standpoint of equilibrium statistical

mechanics. If, however, we think more generally, then the tension is a force per unit

length – this force can be measured in an experiment, whether or not the system is in

equilibrium – therefore, in this view, the pre-factor is better defined. The problem with

this argument is that the CW results come from equilibrium statistical mechanics, so we

cannot simply divorce ourselves from it! Of course, there is also the practical problem of

identifying and measuring a quantity in the driven diffusive lattice system which is the

analogue of the experimental force. Numerically, we find that the pre-factor from fitting

C(x, 0, 0) is a decreasing function of drive gradient γ for shear-like drive. If one defines a
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“non-equilibrium surface tension” (keeping in mind the above discussion) from the CWT

fit, and further takes the temperature T to be fixed (i.e., the value of the parameter

in simulations), the conclusion is then that this tension increases as the system is more

strongly driven. This procedure of defining an effective non-equilibrium surface tension

via the CWT fit was the approach taken in the analysis of the experiments of Derks et

al. [13], who also found this tension to be an increasing function of shear rate. The

CWT fits of experimental data in Ref. [13] show that an increase in this surface tension is

accompanied by an increase in correlation length, but our simulations show the opposite

relationship – a decreasing correlation length as the effective interfacial tension increases.

Our findings seem to be inconsistent with the general CWT result Eqn. (2.28), ξ‖ ∝
√
σ.

However, in our system at equilibrium ξ‖ ∝
√
σ exp(Lz/(4ξb)) (Eqn. (2.31)), so that the

effective increase of the confinement due to driving (reduction of Lz) wins over the effective

increase of σ.
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Figure 10.5: (a) Height-height correlation function C(x, y = 0, t = 0) as a function of

scaled separation x/Lx, for a 128 × 128 × 10 system at T/Tc = 0.75. In the inset, the

data are re-plotted, scaled by the respective zero-separation values C(0, 0, 0), showing

the increased decay rate under drive. (b) Data for non-zero drive are rescaled to the

equilibrium result via the relation a−2
⊥ C(ax‖x) ≈ Ceq(x) given in the text, where the values

of a⊥ and ax‖ are obtained from the rescaling of the magnetisation profile and spin-spin

correlation functions, respectively.
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10.1.5 Structure factor

To further complicate the situation, our finding of a decrease of correlation length in the

vorticity (y) direction is in disagreement with Ref. [122], where an increase was found.

Intriguingly, Thiébaud and Bickel found the structure factor S(k) = S(kx, ky) to be un-

affected in the ky direction by the application of shear [122]. The same was concluded

for the uniformly driven system from the analytic approach based on a time-dependent

Landau-Ginzburg functional by Leung [105]. The static structure factor in the 3d sys-

tem is accessible via a two-dimensional spatial Fourier transform of the equal-time height

correlations, C(x, y, t = 0):

S(k) = |F {C(x, y, t = 0)}|2 , (10.6)

where F {} denotes a two-dimensional spatial Fourier transform,

k = (2nxπ/Lx, 2nyπ/Ly), and nx,y = 0, 1 . . . ((Lx,y/2) − 1), so that kx and ky lie on

the range 0 . . . (π − (2π/Lx,y)). In Fig. 10.7 we plot 1/S(k) for equilibrium and driven

systems, along either the kx or ky direction, as a function of k2 = |k|2. From Eqn. (2.14),

in equilibrium, one expects 1/S(k) ∝ (σ/kBT )
[
k2 + ξ−2

‖

]
; the equilibrium data are fitted

to this form in Fig. 10.7. The data shown are along the direction with ky = 0, although we

have checked that the equilibrium structure factor behaves the same along the ky direction,

as expected. For kx . 1, this behaviour is indeed observable in the simulations, except at

very small kx, which we attribute to finite-size effects. For kx & 1, the data diverge from

the CWT prediction, when other powers of kx presumably become important. We note

that this crossover makes a comprehensive fitting of the structure factor inherently tricky

(especially in the presence of drive), so we have concentrated on a limited regime.

Turning to the non-equilibrium behaviour, we see that for shear-like drive, S(k) is

affected (suppressed) in both the drive (x, blue crosses) and vorticity (y, red squares)

directions, but the effect is smaller in the vorticity direction. These results are in dis-

agreement with the hydrodynamics results [122]; however, since the effect in the drive

direction is stronger than in the vorticity direction, the latter effect could possibly be of

higher order than was considered in Ref. [122]. The data for shear-like drive along ky = 0

are also fit to the equilibrium CWT form in Fig. 10.7; we see that as for equilibrium, the

fit is reasonable for kx . 1. Additionally, the intercept at kx = 0 is greater, indicating a

smaller lateral correlation length, as found in real space above. Indeed, one can compare

the parameters resulting from the CWT fits in real and Fourier space. We find that the
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Figure 10.7: Structure factor S(k), as defined in (10.6). Data are shown for S(kx, ky = 0)

and S(kx = 0, ky), as a function of the squared norm of the wave vector, k2 = k2
x or k2

y,

respectively. As before, the system dimensions are 128 × 128 × 10, and the temperature

is T/Tc = 0.75. Equilibrium data are shown, as well as for shear-like drive with γ = 1,

and fits to the CWT form are displayed for equilibrium and for S(kx, 0) with γ = 1, up

to k2
x = 1.

qualitative trend for the correlation length is the same, but do not obtain quantitative

agreement – the values obtained from the real space fits are consistently larger. These

differences are expected – for equilibrium, they can be caused by the finite system size and

lattice discretization effects. For non-zero drive, the effect of deviations from CWT can be

different in real and Fourier space. Additionally, the fits in Fourier space are for small k

(long wavelengths), while the real-space fits are for small separations, so the length scales

the fits are applicable to are not necessarily the same. For V-shaped drive, we find that

for given drive gradient γ, the results are similar to those for shear-like drive, with slightly

greater suppression of the structure factor at small k.



160 CHAPTER 10. RESULTS IN THREE DIMENSIONS

10.2 Capillary wave transport in the driven 3d Ising system

We now return to the topic of capillary wave transport in the driven Ising system, and

test whether the conjecture made in Sec. 9.5.1 for the occurrence of motion holds in three

dimensions. Firstly we investigate the order parameter current profile in the system, since

the symmetry of this quantity should determine whether or not we observe transport.

10.2.1 Order parameter current

The order parameter current in the 3d system j(z) is again defined by Eqn. (9.1). In

principle, this can now have a y-component jy(z) in addition to the x-component jx(z);

however to keep the situation relatively simple, we do not consider driving fields with a y

component, so jy(z) measured in the simulations is zero (within fluctuations). As shown

in Fig. 10.8, the shear-like drive Fx(z) = γz, Fy(z) = 0 gives a purely odd order parameter

current component jx(z). For the V-shaped drive, the current is an even function of z,

since Fx(z) = γ |z|; these symmetries are the same as in the 2d Ising system, as one would

reasonably expect. We should therefore see transport along x for shear-like drive, but

none for the V-shaped drive, just as in 2d. For the same value of γ, the currents for the

two drive types almost coincide in the region z > 0, where the driving fields are the same

in magnitude and direction.

In Figs. 10.8a and 10.8b, jx(z) is shown for various drive gradients γ, for temperatures

above and below the (equilibrium) roughening transition. Looking at the high temperature

data in Fig. 10.8a we see that for small γ, |jx(z)| has maxima at the walls; as γ is increased,

plateaus develop with the maximum current shifted slightly from the wall. Eventually for

strong drive the maxima become localized near the interface. This reflects the competing

effects of local drive strength and current carrier availability (+− pairs): for large γ, the

drive strength is essentially saturated at the walls, so the greater carrier density at the

interface eventually becomes more important. Below the bulk roughening temperature

(T = 2.4, Fig. 10.8b), the current |jx(z)| also has maxima at the walls for small γ, and

quickly develops maxima at the middle two layers as γ is increased. These maxima appear

for much weaker drive (approximately six times smaller γ) than they do for T/Tc = 0.75.

They are also localised to the two middle layers either side of the interface, and are much

more pronounced than at the higher temperature; this indicates that at low temperatures

the interface region is very sharp, reduced to approximately two lattice spacings. For
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strong drive, the greater carrier density at the interface again ‘wins’, and these maxima

become global. We also note that |jx(z)| is roughly five times smaller than that at the

higher temperature, since the carrier density is much smaller due to the increased bulk

and interfacial order.

Finally, Fig. 10.8a also shows an example of mixed symmetry in the current profile.

The driving field is of the ‘V’ type, but with different values of γ in the upper and lower

halves of the system: γl = 0.25 in the lower half, γu = 0.5 in the upper. Thus the

total driving field can be written in the form F (z) = γ1 |z| + γ2z, with γ1 = 0.75/2,

γ2 = 0.25/2, showing the even and odd components explicitly. The current profile reflects

the asymmetry in the drive: in the lower half of the system, the current matches that for

a (symmetric) V-shaped drive with γ = 0.25, while in the upper half, it matches that for

either V or shear with γ = 0.5 (see Fig. 10.8a) – the crossover occurs over a single lattice

spacing.
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Figure 10.8: Order parameter current profile component jx(z̃), for the system parameters

Lx = 128, Ly = 128, Lz = 20. (a) Temperature T/Tc = 0.75. Results are shown for

equilibrium (zero current), shear-like and V-shaped drive, and the case of mixed symmetry

in the driving field. In the latter case the lower and upper-half γ values are γl = 0.25,

γu = 0.5. For z > 0, the currents resulting from shear-like and V-shaped drive with γ = 3

coincide, as do those from mixed symmetry and shear with γ = 0.5. (b) T = 2.4. Results

are shown for equilibrium, as well as shear-like and V-shaped drive with various values of

γ.
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10.2.2 Space-time height correlations

We investigate whether the conjecture for the occurrence of capillary wave motion holds

for the 3d driven Ising system by measuring C(x, y = 0, t) for different forms of driving

field. Fig. 10.9a shows that this is indeed the case – see the main panel for results for

C(x, y = 0, t) for shear-like drive, and the inset for V-shaped drive. For time difference

t = 0, the peak lies symmetrically around x = 0 in both cases, due to the translational

invariance ensured by the periodic boundaries along x. However, at time differences t > 0,

the peak moves to negative x values for shear-like drive, indicating that now the greatest

correlations are between spatially-displaced points. As in the 2d system, we interpret

this to mean that wave-like height fluctuations are being coherently transported along

the interface by the drive. For the V-shaped drive, the peak remains at x = 0 for all t,

showing the absence of wave motion. In both cases, correlations decay with increasing

time difference, due to thermal noise. We note that the rate of decay of correlations is

much faster when drive is applied than it is for equilibrium Kawasaki dynamics (data not

shown), as we also found in the 2d system.

The results for the uniform (Fx ≡ f = const) and step-like (Fx(z) = f · sgn(z))

driving fields are also consistent with the conjecture: the former produces an even order

parameter current profile whereas the latter produces an odd one, and results for C(x, 0, t)

(not displayed) show that wave motion does not occur for a uniform drive but does for

step-like drive. For the case of the asymmetric V-like drive discussed in the previous

section, which has mixed symmetry, we expect to see wave movement, since the current

profile is not purely even, but like the driving field itself, can be written as a sum of even

and odd components. Indeed we find this is the case, with the peak of C(x, 0, t) moving

with time. From these results we conclude that the criteria for capillary wave motion are

the same in the 2d and 3d Ising systems.

Having established the occurrence of wave motion, it is natural to investigate the

dependence of the wave velocity on system parameters. We measure the speed of the peak

of C(x, 0, t), vpeak, and vary the driving strength (γ for shear-like drive, f for step-like

drive), temperature and wall separation Lz. As shown in Fig. 10.10, vpeak shows linear

variation with γ or f for fixed temperature and system size, for γ, f . 2. For shear-like

drive, the gradient of vpeak(γ) is close to 2 in this range. We also see that varying Lz has a

rather small effect on the peak velocity – doubling Lz from 10 to 20 reduces the gradient



164 CHAPTER 10. RESULTS IN THREE DIMENSIONS

of vpeak(γ) by only a few percent. Changing the temperature from 0.75Tc to 0.90Tc also

has small effect, in the other direction – the peak moves faster for the higher temperature

at given Lz, γ. For the step drive, vpeak also seems to be linear in driving strength f for

small f , with a reduced gradient compared to shear-like drive. For both forms of drive,

non-linearity appears to set in for γ & 2. For the mixed symmetry case, where the driving

field could be written as Fx(z) = γ1 |z|+γ2z, we find that the velocity of motion is smaller

than that for a purely odd field with γ = γ2 – the velocity in the mixed case is linear in γ2

and approximately 80% that of the pure case for γ, γ2 . 2. For lower temperatures near

and below the equilibrium roughening temperature, we find that the interfacial motion

still occurs, with a much reduced velocity; correlations also decay much more quickly with

time, as shown in Fig. 10.9b.
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Figure 10.9: Time-displaced height-height correlation function C(x, y = 0, t) for a 128 ×

128× 10 system at temperature T/Tc = 0.75 in (a), and T/Tc = 0.5 in (b). “Snapshots”

are plotted at time displacements t, as indicated. In the main plot of (a), results for shear-

like drive with gradient γ = 0.5 are shown; the peak of the correlation function moves to

the left with increasing time difference, indicating capillary wave motion. Inset: results

for V-shaped drive with strength γ = 0.5. Correlations decay without movement of the

peak. In (b), we see that the capillary wave motion persists at temperatures below the

equilibrium roughening temperature TR.
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10.2.3 Dispersion relation

We measure the dispersion relation of the travelling capillary waves in the 3d driven Ising

model via the same method as in 2d, see Sec. 9.7, straightforwardly generalised to include

the third dimension. The sum over modes, Eqn. (9.13), now becomes double sum over

nx and ny, with Lx/2 × Ly/2 independent terms. The phase now depends on two wave

numbers, φ = φ(kx, ky, t), and consequently the dispersion relation ω = ω(kx, ky). In the

simulation a two-dimensional Fourier transform of the height variables is now required at

each measurement time; we set the measurement interval dt equal to 1/10 of an MC sweep.

This is rather larger than the value used in the 2d system – the extra computational cost

of the double Fourier transform makes some concession necessary (recall from Sec. 9.7

that a smaller interval is preferable, so that the measurement of the phase difference is

reliable). However, this value of dt still proved to be sufficiently small to yield trustworthy

data, which was consistent between runs.
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Figure 10.11: Surface plot of the dispersion relation ω(kx, ky) for shear-like drive with

γ = 1 as a function of kx and ky. Data are for the system parameters Lx = 128, Ly = 128,

Lz = 10 at temperature T/Tc = 0.75.

Results for ω(k) = ω(kx, ky), where kx = 2πkx/Lx, ky = 2πky/Ly, are shown in

Fig. 10.11, from a 128× 128× 10 system subject to shear-like drive with γ = 1 at temper-

ature T/Tc = 0.75, using the simple sum height definition. In Fig. 10.12, cross-sections of

ω(kx, ky) are also plotted as a function of kx for several fixed values of ky. From Fig. 10.12,

we see that the shape of ω(kx, 0) is very similar to that obtained in the two-dimensional
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Figure 10.12: Dispersion relation ω(kx, ky) for the same system parameters as Fig. 10.11

as a function of the wave number kx for several values of ky. Solid lines are fits to the

analytical formula (10.7).

system, cf. Fig. 9.22a, which suggests to use the same analytical formula for describing

the dispersion relation:

ω(kx, ky = const) = (v + 2u) sin(kx)− u sin(2kx) + s sin2(kx). (10.7)

Indeed, as can be seen by the solid line in Fig. 10.12, the data for ω(kx, 0) fit well with

v = 0.0073(7), u = 0.0104(3), s = 0.0082(8). Waves with larger ky are less dispersive

in the sense that the corresponding coefficients u and s are smaller, so that the curves

in Fig. 10.12 become more symmetric around π/2. The fastest mode is the one with

ky = π, or a wavelength of two lattice spacings; ω(kx, π) can also be fitted using (10.7)

with v = 0.0525(9), u = 0.0039(2), s = 0.0020(3). The variation of ω with ky for any

particular kx may also be seen in a continuous manner from Fig. 10.11. As discussed

in Sec. 9.7, if the dynamics of the height function are modelled by the linear transport

operator (9.21), then the Ansatz in the form of a travelling wave A exp(i(ωt+k ·r)) yields

the first and the second terms in the fit function (10.7), whereas the third term (in s)

requires an imaginary contribution to L̂.
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One may be able to understand the presence of complex coefficients in the transport

equation for the height function h(r, t), by recognising that the plane wave solution above

neglects the dependence of the amplitude A on the wave number. In fact the average

modulus |h̃(k, t)| of each complex Fourier component varies significantly with k = |k|,

even in the absence of driving (see the plot for the structure factor Fig. 10.7). Taking this

into account, it should be possible to derive an equation for the amplitude as well as the

phase – this may aid in understanding the presence of real and imaginary parts in the

transport operator. The t → ∞ limit of the solution of the amplitude equation should

yield the static structure factor, which may be compared to simulation data. We leave

the interesting and difficult problem of deriving the full transport equation from these

considerations to future work.
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Chapter 11

Conclusions and outlook

In this thesis, we have explored a few of the aspects of the behaviour of interfaces in simple

models of non-equilibrium confined fluid systems. Hopefully, we have at least highlighted

the richness and variety of phenomena exhibited by these systems driven out of equilibrium.

Even in the simple systems studied here, we have seen interesting behaviour, which is in

some ways entirely different to equilibrium, but in others shows a definite connection to

it.

The first main finding from the laterally driven confined Ising model simulations is that

interfacial fluctuations are suppressed by drive, and that the static properties of the system

may be well-described by an equilibrium system with a smaller effective wall separation.

In this way, the non-equilibrium system may be viewed as an equilibrium system subject

to a greater degree of confinement. Evidence for this conclusion is based on both one-

and two-body observables: the magnetisation (density in fluid language) profile (also the

energy bond profiles [68]), the interface width, and both microscopic and coarse-grained

interface correlation functions. For the magnetisation profile between the walls, m(z), the

driven data were rescaled to equilibrium using the known equilibrium finite-size scaling

form, implying that the same scaling function is applicable out of equilibrium. This

procedure yielded the rescaling parameter a⊥ = L∗z/Lz < 1, where L∗z is the reduced

effective wall separation, and Lz is the actual separation. For the two-body microscopic

spin-spin correlation function G(x) (G(x, y = 0) in 3d) for lateral separations x along

the interface, the rescaling was based on a modified lateral correlation length ξx‖ , and

gave the rescaling parameter ax‖ = ξx‖/ξ
eq
‖ < 1, implying a reduction of the correlation

length. For 3d systems, this could also be applied to G(x = 0, y) in the y (vorticity)

171
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direction, with, surprisingly, a slightly greater effect due to drive. We also found that the

coarse-grained height correlation function C(x, t = 0) (C(x, y = 0, t = 0) in 3d) could be

rescaled to equilibrium, using the already-fixed values of a⊥ and a‖. In two dimensions, the

rescaling form was inspired by the equilibrium Weeks scaling form; in three dimensions, the

connection to equilibrium is not so clear. The successful rescaling of the height correlations

solidifies the effective-confinement idea, by providing quite a strong test of self-consistency,

without free parameters. This picture is not special to a particular form of driving field,

but works for all the forms of drive tested – both spatially uniform, and linearly varying

with z, and with both even and odd symmetries around the mid-point between the walls,

z = 0. The one-body rescaling seems to apply for arbitrarily strong driving fields, but on

the two-body level, it only works for weak-to-intermediate drive. The range of validity of

the rescaling is much greater in 3d than in 2d, since for given field strength, the drive has

a smaller effect on the system’s structure.

Thus, overall, we can conclude that the effect of lateral drive upon on the structure of

the phase-separated, conserved order parameter Ising system may be viewed as an increase

in the degree of confinement of the corresponding equilibrium system. This holds as long

as the drive is not too strong – beyond a certain point, the driven system is too far from

equilibrium for this picture to apply. This separation into a close-to-equilibrium regime,

and another, strongly driven regime, is quite common in work on non-equilibrium systems,

so the breakdown of rescaling does not come as a great surprise. It would be interesting

to try to define the separation more systematically – this would presumably be based

on a theoretical approach, with some suitably-defined parameter measuring the “distance

from equilibrium”. In the 3d case, we also looked at the behaviour of the driven system

nearer (and also below) the bulk equilibrium roughening temperature. The effect of the

drive upon the structure is reduced for these low temperatures, since there are no large

fluctuations to “smoothen out”; the effective-confinement picture no longer seems to apply

here. A proper study of the interplay between drive and the roughening transition would

be valuable, in view of possible practical applications.

The scaling behaviour of the interface width does not directly fall into the increased-

confinement idea, but it seems likely that a connection does exist – the physical inter-

pretation of the scaling variable θ = Lzγ
s is not yet clear. Exploring this avenue could

be interesting, particularly because the exponent s has the same value in 2d and 3d – a

common scaling form across dimensions is quite unusual. The fitting of the height cor-
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relation function in three dimensions to the capillary wave theory (Bessel function) form

also clearly shows a connection between driven and equilibrium systems, and the trend

of decreased lateral correlation length under drive agrees with that from the rescaling

procedure. The Fourier-space description provided by the structure factor complements

the real-space CWT fits. As before, these inherently equilibrium descriptions break down

for strong driving fields. Some of the difficulty in applying both rescaling and CWT fit-

ting to the simulation data arises from finite-size effects, which are rather strong in the

2d equilibrium and weakly-driven systems, and weaker, but still non-negligible, in the 3d

equilibrium case. These effects may be reduced by simulating systems with larger aspect

ratios Lx, Ly/Lz, such that a better approximation to an infinite strip (in 2d; infinite

“slab” in 3d) is obtained. Qualitatively, however, the conclusions seem to be unchanged;

there is certainly scope for a more systematic finite-size scaling study.

In the case of shear-like drive, our findings for the decay of the height-height correlation

functions and for the structure factor are in partial agreement with recent results from

fluctuating hydrodynamics [122]. In both cases, a decrease of the lateral correlation ξ‖

in the flow direction is seen. The discrepancy concerns the behaviour in the vorticity

direction. We have found a decrease of the correlation length in this direction whereas

hydrodynamic calculations predict an increase. Also, our data show that the structure

factor is suppressed in both the drive and the vorticity directions. In Ref. [122] it is

concluded that S(qx, qy) is unaffected in the vorticity direction. Moreover, our results for

the interfacial width are in agreement with the experiment of Ref. [13], but the results

for the lateral correlation length in the flow direction are not: in the experiment, ξ‖

increased upon the application of shear to the system. For spatially uniform drive, the

trends in our system agree with those found by Leung et al. in their KLS simulations,

but we have supplied a new interpretation in terms of increased confinement. This partial

agreement between theory, simulation and experiment (albeit for different systems!) is

intriguing, and it would certainly be desirable to carry out more studies, experimental,

theoretical and simulation-based, to clarify these discrepancies. It may be the case that

the systems are simply too different to expect the responses to drive to be similar; indeed,

the lattice model studied here has no hydrodynamics and a simple Ising nearest-neighbour

Hamiltonian. From this viewpoint, it is perhaps surprising that there is any similarity at

all in the results! To sum up, an overarching question is which features of the structure of

driven interfaces are universal, and which are peculiar to a particular model. Hopefully,
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the murky waters will be illuminated by further investigations.

The second main result is dynamical in nature: for certain forms of driving field, we

have observed lateral transport of capillary-wave (CW) fluctuations along the interface.

Specifically, motion occurs for cases where the order parameter current profile jx(z) has a

component which is an odd function of distance z from the mid-line between the walls. We

have shown evidence for this phenomenon in the space-time height correlation function

C(x, t), whose peak moves from x = 0 as a function of increasing time difference t, for

both 2d and 3d driven Ising systems. When transport does not occur (i.e., for equilibrium

systems, or where the order parameter current is even), C(x, t) remains symmetric around

x = 0, and simply decays with time. In order to test whether the CW motion is special

to the Ising lattice gas, we simulated a driven discrete Gaussian (DG) effective-interface

model, and a driven Blume-Capel (BC) model. In both cases, transport was observed,

with the same criterion for motion as in the Ising model. The DG and BC models provide

complementary testing grounds – the former “boils down” the system to a purely interfacial

description, devoid of bulk contributions, while the latter allows for new ways of driving,

by virtue of the third spin species (vacancies in a binary mixture description). This last

point is important, because we were able to confirm that it is the symmetry of the order

parameter current, rather than the driving field, that determines whether CW motion

occurs. Based on these results, it seems likely that this phenomenon should occur in

other driven lattice models. Whether any similar result holds for continuum systems

is an open question. We were also able to measure the dispersion relation ω(q) of the

moving waves in the simulations. For the DG model, the observed form of ω(qx) may be

produced by a simple linear transport operator ∂t − v∂x, which we were able to motivate

by an approximate microscopic argument. The behaviour for the Ising model is more

complex, and the requirement of imaginary contributions to the transport operator is

not fully understood. Investigating the dynamics of the capillary waves further in order

to ultimately try and derive the transport operator for the driven Ising model, and so

understand the various terms better physically, would definitely be worthwhile. Such a

treatment should in principle include non-linear effects, and include the time and wave-

vector dependence of the Fourier amplitude. Further insight, especially into the effect of

coupling between bulk and interfacial degrees of freedom, could be gained by considering

theoretical models based on the order parameter [155, 156].

Finally, the previously-claimed richness of behaviour in non-equilibrium statistical-
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mechanical systems is highlighted by our observation of instabilities and strange phenom-

ena in the DG and BC systems. Some qualitative results for the BC instability may be

found in Appendix B; we suspect that these represent but the tip of an iceberg of in-

teresting phenomenology, even in this restricted system. To conclude, it is hoped that

the investigations presented here will contribute positively to the understanding of non-

equilibrium interfaces, by making a connection to equilibrium systems, by exploring the

common elements of different driven lattice systems, and suggesting further avenues of

research.
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Appendix A

Full expressions for the multispin

exchange probabilities

A.1 Full expression for against-drive S1 moves in d = 3

This expression extends Eqn. (8.5), and takes the form

pa = peq ∧
{[
Q1 ∧ V0

]
∨
[
Q1 ∧Q2 ∧ ((P5 ∧ V1) ∨ (P5 ∧ V0))

]
∨
[
Q2 ∧Q3 ∧ ((P5 ∧ V2) ∨ (P5 ∧ P4 ∧ V1) ∨ (P4 ∧ V0))

]
∨
[
Q3 ∧Q4 ∧ ((P5 ∧ V3) ∨ (P5 ∧ P4 ∧ V2) ∨ (P4 ∧ P3 ∧ V1) ∨ (P3 ∧ V0))

]
∨
[
Q4 ∧Q5 ∧ ((P5 ∧ V4) ∨ (P5 ∧ P4 ∧ V3) ∨ (P4 ∧ P3 ∧ V2) ∨ (P3 ∧ P2 ∧ V1) ∨ (P2 ∧ V0))

]
∨
[
Q5 ∧ ((P5 ∧ V5) ∨ (P5 ∧ P4 ∧ V4) ∨ (P4 ∧ P3 ∧ V3) ∨ (P3 ∧ P2 ∧ V2) ∨ (P2 ∧ P1 ∧ V1) ∨ (P1 ∧ V0))

]}
,

(A.1)

where V0 and V1 were already defined in Sec. 8.3.1, and the other Vi continue this series

logically. Explicitly, each bit in Vi is on with probability

p(Vi) = min[1, exp(−β(−4i+ ∆W ))]. (A.2)
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A.2 Full expression for with-drive S1 moves in d = 3

This expression extends Eqn. (8.7):

pw = (S1 ⊕ S2)∧{[
Q1 ∧ ((P5) ∨ (P5 ∧ P4 ∧ U1) ∨ (P4 ∧ P3 ∧ U2) ∨ (P3 ∧ P2 ∧ U3) ∨ (P2 ∧ P1 ∧ U4) ∨ (P1 ∧ U5))

]
∨
[
Q2 ∧Q1 ∧ ((P4) ∨ (P4 ∧ P3 ∧ U1) ∨ (P3 ∧ P2 ∧ U2) ∨ (P2 ∧ P1 ∧ U3) ∨ (P1 ∧ U4))

]
∨
[
Q3 ∧Q2 ∧ ((P3) ∨ (P3 ∧ P2 ∧ U1) ∨ (P2 ∧ P1 ∧ U2) ∨ (P1 ∧ U3))

]
∨
[
Q4 ∧Q3 ∧ ((P2) ∨ (P2 ∧ P1 ∧ U1) ∨ (P1 ∧ U2))

]
∨
[
Q5 ∧Q4 ∧ ((P1) ∨ (P1 ∧ U1))

]
∨ [Q5]} .

(A.3)

The general expression for the Ui was already given after Eqn. (8.6). Although both

these expressions are rather long and require many operations, these bitwise operations

are computationally cheap, so the total cost is reasonable.



Appendix B

Instability in the driven

Blume-Capel models

In Sec. 9.8, we saw that for the counter-driven (i.e., such that the ±1 species are driven

in opposite directions) Blume-Capel model, the system can become unstable. In the

example given earlier, the density profiles of both the ±1 and the vacancies became almost

flat, with the vacancies forming a “block” spanning the two walls. Here we investigate

this phenomenon further, in particular the dependence on vacancy density and driving

strength. In Fig. B.1, snapshots are shown for three different unstable BC systems under

uniform counter-drive. In all cases, kBT/J = 0.75, well below the equilibrium bulk BC

critical temperature, and the system dimensions are Lx = 128, Lz = 16. The simulation

systems were quenched from an initial T =∞ state. In (a), the drive strength is f = 0.1,

while the vacancy fraction is ρv = 0.02 – this is much smaller than the case shown in

Fig. 9.23b. Despite this, the general features of the system are the same: regions of ‘+’

and ‘−’ spins span the system from wall to wall (this is surprising, given the energetic cost

of the “wrong” phase contacting a wall), and the vacancies tend to form a buffer at the

vertical interface between the ‘−’ on the left and ‘+’ on the right (as opposed to at the

other interface). For the same ρv and stronger drive f = 1.0 in (b), the overall structure

is again the same, but the +− spin interfaces tend to be microscopically flat. This is a

general trend – as drive strength increases, the sharper the vertical domain boundaries

become. Finally in (c) we see that for ρv = 0.005 and f = 0.075, the instability persists to

extremely small vacancy concentrations, and quite weak drive. In this case, there is not a

sufficiency of vacancies to span the walls at the +− interface; nevertheless this is still the
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same interface as in the other cases.

This preference of the vacancies to sit here is due to both the drive and energetic con-

siderations: firstly, as we have discussed before, the vacancies provide screening between

the energetically unfavourable +− spin interactions, causing them to be found at +−

interfaces. The reason for the particular choice of interface here is due to the drive – if we

placed the vacancies at the other vertical interface, then exchanges with ‘+’ spins would

tend to drive them in the negative x direction, while exchanges with ‘−’ would drive them

the other way. In both cases, these directions are away from the interface, so the vacancies

are effectively repelled from it. By contrast, there is an effective attraction to the interface

where they are found to sit.

(a)

(b)

(c)

Figure B.1: Simulation snapshots of the driven Blume-Capel model with conservative

dynamics, under uniform counter-drive. The system dimensions are Lx = 128, Lz = 16

and the temperature kBT/J = 0.75 in all three systems. The ‘+’ spins are shown in grey,

the ‘−’ in black, and the vacancies are white. (a) Vacancy concentration ρv = 0.02 and

drive strength f = 0.1. (b) Vacancy concentration ρv = 0.02 and drive strength f = 1.0.

(c) Vacancy concentration ρv = 0.005 and drive strength f = 0.075.

Once the system has reached this kind of block-like state, which it does by O(107) MCS

for the temperature and system size above, it does not appear to return to the “normal”

state, at least on simulation timescales O(108) MCS – if the states are in fact metastable,

their lifetime is rather long. The behaviour within the block-like state appears to be

cyclic: the system will resemble the snapshots in Fig. B.1 for a reasonably long period, of

order 107 MCS, but then develop a “finger” of ‘+’ spins which grows from the +− vertical
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interface where the vacancies do not sit – indeed the initial stages of the finger formation

may be seen on the right hand side of Fig. B.1b. This structure grows laterally, and then

vertically, to occupy the full extent of the system between the walls – the connection with

the main ‘+’ region becomes thinner. At some point the new structure finally breaks off,

but then rather quickly re-coalesces with the the main phase, by being transported through

the vacancy buffer – the system is then back to its initial state. This whole process takes

approximately 5× 106 MCS for the system in Fig. B.1b, with the timescale increasing for

weaker driving fields.

The system’s behaviour in the block-like state is certainly interesting, but the central

question is how the system evolves into this state, rather than the normal phase-separated

state we would expect. Inspection of simulation snapshots in the first few million MCS

reveals that for weak drive, the system actually does initially phase separate in the normal

way, but then destabilises. The time-series of snapshots in Fig. B.2, for a system driven

with f = 0.075 and with just two vacancies, shows how this occurs on the large scale. To

set off the process, a large interfacial fluctuation is required – a “hump” of ‘−’ phase in

the ‘+’ (accompanied by a neighbouring ‘+’ trough, due to the conservative dynamics).

The interface to the left of this feature then becomes increasingly inclined, as ‘+’ spins are

transported towards the feature. On the right-hand side of the feature, the +− boundary

becomes also becomes increasingly inclined, eventually becoming vertical. The ‘+’ region

then continues to shrink in lateral extent, reducing the interface area, until we obtain the

block-like structures already seen.

At first sight, it appears extremely strange that such extremely small vacancy con-

centrations can have such a profound effect on the system’s structure. However, recall

that the system temperature we have used is rather low, kBT/J = 0.75, less than half

the bulk BC critical temperature, and even further below the Ising critical point. The

lack of intruders into the bulk phases, as evident in the snapshots, is a sign of the rela-

tive weakness of thermal fluctuations in the system: creating intruders means performing

an exchange across the interface (detaching spins from their phases), which costs energy

∆H = 12J for a locally flat interface. At low temperatures, due to the exp(−β∆H) factor

in the Metropolis acceptance rates, these exchanges thus occur very rarely for the Ising

case (ρv = 0). Therefore, the action of the drive, and the role of the vacancies in enhancing

probabilities for otherwise heavily suppressed moves, become more important at low T .

In particular, a vacancy in contact with the inclined +− interface in the second snapshot
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t = 3x10 MCS
6

t = 5x10 MCS
6

t = 8x10 MCS
6

t = 1.3x10 MCS
7

Figure B.2: Evolution of the uniformly counter-driven Blume-Capel model towards the

block-like state. As before, the system is 128 × 16, at temperature kBT/J = 0.75. The

drive strength is f = 0.075, and there are just two vacancies in the system.

of Fig. B.2 greatly enhances the probability of detaching a ‘+’ spin from its phase (com-

pared to performing a +− exchange, up to three fewer bonds are broken), to allow it to

be transported along the interface. Via this transport mode, ‘+’ spins may be deposited

at the fluctuation, thereby growing it downwards. The +− interface on the right hand

side is stable, since performing exchanges across it typically costs 12J , and so these are

heavily suppressed, and as discussed above, the vacancies are repelled from this region, so

are not available to enhance the probabilities. It seems plausible that the evolution shown

in Fig. B.2 could occur by this process; with a larger ρv, the approach to the block-like

state happens more quickly. Importantly, when ρv = 0 (Ising), the symmetry between the
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left and right +− interfaces is restored, and so the above process does not apply. This

would explain why we have never observed these block-like structures in the driven Ising

model. Furthermore, for higher temperatures, we observe the BC system to become more

stable, since thermal fluctuations become stronger, and the effect of the vacancies is less

important – indeed, for the system of Fig. B.2 but at kBT/J = 1.6, normal phase separa-

tion is regained. Finally, the above findings have been checked to hold for larger systems

Lx = 256, Lz = 32, although the timescales are longer in this case.

From the above discussion, it should be clear that the driven conservative Blume-Capel

model can exhibit rich phenomenology, due to the interplay of the vacancies, drive, and

thermal fluctuations of the interface and bulk. In Sec. 9.8, we concentrated on the case

of co-driving the ±1 species, where the system is “well behaved”, and observed capillary

wave motion as in the driven Ising model. Here we have explored some of the strange

phenomena that can occur when the system is subjected to counter-drive – as always in

non-equilibrium statistical physics, much remains to be investigated and understood.
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[73] D. Abraham and A. Martin-Löf, Comm. Math. Phys. 32, 245 (1973).

[74] J. Stecki, Phys. Rev. B 47, 7519 (1993).

[75] J. Stecki, A. Macio lek, and K. Olaussen, Phys. Rev. B 49, 1092 (1994).

[76] A. Macio lek, J. Phys. A: Math. Gen. 29, 3837 (1996).

[77] A. Macio lek and J. Stecki, Phys. Rev. B 54, 1128 (1996).

[78] M. Fisher and P. De Gennes, Sci., Paris, Ser. B 287, 207 (1978).

[79] J. Bricmont, A. El Mellouki, and J. Fröhlich, J. Stat. Phys. 42, 743 (1986).
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Univ. Press, 1991).

[92] S. Katz, J. Lebowitz, and H. Spohn, J. Stat. Phys. 34, 497 (1984).

[93] M. Salamon and H. Beyeler, Physics of Superionic Conductors (Springer, 1979).



190 BIBLIOGRAPHY

[94] B. Schmittmann and R. K. P. Zia (Academic Press, 1995), vol. 17 of Phase Transi-

tions and Critical Phenomena.

[95] K. Kawasaki, Phys. Rev. 145, 224 (1966).

[96] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, E. Teller, et al., J. Chem.

Phys. 21, 1087 (1953).

[97] M. Kardar, Statistical Physics of Fields (Cambridge Univ. Press, 2007).

[98] R. Dickman, Phys. Rev. A 38, 2588 (1988).

[99] N. C. Pesheva, Y. Shnidman, and R. K. P. Zia, J. Stat. Phys. 70, 737 (1993).

[100] J. Marro, J. Lebowitz, H. Spohn, and M. Kalos, J. Stat. Phys. 38, 725 (1985).

[101] K. Leung and J. Cardy, J. Stat. Phys. 44, 567 (1986).

[102] K. t. Leung, K. K. Mon, J. L. Vallés, and R. K. P. Zia, Phys. Rev. Lett. 61, 1744

(1988).

[103] K.-t. Leung, K. K. Mon, J. L. Vallés, and R. K. P. Zia, Phys. Rev. B 39, 9312 (1989).

[104] K. t. Leung and R. K. P. Zia, J. Phys. A: Math. Gen. 26, L737 (1993).

[105] K. Leung, J. Stat. Phys. 50, 405 (1988).

[106] R. K. P. Zia and K. t. Leung, J. Phys. A: Math. Gen. 24, L1399 (1991).
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