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Abstract.

In this thesis I will present work in three main areas, all related to quantum

non-locality. The first is multipartite Bell inequalities. It is well known that quan-

tum mechanics can not be described by any local hidden variable model, and so

is considered to be a non-local theory. However for a system of several particles it

is conceivable that this non-locality takes the form of non-local correlations within

subsets of the particles, but only local correlations between the subsets themselves.

This was first considered by Svetlichny [1] who produced a Bell type inequality to

distinguish genuine three party non-locality from weaker forms involving only sub-

sets of two particles. In chapter 3 I show that recent experiments to produce three

particle entangled states can not yet confirm this three particle non-locality. In

chapter 4 I give the generalization of Svetlichny’s inequality for n particle systems.

The second main area of research is presented in chapter 5. Entangled quan-

tum systems produce correlations that are non-local, in the sense that they violate

Bell inequalities. It is possible to abstract away from the physical source of these

correlations and consider sets of correlations that are more non-local than quantum

mechanics allows. The only constraint I make is that the joint probabilities can

not allow signalling. These correlations form a polytope, which contains the quan-

tum correlations as a (proper) subset. We have become familiar with the idea that

entangled quantum states may be viewed as a resource for quantum information

processing tasks. In light of this I go on to consider how, when viewed as an infor-

mation theoretic resource, these maximally non-local correlations are related to the

quantum mechanical scenario.

Finally the third area of this thesis concerns entropy inequalities and their re-

lation to multipartite entanglement measures. One way of studying multipartite
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states is to consider their reduced entropies. By analyzing the structure of the space

of allowed reduced entropies I aim to better understand the constraints on these re-

duced entropies. If the dimension of the Hilbert spaces of the states is not restricted

then the only known constraints come from strong subadditivity, a linear entropy

inequality. By analyzing the structure of reduced entropies allowed by strong sub-

additivity for four particles and considering a classical analogy I conjecture that

there are new entropy inequalities, inequivalent to strong subadditivity, yet to be

discovered.

I also make a connection with another method for classifying multipartite entan-

glement - MREGS, or the minimal reversible entanglement generating set. I show

how considering the space of allowed reduced entropies shows certain states must

belong to the MREGS.

The above is a general picture of the work in this thesis - a more detailed abstract

can be found at the start of each chapter.
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Chapter 1

Introduction.

Since the formalism of quantum mechanics was developed in the 1920’s it has be-

come accepted as the most thoroughly tested and widely applied physical theory

yet devised. The rules of quantum mechanics are routinely used to predict the re-

sults of measurements with stunning accuracy, yet the conceptual foundations for

these rules remain a topic for discussion. The characteristics of quantum mechanics

which troubled the great scientists in the 1930’s were indeterminism and perhaps

most counter-intuitive of all, non-locality. In 1935 Einstein, Podolsky and Rosen

(EPR) formulated a famous paradox reflecting their dissatisfaction with the new

theory [2]. We now understand that they were struggling with the most funda-

mental departure from classical physics; not the more conspicuous features such as

discrete energy levels, but quantum entanglement.

Entangled states are indivisible objects in the sense that even if their component

particles are separated, each particle is still affected by actions on other particles. It

is as if the particles are able to communicate instantaneously, but we are intrinsically

unable to harness this communication to signal faster than light. In 1964 John Bell

[3] made the observation that the EPR dilemma could be expressed in the form

of assumptions which led to falsifiable predictions. It is hard to understate the

importance of this idea, as it allowed the notion of non-locality to move from a

domain of meta-physics to that of an experimentally accessible prediction.

1
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In light of technological progress that has allowed experiments to test these

ideas, quantum non-locality and entanglement have gradually been accepted. Indeed

over the last decade they have been embraced as offering exciting advantages over

classical methods in computing and information theory. The new paradigm has

been to regard entanglement as a resource which allows us to perform such tasks

more efficiently. Thus the emphasis has shifted from demonstrating entanglement

to making use of it, and because of this the knowledge we have of entanglement

and non-locality has broadened and become more subtle in the distinctions we can

make. For example discovering the fundamentally inequivalent ways in which a state

can be entangled has been, and remains, the goal of a huge amount of recent work.

This thesis is part of the trend to try and understand the non-locality of quantum

mechanics, particularly in multipartite systems. I will present work in three main

areas.

The first area is generalized Bell inequalities. The aim here is to show that

quantum mechanics exhibits genuine n particle non-locality for any number n of

particles. This means that the correlations can not be predicted by a model which

permits non-local correlations within sub-systems of limited size but only local cor-

relations between sub-systems, in other words a hybrid local non-local model. In

particular chapter 2 contains a short review of some of the known families of Bell

inequalities. I also give a new proof of the CHSH inequality, the most widely known

Bell inequality. In chapter 3 I show how recent experiments to demonstrate three

party entangled states can not yet be taken as having shown genuine three party

non-locality because they do not rule out the possibility of a hybrid local non-local

model. Chapter 4 gives the generalization to n parties. The work in chapters 3 and

4 is based on two papers [4, 5].

Bell type inequalities have proven to be one of our most useful tools in under-

standing quantum non-locality. However it is also known that it is possible to write

down sets of correlations that are more non-local than is allowed by quantum me-

chanics, yet are still non-signalling. If correlations are viewed as an information
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theoretic resource, then some of these ‘super-quantum’ correlations are very power-

ful. Why does quantum mechanics not allow these powerful correlations? In general

we can only understand quantum possibilities fully by placing them within a wider

context. With this in mind, I investigate the set of correlations that are constrained

only by the no-signalling principle. I show that many of the information theoretic

uses for entangled quantum states have close analogies with these maximally non-

local (but still non-signalling) probability distributions. This chapter is based on a

paper [6].

Finally in chapters 6 and 7 I consider multipartite entanglement measures. Chap-

ter 6 contains an introduction to this area of research, and in chapter 7 I present

some new results. One approach to considering multipartite entanglement is to use

a measure we understand well from the bi-partite case, and apply it in a multipartite

setting. I therefore consider the reduced entropies of multipartite states. I aim to

understand the structure of the space of allowed reduced entropies, and in particu-

lar the constraints on the allowed reduced entropies. For example, constraints may

come from general linear entropy inequalities such as strong subadditivity. They

may come from constraints on the states, such as restricting the dimension of the

Hilbert space. Finally there may be new entropy inequalities. In chapter 7 I consider

all of these possibilities.

If the dimension of the Hilbert space of the states is not restricted then the

only known constraints come from strong subadditivity. All of the other entropy

inequalities such as weak monotonicity, subadditivity and the triangle inequalities

can be deduced form strong subadditivity. By enumerating the reduced entropies

allowed by strong subadditivity for four particles and considering a classical analogy

I conjecture that there may be new entropy inequalities still to be discovered.
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I also make a connection between the space of allowed reduced entropies and

MREGS, the minimal reversible entanglement generating set. The MREGS classifies

the fundamentally inequivalent types of entanglement possible in multipartite states.

In particular I show by considering the space of reduced entropies one may conclude

that a certain set of states must belong to the three and four particle MREGS.

Chapter 8 contains conclusions and discusses open questions left by the preceding

work.



Chapter 2

Bell inequalities and non-locality.

Abstract.

This chapter contains a short review of Bell inequalities in both bi-partite and

multipartite scenarios. I give a new proof of the CHSH inequality, the simplest and

most widely known Bell inequality, based on frustrated networks of correlations.

Summaries of the known families of Bell inequalities, and some connections between

violations of Bell inequalities and entanglement properties are presented. Finally I

review loopholes in experiments designed to show violation of Bell type inequalities.

5
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2.1 Historical development.

Bell inequalities [3] consider the strength of correlations between experimental out-

comes measured by observers at separate locations. The upper bound for the

strength of the correlations detected is determined by the model we use to describe

the system. Bell showed that quantum mechanics predicts stronger correlations than

any local hidden variable model allows, and non-locality has become synonymous

with violation of a Bell inequality.

Bell’s argument may be seen as the result of 30 years of effort trying to under-

stand just how quantum theory differs from classical mechanics. The debate began

with the EPR paper in 1935 [2], and continues to this day. Indeed new papers re-

lating to Bell’s theorem appear almost daily, the resurgence of interest in this field

inspired by developments in quantum information science. Historically Bell’s theo-

rem was inspired by a specific non-local theory; the pilot wave theory of Bohm and

de Broglie [8, 9]. This pilot wave theory had been devised as an attempt at reformu-

lating quantum mechanics as a deterministic theory. The theory was non-local, and

also contextual - quantum measurements do not reveal the value of a property of

the system existing prior to the measurement. It was this property of contextuality

which was initially subject to most research.

Suppose we wish to measure an observable Â. Our classical intuition may lead

us to believe that the outcome will only depend on the state of the system and

Â. Certainly in classical physics the measurement of one property of a system

does not interfere with its other properties, so we may imagine that properties of

the system exist independently of our experimental set up and in particular which

measurements we may choose to perform. If we simultaneously measure B̂, which

commutes with Â, the result will not change, i.e the result of Â does not depend on

the context of the measurement. For quantum systems, if our state is a simultaneous

eigenstate of Â and B̂ then this will be true. However as the following example

demonstrates, in general the outcome of a measurement will depend on the other



2.1. HISTORICAL DEVELOPMENT. 7

commuting measurements that are made.

Mermin’s contextuality proof [10].

Mermin extended a result of Peres [11, 12] to produce the following state independent

contextuality proof. Consider the array of Pauli spin operators

1⊗ σz σz ⊗ 1 σz ⊗ σz

σx ⊗ 1 1⊗ σx σx ⊗ σx

σx ⊗ σz σz ⊗ σx σy ⊗ σy

(2.1.1)

Each of the nine operators in the table has eigenvalues ±1. The operators in each

row and in each column commute and have the property that each operator is the

product of the other two, except in the third column where an extra minus sign is

needed. Imagine we try to assign a pre-defined value ±1 for the outcome of each

measurement: Because of the minus sign appearing in the third column there is no

consistent way to assign these values. The paradox comes from our attempts at

assigning the same pre-defined value ±1 to the operator in each different context.

This example shows how quantum mechanically it is impossible to consistently assign

values to an observable Â unless we know the experimental context, i.e which other

commuting observables are measured along with Â.

The above example uses a four dimensional Hilbert space. For two dimensional

systems Bell [13] showed that we may construct (non-contextual) hidden variable

models to reproduce the predictions of quantum mechanics. Using a three dimen-

sional system Kochen and Specken [14], extending an earlier result of Gleason [15]

provided the first demonstration of quantum contextuality. However this proof is

very much more involved than Mermin’s.

Quantum non-locality can be thought of as following from contextuality. Con-

textuality means that the outcome of observable Â depends not just on the state,

but also on the choice of an observable B̂ which is to be measured with Â. This is

true even if Â and B̂ commute. If Â and B̂ are performed at locations separated in
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space the system exhibits non-locality.

Bell asked if all hidden variable theories that reproduce the predictions of quan-

tum mechanics had to be non-local like pilot wave theory. He subsequently proved

that this is indeed the case, and provided the first proof of quantum non-locality

in 1964 [3]. His result was extended by Clauser, Horne, Shimony and Holt (CHSH)

[16]. The CHSH inequality is the simplest and by far the best studied Bell inequality.

2.2 The CHSH inequality.

There are many derivations of Bell inequalities in the literature. Here I give a

new proof based on frustrated networks of correlations. This interpretation shows

more clearly how contextuality leads to non-locality. It has also been helpful in

understanding other Bell type inequalities and is used in the next chapter.

Bell type inequalities always refer to the correlations between two or more parties

at separate sites. For two parties convention dictates that these are referred to as

Alice and Bob. Each party receives a particle from a common source and is allowed

to perform measurements on it. Alice may choose to make one of the measurements

A1 or A2 on her particle and Bob may choose to make one of the measurements B1

or B2 on his particle. The result of any measurement is labelled ±1.
To formalize the idea of a local hidden variable theory, let λ be a hidden variable

which takes values in the space Λ. λ is assumed to give enough information to

allow Alice and Bob to compute their response to any measurement, or at least

the probabilities for different outcomes. Let P (a, b|A,B, λ) be the probability that

Alice finds an outcome a and Bob finds b conditionally on the value of λ given that

Alice and Bob measured A and B respectively. Suppose that λ occurs with some

probability measure ρ(λ), then P (a, b|A,B, λ) is defined as being local if it allows

a description as

P (a, b|A,B, λ) =
∫

ρ(λ) dλPA(a|λ)PB(b|λ), (2.2.1)
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where PA(a|λ) gives the probability that Alice finds outcome a having measured A,

and similarly PB(b|λ) gives the probability that Bob will find b having measured B.

Then the CHSH inequality is

|E(A1, B1) + E(A1, B2) + E(A2, B1)− E(A2, B2)| ≤ 2, (2.2.2)

where E(Ai, Bj) is the expectation value of the product of the outcomes of measure-

ments Ai and Bj.

We can express the CHSH inequality in a different (although equivalent) form.

Suppose that Ai and Bj have been measured. Since the outcomes a and b can only

take values ±1 either a = b or a = −b. In the first case we can say Ai is correlated

with Bj and in the second case that Ai is anti-correlated with Bj. Define Pc(Ai, Bj)

to be the probability that Ai and Bj are correlated, and Pa(Ai, Bj) as the probability

that Ai and Bj are anti-correlated. i.e,

Pc(Ai, Bj) = P (a = 1, b = 1|Ai, Bj) + P (a = −1, b = −1|Ai, Bj), (2.2.3)

Pa(Ai, Bj) = P (a = 1, b = −1|Ai, Bj) + P (a = −1, b = 1|Ai, Bj). (2.2.4)

These probabilities of correlation and anti-correlation are related to the expectation

values by

E(Ai, Bj) = Pc(Ai, Bj)− Pa(Ai, Bj). (2.2.5)

Using the fact that Pc + Pa = 1 this may be written

E(Ai, Bj) = 2Pc(Ai, Bj)− 1 = 1− 2Pa(Ai, Bj). (2.2.6)

Thus the CHSH inequality is equivalent to

1 ≤ |N̄ | ≤ 3, (2.2.7)
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where

N̄ = Pc(A1, B1) + Pc(A1, B2) + Pc(A2, B1) + Pa(A2, B2). (2.2.8)

Our task is now to prove eq(2.2.7) under the assumption of a local hidden vari-

able model. In the most general hidden variable model that can be considered for

each value of the hidden variable λ the measurements can yield different outcomes

according to the associated probabilities such as P (A = a|λ). The probabilities of

correlation and anti-correlation, and hence the sum of probabilities in eq(2.2.8), are

also dependent on λ. We call this sum of conditional probabilities in eq(2.2.8) N (λ),

and note that N̄ is the average over ρ(λ) of N (λ), i.e

N̄ =

∫

ρ(λ)N (λ) dλ. (2.2.9)

It can be easily shown that any such model can be re-cast into a deterministic

model [20] in which for each value of λ the outcomes are completely determined,

and the probabilities of obtaining each of the possible measurements is either 0 or

1. In particular the probabilities of correlation and anti-correlation are either 0 or

1. Then eq(2.2.8) corresponds to the network shown in figure 2.1.

There are only 24 deterministic models, each of them satisfying

1 ≤ |N (λ)| ≤ 3. (2.2.10)

This may be seen immediately from figure 2.1 as a reflection of the fact that the

network is frustrated - it is impossible to satisfy all of the links simultaneously. The

best that can be achieved is 3 out of the 4. This inequality is satisfied for every λ,

so it will also hold for the average over ρ(λ), N̄ . This gives the CHSH inequality, in

a slightly different form from the usual presentation.

In the next section it is shown that quantum mechanics satisfies

2−
√
2 ≤ |N̄ | ≤ 2 +

√
2. (2.2.11)
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Figure 2.1: Schematic representation of the CHSH inequality.

This diagrammatic method shows more clearly how contextuality leads to non-

locality. Because the network is frustrated, any attempt at assigning values to

the outcomes independently of the measurement context leads to a contradiction,

i.e only a contextual model can violate 1 ≤ |N̄ | ≤ 3.

The predictions of quantum mechanics.

Cirel’son [17] found the maximum value of the Bell expression

C = E(A1, B1) + E(A1, B2) + E(A2, B1)− E(A2, B2) (2.2.12)

to be C = 2
√
2. For any state |ψ〉 we may write the sum of expectation values as

C = 〈ψ|A1(B1 +B2)|ψ〉+ 〈ψ|A2(B1 −B2)|ψ〉. (2.2.13)

Using Schwarz’ inequality we may bound the magnitude of the two terms.



12 CHAPTER 2. BELL INEQUALITIES AND NON-LOCALITY.

〈ψ|A1(B1 +B2)|ψ〉 ≤
√

|〈ψ|A1A1|ψ〉||〈ψ|(B1 +B2)(B1 +B2)|ψ〉| (2.2.14)

(2.2.15)

=
√

2 + 〈ψ|B1B2 +B2B1)|ψ〉 (2.2.16)

Using 〈ψ|AiAi|ψ〉 = 1, and similarly for B. Let x = 〈ψ|B1B2 +B2B1|ψ〉 then

|C| ≤
√
2 + x+

√
2− x. (2.2.17)

Thus |C| ≤ 2
√
2 when x = 0. This is equivalent to 2 −

√
2 ≤ N̄ ≤ 2 +

√
2, using

eq(2.2.6). To achieve this maximum we may use the singlet state of two spin half

particles

|ψ〉 = 1√
2
(|01〉 − |10〉), (2.2.18)

where |0〉 and |1〉 are in the z basis, and choose measurements Ai = ~ai · ~σ when

~σ is the vector of Pauli spin matrices ~σ = (σx, σy, σz), and similarly for B. Then

~a1 = (0, 1, 0), ~a2 = (1, 0, 0), ~b1 = ( 1√
2
, 1√

2
, 0) and ~b2 = (− 1√

2
, 1√

2
, 0) gives C = 2

√
2.

2.3 All the Bell inequalities.

The CHSH inequality is just one of an infinite set of Bell type inequalities. Each is

based on the assumption that there exists a local hidden variable model to describe

the correlations between measurement outcomes at separate locations. We may

consider n-partite systems, each subject to a choice of m v-valued measurements.

This gives a total of (mv)n experimentally accessible probabilities. The set of Bell

inequalities is then the set of inequalities that bounds this region of probabilities to

those accessible with a local hidden variable model. Thus for each value of n, m

and v the set of local realist theories is a polytope bounded by a finite set of linear

Bell inequalities.
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The space would be completely characterized if we could find a minimal set

of Bell inequalities, which is complete in the sense that all the inequalities are

satisfied if and only if the correlations considered permit a local hidden variable

model. This problem is essentially that of enumerating the facets of a convex hull, a

problem known to be computationally hard, and is computationally tractable only

for problems in low dimension [18]. The result of such a computation is a table

of thousands of coefficients that gives little insight unless the local equivalences

are removed [19]. Nevertheless various incomplete families of Bell inequalities are

known, and also one complete set of families for the case (n,m, v) = (n, 2, 2). The

following is a summary of the situation.

The CHSH inequalities are the best studied class of Bell inequalities. They

apply to a situation (n,m, v) = (2, 2, 2). Fine [20] showed that any member of

a minimal complete set of Bell inequalities for this situation is equivalent to the

CHSH inequality up to local relabelling operations. That is Alice may rename her

measurement settings, or may relabel her measurement outcomes conditionally on

the measurement setting. Bob may perform similar operations.

Gisin [21] has found a family of Bell inequalities for the case with the number of

measurements is arbitrary, i.e (n,m, v) = (2,m, 2).

Collins et al [22] and Kaszlikowski et al [23] have produced inequalities for ar-

bitrarily high dimensional systems, i.e (n,m, v) = (2, 2, v). Such inequalities have

the property that they are more resilient against experimental noise than the CHSH

inequality.

For the case (n,m, v) = (2, 3, 2) Collins and Gisin [19] performed a computational

investigation of the polytope of Bell inequalities. Up to local equivalences they found

just one new inequality, and showed that there exist mixed states that violate this

new inequality but do not violate any CHSH inequality.

The most complete study of Bell inequalities is for the case (n,m, v) = (n, 2, 2).

n-particle generalizations of the CHSH inequality were first proposed by Mermin

[24], and Belinskii and Klysko [25], and have been extended by Werner and Wolf
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[26], and Zukowski and Brukner [27] to give the complete set for two dichotomic

obeservables per site. They found 22
n

such inequalities, complete in the sense that

the inequalities are satisfied if and only if the correlations permit a local hidden

variable model. All of these inequalities may be summarized in a single non-linear

inequality. They found the maximum violation of the inequalities could be achieved

using a generalized GHZ state, defined by

|ψGHZ〉 =
1√
2
(|00...0〉+ |11...1〉). (2.3.1)

There are 2n different experimental setups labelled by the choice of observables

at each site. We can parameterize these choices with binary variables sk ∈ {0, 1},
k = 1, ..., n, to indicate the choice of the observable Ak(sk) on particle number k. A

full correlation function is then the expectation of the product

η(s) = E(ΠkAk(sk)) (2.3.2)

where the string s = (s1, ..., sn) labels the setup. For example if n = 2, so we consider

the CHSH type experiment, s = (00) selects the case when the first measurement of

each side is selected, i.e E(A1(0)A2(0)). η(s) may be considered as a component of

a vector η in the 2n dimensional space spanned by the data, so any Bell inequality

is of the form

∑

s

β(s) η(s) ≤ 1. (2.3.3)

The coefficients β(s) are normalized so that the maximum classical (local) value

is 1. So for the CHSH case β = ( 1
2
, 1
2
, 1
2
,−1

2
). Such polynomials may be used directly

in the quantum case when the variables Ak(sk) are replaced with operators Âk(sk)

acting in the Hilbert space of the kth site. To find the complete set of inequalities

Werner and Wolf make a restriction to full correlation functions, i.e correlation

functions in all n sites, and consider the extremal cases where the outcomes are

deterministic. Their protocol for generating the complete set of Bell inequalities



2.3. ALL THE BELL INEQUALITIES. 15

is as follows. For some number between 0 and 22
n − 1, express this as a binary

expansion with digits ±1. this defines a vector f ∈ {−1,+1}2n

, with components

f(r) ∈ {−1,+1}. Now s, r ∈ {1, ..., 2n} and let s, r ∈ {0, 1}n be their binary

representations (with digits 0 and 1). Then the coefficients in the corresponding

Bell inequality are given by

β(s) = 2−n
∑

r

f(r) (−1)r.s, (2.3.4)

where r.s is the dot product of the two binary strings r and s. These coefficients

may used to construct a Bell inequality according to eq(2.3.3).

For example, if n = 3 they find just 5 essentially different inequalities. 2 of these

are just trivial extensions of lower order inequalities, the others are

1

4

∑

k,l,m

ak bl cm − a1 b1 c1 ≤ 1, (2.3.5)

1

2
[a1 b1(c1 + c2)− a2 b2(c1 − c2)] ≤ 1, (2.3.6)

1

2
(a1 b1 c2 + a1 b2 c1 + a2 b1 c1 − a2 b2 c2) ≤ 1. (2.3.7)

These polynomials are interpreted as sums of expectation values. We can note that

eq(2.3.7) is the Mermin-Klyshko inequality [25].

Although this characterization of the space (n,m, v) = (n, 2, 2) is complete, it

is possible to make more subtle distinctions than simply whether or not these cor-

relations permit a local realistic model. In particular, since we already know that

nature has non-local correlations, it is interesting to try and bound the extent of

these non-local correlations. We may consider models which allow some non-local

correlations but are otherwise local, in other words a hybrid local, non-local model.

Bell inequalities of this type will be the subject of the next two chapters.

Bell inequalities are still a very active area of research and the discussion above is

by no means exhaustive. In particular some of the more obvious omissions include
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Bell inequalities and vacuum states [28, 29, 30], and ‘temporal’ Bell inequalities

[31, 32, 33].

2.4 Bell’s theorem without inequalities.

It is possible to demonstrate quantum non-locality without requiring the violation

of some inequality, producing ‘Bell’s theorem without inequalities’. These proofs all

show that if we make the assumptions;

(1) - quantum mechanics is correct,

(2) - locality holds,

then we reach a contradiction. The first such proof was provided for a four party

maximally entangled state [34], and for three particles in the famous GHZ para-

dox [35, 36]. Hardy has also given an elegant demonstration of non-locality in the

following thought experiment.

Hardy’s paradox [37].

This paradox is a variation on the interaction free measurement suggested by Elitzur

and Vaidman [38]. We consider two superposed Mach-Zehnder interferometers

(MZ±), one for electrons (MZ−), and one for positrons (MZ+). This situation

is shown in figure 2.2.

If we consider each interferometer separately, by adjusting the arm lengths we

may arrange specific relative phases between the two possible paths so that the

electron is always detected at C− and the positron is always detected at C+. If |s〉e
is the state of the electron initially, after the two beam splitters, the new state is

|s〉e →
1√
2
(|O〉e + |NO〉e). (2.4.1)

Where O labels one arm, and NO the other. The detectors C− and D− measure

projectors on the states 1√
2
(|O〉e+ |NO〉e) and 1√

2
(|O〉e− |NO〉e) respectively. Sim-
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Figure 2.2: Hardy’s Paradox. Two superposed Mach-Zehnder interferometers, one

for positrons and one for electrons.

ilarly for the positron. Thus when each interferometer is considered separately the

detectors D− and D+ would never click.

Now imagine we bring both interferometers together. Let O label the overlapping

arm, and NO the non-overlapping arm for both MZ+ and MZ− . If both the

electron and positron are in the overlapping arm simultaneously they annihilate one

another.

|O〉e|O〉p → |γ〉. (2.4.2)

We are interested in the cases where the electron and positron do not annihilate. In

this case the state of the system is

|ψ〉 = 1√
3
(|NO〉p|O〉e + |O〉p|NO〉e + |NO〉p|NO〉e). (2.4.3)

We find that now there are occasions where both the detectors D− and D+ do click.

Trying to understand this event leads to a paradox. From the clicking of D− we
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should infer that the positron was in the overlapping arm, disturbing the electron

which would otherwise arrive at C−. Similarly from a click at D+ we infer the

electron was in the overlapping arm. However these two statements can not both

be true - otherwise the electron and positron would have annihilated each other.

Hardy has also shown that non-locality without inequalities can be demonstrated

with two parties in any entangled state except a maximally entangled state in [39].

Hardy’s non-locality proof only works for 9% of the runs of the experiment. Cabello

has subsequently extended this result to construct an argument that demonstrate

non-locality for 100% of the experimental runs [40].

2.5 Bell Inequalities and entanglement.

Violation of Bell inequalities has become synonymous with non-locality, or non-

classical correlation. However the issue of which quantum states are non-local in

this sense, and which permit a description in terms of local hidden variables remains

open. Quantifying entanglement is a huge challenge, and a summary of results in

this field is presented in chapter 6. In this section I just give an overview of the main

results concerning the relationships between Bell inequalities and some aspects of

entanglement.

A n particle state ρ on some Hilbert space H = H1 ⊗H2 ⊗ ...⊗Hn is separable

(or un-entangled, or classical) if it can be written

ρ =
∑

i

pi ρ
1
i ⊗ ρ2i ⊗ ...⊗ ρni . (2.5.1)

where each ρji ∈ Hj and
∑

i pi = 1. If the state does not permit such an expansion,

it is said to be entangled. A state is separable if it can be created locally, i.e by

each party acting separately. For example to obtain a state of the form (2.5.1), each

party j prepares a state ρji based on an input i. If the numbers i are produced with

probability pi then we have the required state.
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Gisin has shown that all pure entangled bi-partite states violate the CHSH in-

equality [41], and this result was extended by Popescu and Rohrlich [42] to multi-

partite entangled states. Thus for pure states a Bell inequality is violated if and

only if the state is entangled.

In practical situations, and because of decoherence, we do not have pure states,

but mixed states. These may be thought of as classical ensembles of pure states. For

mixed states the relationship to Bell inequality violation is far more complex than

was the case for pure states; indeed there is at present no complete classification

of bi-partite mixed states according to their non-local properties. In 1989 Werner

[43] constructed a local hidden variable model which reproduced the predictions of

quantum mechanics for a class of entangled states (Werner states) subject to von

Neumann measurements. In 1995 Popescu [44] showed that some of these Werner

states could violate the CHSH inequality after a sequence of local measurements

which are able to reveal the ‘hidden’ non-locality of the state.

Entanglement has proved to be a useful resource for information processing tasks.

Applications such as teleportation [45] and super dense coding [46] consume entan-

gled pure states. In light of this we would like to be able to distill from a number

of copies of a mixed state a smaller number of maximally entangled pure states

[47, 48]. If a state is distillable then the distilled maximally entangled state violates

local realism [49]. However the converse; whether Bell inequality violation implies

distillability, is an open question. More generally it is an interesting question to find

the relationship between distillation properties and Bell inequality violation.

In 1998 the Horodecki’s [50] found states which are entangled, but can not be

distilled - bound entangled states. Because they can not be distilled they are not, by

themselves, useful for quantum information processing tasks. It seemed natural to

conjecture that Bell inequality violation and distillation were related. The intuition

being that if correlations do not permit a classical model, they may be useful for

quantum processing [52].

However in a multipartite setting Dür [53, 54] has recently claimed that there exist
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bound-entangled states that violate a Bell inequality. However in this multipartite

setting there are different ways of defining what it means for a state to be distillable.

Dür defines a state as distillable if and only if, by means of local operations and

classical communication, given a large number of copies of the state some entangled

pure state may be created. He then shows that states that can not be distilled in

this way may still violate the Mermin-Klysko inequalities [25]. However following

on from this work Aćın [55] has shown that the states considered by Dür can in fact

be used to distill some pure state entanglement, if we consider splitting the parties

into two groups.

One further aspect that has received attention is the relationship between positive

partial transposition (PPT) and non-locality. Peres [56] has shown that all sepa-

rable states have positive eigenvalues under the operation of partial transposition

(discussed more fully in chapter 6), i.e separability ⇒ PPT. The Horodecki’s have

shown that for a state to be positive under partial transposition is in fact necessary

and sufficient for systems of dimension 2 × 2 and 2 × 3 [57]. Also PPT states can

not be distilled [50]. Peres [58] has conjectured that a PPT state permits a local

description, and Werner and Wolf have some partial results in this area [26]. In

particular they show that the Mermin-Klyshko class of Bell inequalities are satisfied

for PPT states.

2.6 Experimental realizations.

Aspect [59] made beautiful experimental demonstrations of quantum non-locality in

the early 1980’s. Figure 2.3 shows the essential details of the apparatus that was

used.

In any experiment to study violation of a Bell inequality there will be imperfec-

tions in the apparatus. Sometimes, if there are a lot of imperfections, local hidden

variable models can be devised to reproduce quantum correlations by exploiting

these imperfections. Often these models seem contrived or un-physical, nevertheless
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Figure 2.3: Aspects apparatus for demonstrating violation of Bell inequalities. Pairs

of photons are emitted from a source S in an atomic cascade. Optical switches O1

and O2 redirect these photons to a polarizer with orientation A1 or A2 on the left

and to a polarizer with orientation B1 or B2 on the right. The length L is such that

the time taken for the photons to reach the switch is longer than the frequency at

which the switch operates (around 108 Hz). The detector outputs are checked for

coincidences.
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because of the fundamental importance of Bell type experiments to our understand-

ing of quantum mechanics such loopholes have received considerable attention. The

most famous loopholes are the detection and locality loopholes. As discussed below

experiments on photons have recently closed the locality loophole [60], and Rowe et

al have closed the detection loophole using trapped ions [61], however so far there

has been no experiment that closes both loopholes simultaneously.

The detection loophole.

Experiments to detect Bell inequality violations are most often conducted with po-

larization entangled photons. Photo detectors are at present unreliable: Often they

fail to register the passage of a photon. Also photons are absorbed or scattered in

the other optical components. Typically of the order of 5% of photons pass success-

fully through the apparatus and are detected. The detection efficiency which allows

loophole free experiments is also related to the amount of background noise in the

system.

Let us take as an example the familiar CHSH set up. We may model detector

inefficiency as follows: There are two photons a and b, which are subject to one of

four possible measurement scenarios A1B1, A1B2, A2B1 and A2B2. Now instead

of each measurement taking results ±1 there is a third possibility u - the photon

is undetected. This last possibility happens with probability 1 − η, where η is the

detector efficiency.

Eberhard [62] has shown that with no background noise a loophole free experi-

ment with singlets is possible if η > 0.828. Surprisingly a lower threshold, η > 0.667,

is possibly if one uses partially entangled states. However such states do not have

as large a degree of violation of the inequality as the maximally entangled state.

N. Gisin and B. Gisin [63] have shown that it is possible to construct local hidden

variable theories reproducing the quantum mechanical predictions for the singlet

state if η < 0.75. So, despite over 30 years research, this loophole still remains.
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The locality loophole.

The assumption of locality in Bell’s original derivation requires that the individual

measurement processes of the two observers are spacelike separated. An individual

measurement has to be completed so quickly that there is not time for any informa-

tion to travel to the other observer before he has completed his measurement. In

Aspects experiment a periodic sinusoidal switching was used to select the analyzer

settings. However this is predictable, and so a communication between the two sides

of the experiment could still explain the correlations obtained.

In 1998 Weihs et al [60] effectively closed this loophole by separating the two

measurement locations by 400m, giving them 1.3 µs to select and perform each

measurement. Measurements were selected by a physical random number generator,

which comprised a light emitting diode illuminating a beam splitter whose outputs

were monitored by photomultipliers.

The memory loophole.

In the analysis of Bell type experiments it is usually assumed that any hidden vari-

ables associated with the nth photon pair would be independent of the measurement

settings and outcomes of the previous n−1 pairs. It is possible to exploit such knowl-

edge to produce a model which violates the CHSH inequality, if the data is analyzed

in the standard way [64, 65, 66]. However if a different version of the CHSH inequal-

ity is used, a violation is no longer possible. Even in the standard analysis the degree

of violation becomes small as the number of photon pairs increases. Thus while this

loophole suggests a slight flaw in the existing analyzes of Bell type experiments, the

data still strongly confirm quantum non-locality against any local hidden variable

scheme.
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Chapter 3

Conditions for the confirmation of

three-particle non-locality.

Abstract.

The notion of genuine three-particle non-locality introduced by Svetlichny [1] is

discussed. Svetlichny’s inequality, which can distinguish between genuine three-

particle non-locality and two-particle non-locality, is analyzed by reinterpreting it

as a frustrated network of correlations. Its quantum mechanical maximum violation

is derived and a situation is presented that produces the maximum violation. We

show that recent beautiful experiments [67, 68] to demonstrate non-locality for a

three party state by the GHZ paradox, although demonstrating non-locality, do not

allow any violation of the Svetlichny inequality. However we show that with only

minor modifications to the measurements performed the experiments would be far

more powerful, and able to demonstrate genuine three party non-locality.

25
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CHAPTER 3. CONDITIONS FOR THE CONFIRMATION OF

THREE-PARTICLE NON-LOCALITY.

3.1 Introduction.

Three particle non-locality was first considered in the famous GHZ paradox [34, 35],

and since then generalized Bell inequalities have been derived for n-particle systems

which show that quantum mechanics violates local realism in these situations [21,

24, 69]. However, as Svetlichny first showed [1], such results are insufficient to

show that all of the particles in a system are acting non-locally - it is possible to

imagine a non-local many-particle system as consisting of a finite number of non-local

sub-systems, but with only local correlations present between these sub-systems.

Svetlichny produced a Bell type inequality to distinguish cases of genuine three-

particle non-locality from weaker forms involving only two particle non-locality.

Experiments to produce and analyze three particle entangled states are far more

difficult than those on two particle entangled states which are now routinely per-

formed. In fact the very first such experiments have only very recently been per-

formed [67, 68]. Unfortunately although the beautiful work of Svetlichny is now more

than a decade old, the notion of genuine three particle non-locality that it introduced

has not been widely known and the experiments on three particle entanglement have

not been specifically designed to verify the existence of such correlations. We show

that the particular measurements performed in the experiments of Bouwmeester et

al. and Pan et al. are such that they do not produce (according to quantum me-

chanics) any violations of Svetlichny’s inequality, and can in fact be reproduced by

a limited two particle non-local model. Therefore these results cannot be used for

the verification of the existence of genuine three-particle non-locality, although they

prove non-locality.

To be more specific; a state of three particles |Ψ〉123 which can be decomposed as

|ψ〉1|φ〉23 only exhibits non-local correlations between particles 2 and 3. Similarly, a

density matrix ρ123 which is a mixture of states of the form |ψ〉1|φ〉23, |η〉2|ξ〉13 and

|χ〉3|θ〉12 contains only two particle non-locality (though it might be very difficult

to show this if only the density matrix is given but not the explicit decomposi-
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tion). Suppose however that |Ψ〉123 can not be decomposed - does this necessarily

imply that it has three particle non-locality? This was the question first raised by

Svetlichny [1]. More precisely, Svetlichny asked the following: We know that the

correlations between the results of measurements performed on triplets of particles

in the state |Ψ〉123 cannot be described by local hidden variables. Could they how-

ever be described by a hybrid local non-local system, in which non-local correlations

are present only between two particles (which two particles are non locally corre-

lated can change in different runs of the experiment) while they are only locally

correlated with the third? If “yes” then although |Ψ〉123 can not be decomposed as

a direct product of one particle versus a (possible entangled) state of the other two,

the non-locality exhibited by this state is still only two particle non-locality.

Although the conceptual ideas in Svetlichny’s original paper are very clear, the

proof of the inequality is rather complex. In this chapter Svetlichny’s inequality

is first given a novel interpretation as a frustrated network of correlations. We

believe that this new interpretation gives some greater physical intuition into the

structure of the Sevtlichny inequality. It is also general enough to be useful when

considering other Bell inequalities. We then derive the maximal possible violation

of Svetlichny’s inequality and a quantum state is then presented which violates it

maximally. This also gives the optimum experimental settings for demonstrating a

violation. Finally we discuss the experimental status of the verification of genuine

three particle non-locality, and suggest simple modifications to the recent experi-

ments by D. Bouwmeester et al. [67] and Pan et al. [68] which may make such a

verification possible.

Formally Svetlichny’s model is the following. Let P (A = a,B = b, C = c) be

the probability for obtaining a results A = a, B = b and C = c when observable A

is measured on the first particle, B on the second and C on the third. In a local

hidden variables model each particle in the triplet is endowed at source with the same

hidden variable λ and later, when subjected to measurements, each particle behaves

independently of the others, taking into account only the value of the hidden variable
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THREE-PARTICLE NON-LOCALITY.

and the measurement to which it itself is subjected, but not to what measurements

the other particles were subjected and/or the results they yield. Hence, P (A =

a,B = b, C = c) can be expressed as

P (A = a,B = b, C = c)local =

∫

ρ(λ)dλP1(A = a|λ)P2(B = b|λ)P3(C = c|λ),
(3.1.1)

where ρ(λ) describes the probability that the hidden variable has a particular value

λ. It is well-known no such local hidden variables model can account for the corre-

lations generated by entangled states.

In the hybrid local non-local hidden variables model considered by Svetlichny,

P (A = a,B = b, C = c)Sv is given by:

P (A = a,B = b, C = c)Sv =

q12
∫

ρ12(λ)dλP1,2(A = a,B = b|λ)P3(C = c|λ)

+q23
∫

ρ23(λ)dλP2,3(B = b, C = c|λ)P1(A = a|λ)

+q13
∫

ρ13(λ)dλP1,3(A = a, C = c|λ)P2(B = b|λ),

(3.1.2)

subject to q12 + q23 + q13 = 1 and
∫

ρij(λ)dλ = 1.

Thus when repeated measurements are performed on an ensemble, the three

terms in eq 3.1.2 correspond to the three possible factorizations of two particle non-

locality between the three particles, (1,2)-3, (2,3)-1 and (1,3)-2, with q12, q23 and q13

the probabilities of each particular factorization being present.

Svetlichny derived an inequality which is obeyed by all such hybrid local two-

particle non-local models, and showed that some quantum states violate the in-

equality, hence they are genuinely three particle non-local.
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3.2 Interpreting Svetlichny’s inequality as a frus-

trated network.

Bell-type inequalities are generally expressed in terms of the expectation values of

observables. In this section it is shown how it is possible to interpret Svetlichny’s

inequality as a frustrated networks of correlations. (In fact many presently known

Bell type inequalities can be described in such a way and this leads to a better

understanding of their physical meaning.) Consider a situation of three spatially

separated two dimensional systems. System A is subject to one of the measurements

A or A′, and similarly for systems B and C. The result of any measurement is

labelled ±1. Let E(ABC) be the expectation value of the product of the outcomes

of measurements A, B and C. Then Svetlichny’s inequality is;

|E(ABC) + E(ABC ′) + E(A′BC)− E(A′BC ′)

+E(AB′C)− E(AB′C ′)− E(A′B′C)− E(A′B′C ′)| ≤ 4.
(3.2.1)

We will express this in a different (although equivalent) form. Suppose A, B and

C have been measured. Since the outcomes a, b and c can only be equal to ±1, we
have only two possibilities. Either a = bc or a = −bc; we refer to the two cases as

A being correlated to BC or anti-correlated to BC. Furthermore, when a = bc it

is also the case that b = ac and c = ab thus we can talk about correlation without

mentioning explicitly between which partitions; similarly for anti-correlation. Define

the probability of correlation, Pc(ABC), as the probability that A, B and C are

correlated, and Pa(ABC) as the probability that they are anti-correlated. These

probabilities of correlation and anti-correlation are related to the expectation values

in eq(3.2.1) by

E = Pc − Pa = 2Pc − 1 = 1− 2Pa. (3.2.2)

Using eq(3.2.2) Svetlichny’s inequality is equivalent to
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2 ≤ S̄ ≤ 6, (3.2.3)

where S̄ is defined as

S̄ = Pa(ABC) + Pa(ABC
′) + Pa(A

′BC) + Pc(A
′BC ′) (3.2.4)

+ Pa(AB
′C) + Pc(AB

′C ′) + Pc(A
′B′C) + Pc(A

′B′C ′).

Our task now is to prove eq(3.2.3) under the assumption of a hybrid local non-

local model. Suppose initially that limited non-locality takes the form that particles

A and B form a non-local subsystem AB and that this subsystem is locally correlated

with particle C.

Recall that in our interpretation of Svetlichny’s inequality non-locality between A

and B means these particles are regarded as a composite system. Hence the outcomes

for the paired measurements AB,AB ′, A′B and A′B′ are completely unconstrained

from each other. Furthermore, locality of C versus AB means that for any local

hidden variable model the choice of which of the paired measurements AB,AB ′, A′B

and A′B′ to make is independent of whether C or C ′ is measured.

In the most general hidden variable model that can be considered, for each value

of the hidden variable λ, which occurs with probability ρ(λ), the measurements can

yield different outcomes according to the associated probabilities such as P (A =

a|λ). The probabilities of correlation and anti-correlation, and hence the sum of

probabilities in eq(3.2.4), are also dependent on λ. We call this sum of conditional

probabilities in eq(3.2.4) S(λ), and note that S̄ is the average over ρ(λ) of S(λ). It

can be easily shown that any such model can be re-cast into a deterministic model

[20] in which for each value of λ the outcomes are completely determined, i.e. the

probabilities of obtaining each of the possible measurements is either 0 or 1. In

particular, for each value of λ we have a given, well-defined assignment of ±1 values

for ab, ab′, a′b, a′b′, c and c′, and the probabilities of correlation and anti-correlation

are either 0 or 1.



3.2. INTERPRETING SVETLICHNY’S INEQUALITY AS A
FRUSTRATED NETWORK. 31

C

AB

AB’

A’B

A’B’

C’

Figure 3.1: Network for the correlations in Svetlichny’s inequality. Dotted lines

denote anti-correlation, full lines denote correlation.

Then eq(3.2.4) corresponds to the network shown in figure 3.1. The other possible

factorizations of the system, A-BC and B-AC, give the same diagram with the

particle names permuted.

Referring to eq(3.2.4) and figure 3.1, one can easily check that for no assignment

of ±1 values for the results of measurements can all the eight probabilities be equal

to 1, nor can all of them be equal to 0. In fact at least two of the bonds in figure 3.1

must be satisfied by any combination of ±1 at the vertices, and only a maximum

of six out of the total of eight bonds may ever be satisfied. Hence the network is

frustrated (in other words not all links can be simultaneously satisfied) and for every

value of λ, 2 ≤ S(λ) ≤ 6. Furthermore, since the the inequality holds for every value

of λ, it also holds for the average, S̄ =
∫

ρ(λ)S(λ) dλ.

As a last step, due to the symmetry under permutation of particles, the same

inequality holds for all 2 versus 1 partitions, and thus for the grand average over

all possible partitions and all assignments of the hidden variable. The values of

S(λ) for given different partitions or particular values of the hidden variable are not

accessible experimentally - only the grand average is experimentally observable.

Thus 2 ≤ S̄ ≤ 6 for hybrid local non-local models. This is Svetlichny’s inequality,
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in a slightly different form from originally proposed.

3.3 The predictions of quantum mechanics.

We now derive the maximum possible quantum mechanical violation of Svetlichny’s

inequality and show a particular case in which the inequality is maximally violated.

It is possible to show that 4
√
2 is the maximum possible quantum mechanical vio-

lation of Svetlichny’s inequality. This is the equivalent of Cirel’son’s bound for the

CHSH inequality. For a state |ψ〉 the sum of expectations in eq(3.2.1), Sv, can be

written as:

Sv = |〈ψ|AB(C + C ′)|ψ〉+ 〈ψ|AB ′(C − C ′)|ψ〉 (3.3.1)

+〈ψ|A′B(C − C ′)|ψ〉+ 〈ψ|A′B′(−C − C ′)|ψ〉|,

by replacing the expectation values by their quantum expression and grouping the

terms. Using Schwarz’ inequality we can bound the magnitude of each term:

|〈ψ|AB(C + C ′)|ψ〉| ≤

√

|〈ψ|ABAB)|ψ〉||〈ψ|(C + C ′)(C + C ′)|ψ〉|
(3.3.2)

≤
√

2 + 〈ψ|CC ′ + C ′C|ψ〉, (3.3.3)

where the last inequality obtains since 〈ψ|ABAB|ψ〉 = 〈ψ|CC|ψ〉 = 〈ψ|C ′C ′|ψ〉 = 1.

Similar results are found for the other three terms. If we now let x = 〈ψ|CC ′ +
C ′C|ψ〉, then

|Sv| ≤ 2(
√
2 + x) + 2(

√
2− x). (3.3.4)

Thus |Sv| ≤ 4
√
2 with the maximum absolute value being attained at x = 0.

For a GHZ state of three spin 1/2 particles |ψ〉 = 1√
2
(| ↑↑↓〉 − | ↓↓↑〉), where

↑ and ↓ represent spins polarized “up” or “down” along the z axis, Svetlichny’s
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inequality is violated if, for example, measurements are made in the xy plane along

some appropriate directions. In this case E(ABC) = 〈ψ|~a · ~σ ⊗ ~b · ~σ ⊗ ~c · ~σ|ψ〉 =
−cos(α + β − γ), where we labelled the angles from the x axis and α refers to

the measurement on particle A, β to the measurement on particle B, and γ to the

measurement on particle C. The inequality will be maximally violated by choosing

α = 0, α′ = −π
2
, β = π

4
, β′ = −π

4
, γ = 0, γ ′ = π

2
. Then Sv = 4

√
2.

3.4 Experiments.

In this section we revisit the experiments of Bouwmeester et al. [67] and Pan et al.

[68], two of the first experiments to test three particle entanglement. We show that

the particular measurements performed in these experiments are such that they

do not produce (according to quantum mechanics) any violations of Svetlichny’s

inequality. They can in fact be reproduced by a limited two particle non-local

model and therefore do not demonstrate genuine three-particle non-locality.

The two experiments described in [67] and [68] use essentially the same experi-

mental set-up to produce the three-photon entangled state |ψ〉 = 1√
2
(|HHV 〉 − |V V H〉).

Here H represents horizontal polarization and V vertical polarization. They used the

set up shown in figure 3.2. The main idea is to transform two pairs of polarization

entangled photons into three entangled photons, and a fourth independent photon.

Pairs of polarization entangled photons are produced by short laser pulses passing

through a non linear crystal. With some probability the resulting state is

1√
2
(|H〉a|V 〉b − |V 〉a|H〉b). (3.4.1)

The subscripts a and b refer to the two arms. Each photon continues through

polarization independent beam splitters (BS), polarization dependent beam splitters

(POL BS), which pass |H〉 and reflect |V 〉, and a λ/2 plate which rotates the vertical

polarization reflected from the first POL BS to a superposition of |H〉 and |V 〉 with
equal amplitudes. The evolution of the components through the system is such that
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Figure 3.2: The apparatus of Bouwmeester et al for producing GHZ states. Con-

ditioned on the detection of a photon at T , the correlations registered at detectors

D1, D2 and D3 are consistent with a GHZ state.
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|H〉a → |H〉T (3.4.2)

|V 〉a → 1√
2
(|V 〉1 + |H〉2) (3.4.3)

|H〉b → 1√
2
(|H〉1 + |H〉3) (3.4.4)

|V 〉b → 1√
2
(|V 〉2 + |V 〉3) (3.4.5)

Now suppose that two down conversions have taken place, producing the state

1

2
(|H〉a|V 〉b − |V 〉a|H〉b)(|H ′〉a|V ′〉b − |V ′〉a|H ′〉b). (3.4.6)

If the photons produced from the two down conversions are indistinguishable and

we restrict ourselves to terms where only one photon is found in each output the

state obtained is

1√
2
|H〉T (|H〉1|H〉2|V 〉3 − |V 〉1|V 〉2|H〉3). (3.4.7)

To verify that indeed such a GHZ state had been produced, different tests were

made. It is simpler to represent the state in the z basis writing |H〉 = | ↑〉 and

|V 〉 = | ↓〉. Then |ψ〉 = 1√
2
(| ↑↑↓〉 − | ↓↓↑〉). In [67] measurements (of the optical

equivalent) of spin in the z and x directions were performed. Unfortunately, as it

is straightforward to check, measurements along x and z do not lead to Svetlichny

inequality violations for the GHZ state.

In the subsequent experiment [68] measurements XXX, XY Y , Y XY and Y Y X

were performed so as to demonstrate the GHZ paradox [34, 35], obtaining values

1,-1,-1,-1 respectively (on the state 1√
2
(| ↑↑↑〉 + | ↓↓↓〉)). These results can not be

reproduced by any local theory. However the GHZ paradox does not demonstrate

genuine three party non-locality because the correlations can be described by a

hybrid local non-local model. This means that the correlations will not violate any

Svetlichny type inequality.
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The experimental probabilities in the GHZ experiment P (a, b, c|A,B,C), where

a ∈ {−1, 1} is the outcome of measurement A ∈ {X,Y } and similarly for b and c,

are given by

p (a, b, c|A,B,C) =







1/4 : abc = −1
0 : abc = 1

(3.4.8)

when (A,B,C) ∈ {(X,Y, Y ), (Y,X, Y, ), (Y, Y,X)}, i.e when the product abc = −1
then that particular outcome occurs with probability 1/4.

p (a, b, c|X,X,X) =







1/4 : abc = 1

0 : abc = −1
(3.4.9)

And finally,

p (a, b, c|A,B,C) =
1

8
∀ a, b, c, (3.4.10)

(A,B,C) ∈ {(Y, Y, Y ), (X,X, Y ), (Y,X,X), (X,Y,X)}.
We will construct a hybrid local non-local variable model that reproduces these

correlations. Suppose the non-local subsystem is composed of particles 2 and 3,

correlated locally with particle 1; we will show that the GHZ correlations in eq(3.4.8)

- eq(3.4.10) can be written

p (a, b, c|A,B,C) =
4
∑

λ=1

1

4
pλ (a|A) pλ (b, c|B,C). (3.4.11)

Our protocol for constructing the GHZ correlations is the following:

•Each of the pλ (a|A) are deterministic, i.e the probabilities are either zero or 1. All

possible deterministic strategies are included in the sum.

•For each of the pλ (a|A) the corresponding pλ (b, c|B,C) is chosen so that

p (a, b, c|A,B,C) = 0 ⇒ pλ (a|A) pλ (b, c|B,C) = 0. (3.4.12)

•For each pair B,C the outcomes b, c satisfying the above condition occur with

equal probability.
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Let p1 (1|X) = p1 (1|Y ) = 1. Our protocol then gives;

p1 (1, 1|X,X) = p1 (−1,−1|X,X) = 1/2 (3.4.13)

to satisfy the zero probabilities in eq(3.4.9). Similarly, to satisfy the zero probabili-

ties in eq(3.4.8)

p1 (1,−1|X,Y ) = p1 (−1, 1|X,Y ) = 1/2 (3.4.14)

p1 (1,−1|Y,X) = p1 (−1, 1|Y,X) = 1/2 (3.4.15)

p1 (1,−1|Y, Y ) = p1 (−1, 1|Y, Y ) = 1/2 (3.4.16)

We also have that p2 (1|X) = p2 (−1|Y ) = 1, p3 (−1|X) = p3 (1|Y ) = 1 and

p4 (−1|X) = p4 (−1|Y ) = 1. The protocol then completely specifies pλ (b, c|B,C)

in each case. It is then straightforward to check that this hybrid local non-local

distribution reproduces the GHZ correlations.

In fact we can extend this model to show any set of measurements chosen to be

in the x, y or z direction can be reproduced by a local non-local hybrid model of the

form

p (a, b, c|A,B,C) =
8
∑

λ=1

1

8
pλ (a|A) pλ (b, c|B,C). (3.4.17)

The protocol is exactly the same as before, with A,B,C ∈ X,Y, Z. The following

probability distribution characterizes the GHZ correlations. We consider the cases

when the set A, B, C contains different numbers of Z measurements separately.

no Z measurements.

p (a, b, c|X,X,X) =







1/4 : abc = 1

0 : abc = −1,
(3.4.18)

p (a, b, c|A,B,C) =







1/4 : abc = −1
0 : abc = 1,

(3.4.19)
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when (A,B,C) ∈ {(X,Y, Y ), (Y,X, Y ), (Y, Y,X)}.
Also,

p (a, b, c|A,B,C) =
1

8
∀ a, b, c, (3.4.20)

when (A,B,C) ∈ {(Y, Y, Y, ), (X,X, Y, ), (Y,X,X), (X,Y,X)}.

1 Z measurement.

When the set A,B,C contains exactly one Z measurement

p (a, b, c|A,B,C) =
1

8
∀ a, b, c. (3.4.21)

2 Z measurements.

p (a, b, c|A,B,C) =







1/4 : a = c

0 : otherwise,
(3.4.22)

when (A,B,C) ∈ {(Z,B, Z) : B ∈ {Y,X}}

p (a, b, c|A,B,C) =







1/4 : a = b

0 : otherwise,
(3.4.23)

when (A,B,C) ∈ {(Z,Z,C) : C ∈ {Y,X}}

p (a, b, c|A,B,C) =







1/4 : b = c

0 : otherwise,
(3.4.24)

when (A,B,C) ∈ {(A,Z, Z) : A ∈ {Y,X}}

3 Z measurements.

p (a, b, c|Z,Z, Z) =







1/2 : a = b = c

0 : otherwise
(3.4.25)
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Reproducing the GHZ correlations.

Suppose the non-local subsystem is composed of particles 2 and 3, correlated lo-

cally with particle 1. The GHZ correlations above can be written according to

eq(3.4.17). Following the same protocol as before: There are eight different deter-

ministic probability distributions pλ (a|A), and summing over them according to eq

(3.4.17) gives the correct GHZ correlations. For example, suppose p1 (a|A) is given
by p1 (1|X) = p1 (1|Y ) = p1 (1|Z). According to the protocol

p1 (b, c|X,X) =







1/2 : bc = 1

0 : otherwise,
(3.4.26)

so as to satisfy the zero probabilities in eq (3.4.18). Each of the two possible solutions

is taken with probability half.

p1 (b, c|X,Y ) =







1/2 : bc = −1
0 : otherwise,

(3.4.27)

so as to satisfy the zero probabilities in eq (3.4.19). Each of the two possible solutions

is taken with probability half.

p1 (b, c|X,Z) = p1 (b, c|Y, Z) =







1/2 : b, c = −1, 1 or 1, 1
0 : otherwise,

(3.4.28)

so as to satisfy the zero probabilities in eq (3.4.22).

p1 (b, c|Y,X) = p1 (b, c|Y, Y ) =







1/2 : bc = −1
0 : otherwise,

(3.4.29)

so as to satisfy the zero probabilities in eq (3.4.19).

p1 (b, c|Z,X) = p1 (b, c|Z, Y ) =







1/2 : b, c = 1,−1 or 1, 1
0 : otherwise,

(3.4.30)
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so as to satisfy the zero probabilities in eq (3.4.23).

p1 (b, c|Z,Z) =







1 : b, c = 1, 1

0 : otherwise,
(3.4.31)

so as to satisfy the zero probabilities in eq (3.4.25).

This completely specifies p1 (b, c|B,C). Similar constructions give pλ (a|A) and

pλ (b, c|B,C) for λ = 2, ..., 8. It is straightforward to check that the probability

distribution resulting from eq (3.4.17) gives the GHZ correlations. Therefore the

analysis of the data already obtained cannot prove the existence of genuine 3-party

correlations.

On the other hand, it is easy to modify the experiments so as to produce a

maximum violation of Svetlichny’s inequality. It is sufficient to make measurements

in the xy plane using the angles listed above in section three. Where to measure a

spin component with angle θ in this plane it is necessary to perform a measurement

which has eigenvectors 1√
2
(| ↑〉+eiθ| ↓〉) and 1√

2
(| ↑〉−eiθ| ↓〉), that is 1√

2
(|H〉+eiθ|V 〉)

and 1√
2
(|H〉− eiθ|V 〉). It should then be possible to confirm that the state produced

demonstrates genuine three-particle non-locality.

W state non-locality.

Cereceda has pointed out that the W state also exhibits genuine three party non-

locality as demonstrated by a violation of the Svetlichny inequality [70].

|W 〉 = 1√
3
(| ↑↑↓〉+ | ↑↓↑〉+ | ↓↑↑〉 (3.4.32)

We can recall that along with the GHZ state, the W state is one of only two types of

inequivalent pure three party entangled state of qubits [71] under SLOCC. For such

a state the maximum value for the Svetlichny expression is 4.354 [70], as found nu-

merically. Recent experiments have realized the W state [72] but unfortunately the

measurements performed do not allow any violation of Svetlichny’s inequality[73].
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Conclusion.

We conclude that the experiments so far performed on three particle entangled states

do not demonstrate three particle non-locality. However with simple modifications

they could be adapted to enable a violation of Svetlichny’s inequality.

In the next chapter we derive an inequality that plays the role of the generalized

Svetlichny inequality for n particle systems. Four and five particle states have

recently been created, and we will discuss these experiments in light of the notion of

genuine n particle non-locality. We find that in the four particle case a violation of

the generalized Svetlichny inequality has been observed, thus demonstrating genuine

four particle non-locality.
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Chapter 4

Bell inequalities to detect true

n-particle non-locality.

Abstract.

This chapter contains a generalization to n particles of the notions of non-locality

introduced in the previous chapter. We introduce a classification of correlations

based on the concept of non-locality, which is different a priori from the concept of

entanglement. Generalizing a result of Svetlichny [1] on three particle correlations,

we find an inequality for n particle correlations that holds under the most general

separability condition and that is violated by some quantum-mechanical states.

Four and five particle states have recently been created, and we discuss these

experiments in light of the notion of genuine n particle non-locality. We find that in

the four particle case a violation of the generalized Svetlichny inequality has been

observed, thus demonstrating genuine four particle non-locality.

43
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4.1 Introduction.

The remarkable correlations between the outcomes of measurements on entangled

quantum systems have been the object of many studies. Usually analyzes of the

structure of the correlations are made according to the entanglement properties of

the system. In this chapter we propose a complementary classification, in terms of

non-locality. This is a generalization to n parties of the concepts of genuine three

party non-locality discussed in the previous chapter. To motivate this we can see

that the concepts of entanglement and non-locality are a priori different.

Essentially a classification through entanglement pre-supposes that our system

under study allows a quantum mechanical description. A classification through

non-locality does not assume the system admits a quantum mechanical description.

Rather it models the correlations obtained under different types of hybrid local

non-local hidden variable models.

To explain this in more detail, let us assume that we are considering a system

of three particles. This is a recap of the previous chapter, introducing some new

notation which makes generalizing these concepts easier. The classification through

entanglement assumes the system admits a quantum mechanical description, and

so is completely characterized by some quantum state ρ. To classify ρ through its

entanglement properties we must consider all possible decompositions of the state

as a mixture of pure states.

ρ =
∑

i

pi |Ψi〉〈Ψi| (4.1.1)

There are then three possibilities.

(i) If there is a decomposition of ρ so that

|Ψi〉 = |ψ1
i 〉|ψ2

i 〉|ψ3
i 〉 (4.1.2)

for all |Ψi〉, then ρ is a mixture of product states, and so is separable with the

property that it can be made by each party acting locally. For this situation we use



4.1. INTRODUCTION. 45

the acronym 1/1/1/QM .

(ii) If all of the |Ψi〉 can be written as |ψ12
i 〉|ψ3

i 〉 or |ψ13
i 〉|ψ2

i 〉 or |ψ23
i 〉|ψ1

i 〉 and at least

one of the |ψjki 〉 is not a product state, then ρ is entangled, but does not exhibit any

true three-way entanglement. We can say that ρ exhibits two party entanglement,

and denote this by 2/1/QM .

(iii) Finally if there is at least one |Ψi〉 that shows three-way entanglement, i.e can

not be written as |Ψi〉 = |ψjki 〉|ψli〉, the ρ exhibits true three-particle entanglement.

We will use the acronym 3/QM to describe this.

In general it is difficult to decide which class ρ belongs to as it requires a consider-

ation of all possible decompositions. At present no necessary and sufficient criterion

is known. We do however have a sufficient criterion, given by the Mermin inequality

[10]. Let M3 be the Mermin operator for three parties. This is described in detail

in section 4.2. Then if Tr(ρM3) > 1 the state ρ is entangled. If Tr(ρM3) >
√
2 the

state ρ exhibits true three particle entanglement.

The classification through non-locality does not presuppose that the state per-

mits a description in terms of quantum mechanics. It is based on a classification

through different types of hidden variable models. As with the classification through

entanglement we distinguish three classes.

(i) Let λ be a hidden variable or script carried by each particle. This value deter-

mines the outcome of each measurement made on the particle. When the experiment

is repeated many times the scripts can be different, occurring with probability dis-

tribution ρ(λ). This is an example of a local hidden variable model (LHV), which

we will denote by 1/1/1/S.

(ii) We may imagine a hybrid local non-local model. This was the model used by

Svetlichny [1]. We can denote this by 2/1/S and note that this is a more general class

than 2/1/QM because we do not require that the particles are correlated according

to quantum mechanics.

(iii) We allow all three particles to share arbitrary correlations without any con-

straints. We denote this situation 3/S.
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With this new notation we may interpret Svetlichny’s work as demonstrated that

3/QM is stronger (permits more general correlations) that 2/1/S. The aim of this

chapter is to generalize this idea to n partite systems and show that n/QM is

stronger than k/(n− k)/S for all k < n. To do this we first introduce the Mermin-

Klyshko (MK) inequalities [21, 25, 26] which are the main tool for this study. We

show how these can be used to give the Svetlichny inequality for three particles, and

that the MK inequality plays the role of the generalized Svetlichny inequality for

four particles. Finally the generalization to n particles is made.

In the final section we review recent experimental progress in creating four and

five particle entangled states. We find that in the four particle case a violation

of the generalized Svetlichny inequality has been observed. Thus this experiment

demonstrates four particle non-locality.

Much of the work in this chapter was done in collaboration with N. Gisin and V.

Scarani from University of Geneva, and D. Collins and S. Popescu from University

of Bristol. It was published in [5].

4.2 The Mermin-Klyshko inequalities.

We consider from now onwards an experimental situation in which two dichotomic

measurements Aj and A′j can be performed on each particle j = 1, ..., n. The

outcomes of these measurements are written aj and a
′
j, and can take the values ±1.

Letting M1 = a1, we can define recursively the MK polynomials as

Mn =
1

2
Mn−1 (an + a′n) +

1

2
M ′

n−1 (an − a′n) , (4.2.1)

where M ′
k is obtained from Mk by exchanging all the primed and non-primed a’s.

In particular, we have
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M2 =
1

2

(

a1a2 + a′1a2 + a1a
′
2 − a′1a

′
2

)

, (4.2.2)

M3 =
1

2

(

a1a2a
′
3 + a1a

′
2a3 + a′1a2a3 − a′1a

′
2a
′
3

)

. (4.2.3)

The recursive relation (4.2.1) gives, for all 1 ≤ k ≤ n− 1:

Mn =
1

2
Mn−k (Mk +M ′

k) +
1

2
M ′

n−k (Mk −M ′
k) . (4.2.4)

This is shown in appendix A, at the end of this chapter. We shall interpret these

ploynomials as sums of expectation values, for example we shall interpret M2 as

1

2
(E(A1A2) + E(A′1A2) + E(A1A

′
2)− E(A′1A

′
2)) , (4.2.5)

where E(A1A2) is the expectation value of the product a1a2 when A1 and A2 are

measured. We call quantities such as E(A1A2A3) correlation coefficients. We shall

look at the values of these polynomials under quantum mechanics and hybrid local

non-local models, and show that they give generalized Bell inequalities.

The MK polynomials under hybrid LHV models.

We can restrict our attention to deterministic versions of hybrid local non-local hid-

den variable models. It is known that any non-deterministic local model can be made

deterministic by adding additional variables [74]. Hence the script λ completely de-

termines the probabilities for the outcomes of any measurement, i.e P (Aj = aj|λ)
and similar probabilities are either zero or one.

For any λ the outcomes of all correlation coefficients are fixed, so we can define

the fixed quantity Mλ
n . The value Mn is then the average over ρ(λ) of Mλ

n . For

any LHV model (1/1/.../1/S) 1 MLHV
n ≤ 1 [21]. This can be seen using a recursive

1From now on LHV is taken to mean all particles are uncorrelated, i.e there statistics are

described according to 1/1/.../1/S.
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argument and noting that for any LHV script either an = a′n or an = −a′n. In

particular M2 ≤ 1 is the famous CHSH inequality [16]. For models of the type n/S,

that is unconstrained models, each Mn can reach its algebraic limit, M alg
n . This can

be achieved by setting to +1 (resp. -1) all of the correlation coefficients appearing

with positive sign (resp. negative sign). This gives M alg
n = 2 for all n.

The MK polynomials under quantum mechanics.

Since we consider dichotomic measurements, we can restrict to the case of two-

dimensional systems (qubits)[75]. In this case, the observable that describes the

measurement Aj can be written as ~aj · ~σ ≡ σaj
, with ~aj a unit vector and ~σ the

vector of Pauli spin matrices. The equivalent of Mn is the expectation value of the

operator Mn obtained by replacing all a’s by the corresponding σa. It is known

that quantum mechanics violates the inequality Tr(ρMn) ≤ 1. More precisely, it is

known [21, 25, 26] that:

(i) The maximal value achievable by quantum mechanics is

Tr(ρMn) = 2
n−1

2 , (4.2.6)

reached by the generalized Greenberger-Horne-Zeilinger (GHZ) states 1√
2

(

|0...0〉 +
|1...1〉

)

.

(ii) If ρ exhibits m-particle entanglement, with 1 ≤ m ≤ n, then

Tr(ρMn) ≤ 2
m−1

2 . (4.2.7)

In other words, if we have a state of n qubits ρ such that Tr(ρMn) > 2
m−1

2 , we

know that this state exhibits at least (m + 1)-particle entanglement. This means

that the MK-polynomials allow a classification of correlations according to entan-

glement. But do they allow also the classification according to non-locality? The
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answer to this question is: yes for n even, no for n odd. However we shall show that

a modification to the MK polynomials for n odd does then allow for a classification

according to non-locality. We demonstrate this statement first for n = 3, then for

n = 4, and finally for all n.

4.3 Three particles.

Consider the the three particle MK polynomial,

M3 =
1

2
(a1a2a

′
3 + a1a

′
2a3 + a′1a2a3 − a′1a

′
2a
′
3). (4.3.1)

Then the following bounds have previously been established.

MLHV
3 = 1 (4.3.2)

M
2/1/QM
3 =

√
2 (4.3.3)

M
3/QM
3 = Malg

3 = 2 (4.3.4)

We want to find the bound under 2/1/S. We can do this by allowing particles one

and two to be correlated in the most general way, and setting particle three to be

uncorrelated with the other two. M3 can be re-written,

M3 =
1

2
M2(a3 + a′3) +

1

2
M ′

2(a3 − a′3). (4.3.5)

For any particular script either a3 = a′3 or a3 = −a′3, and without loss of generality

we may assume the former. In this case M
2/1/S
3 = max M2. Now since particles one

and two can share any correlation, they can reach the algebraic maximum of M2.

Therefore M
2/1/S
3 = 2, and
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M
2/1/S
3 =M

3/QM
3 =Malg

3 = 2. (4.3.6)

Therefore the MK inequality does not distinguish between 2/1/S and 3/QM , i.e

the MK inequality can not distinguish between genuine three party non-locality and

hybrid local non-local correlations.

However we can easily modify the MK polynomial so that it can. We will consider

the properties of the polynomial

S3 =
1

2
(M3 +M ′

3) =
1

2
(M2a

′
3 +M ′

2a3). (4.3.7)

For both LHV and 2/1/S, without loss of generality we can choose a3 = a′3 = 1,

leaving

S...3 =
1

2
max (M2 +M ′

2). (4.3.8)

Now M2 +M ′
2 = a1a

′
2 + a′1a2, which can take a maximum value of 2 for both LHV

and 2/1/S. Therefore

SLHV3 = S
2/1/S
3 = 1, (4.3.9)

and also S
2/1/QM
3 = 1, since this is a special case of 2/1/S and is more general than

LHV. The algebraic limit Salg3 = 2, so we are only left with S
3/QM
3 to find. We can

define an operator S3 by replacing the terms a in the polynomial S3 with Pauli spin

matrices. Now,

Tr (ρS3) =
1

2
[Tr (ρM2σa′

3
) + Tr (ρM′

2σa3
)] ≤

√
2 (4.3.10)

since by Cirel’son [17] theorem each term of the sum is bounded by
√
2. As shown

in the previous chapter [4], this value is obtained by the GHZ state for a suitable

choice of analyzer settings. Therefore S
3/QM
3 =

√
2, and since this is greater than

S
2/1/S
3 we can say that the GHZ state exhibits genuine three party non-locality. We



4.4. FOUR PARTICLES. 51

LHV 2/1QM 2/1S 3QM 3S (alg.)

M3 1
√
2 2 2 2

S3 1 1 1
√
2 2

Table 4.1: Maximal values of M3 and S3 under different assumptions for the nature

of the correlations

can note that S
2/1/QM
3 ≤ 1 is one of Svetlichny’s original inequalities. The other one

(which is actually equivalent under local re-labelling) is associated with 1
2
(M3−M ′

3).

The results for both the Mermin-Klyshko inequality and Svetlichny’s inequality

are summarized in table (4.1). We conclude that comparing MK and Svetlichny

inequalities allows us to discriminate between the different type of models for cor-

relations in three party states.

4.4 Four particles.

As before we start by considering the properties of the MK polynomial M4. The

following properties of M4 are already known [21, 25, 26];

MLHV
4 = 1 (4.4.1)

M
2/1/1/QM
4 = M

2/2/QM
4 =

√
2 (4.4.2)

M
3/1/QM
4 = 2 (4.4.3)

M
4/QM
4 = 2

√
2 (4.4.4)

Malg
4 = 4. (4.4.5)

So we now need the bounds for 2/1/1/S, 2/2/S and 3/1/S. The last of these may

be calculated in the same way as previously.

M4 =
1

2
[M3(a4 + a′4) +M ′

3(a4 − a′4)]. (4.4.6)
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Setting a4 = a′4 = 1, M4 = MaxM3. Since we allow any correlations amongst three

parties M3 can take its algebraic limit, giving

M
3/1/S
4 = 2. (4.4.7)

For the calculation of 2/1/1/S and 2/2/S: Using (4.2.4), we have

M4 =
1

2
M1,2 (M3,4 +M ′

3,4) +
1

2
M ′

1,2 (M3,4 −M ′
3,4), (4.4.8)

where to avoid confusions we wrote Mi,j instead of M2, with i and j the labels of

the particles. Now,

M3,4 +M ′
3,4 = a3a

′
4 + a′3a4 (4.4.9)

M3,4 −M ′
3,4 = a3a4 − a′3a

′
4. (4.4.10)

For both correlation models we can allow particles three and four to share any

correlations, so bothM3,4+M
′
3,4 andM3,4−M ′

3,4 can reach there algebraic limits of 2.

Therefore under both 2/1/1/S and 2/2/S, M ...
4 = Max (M1,2+M

′
1,2) = Max (a1a

′
2+

a′1a2). In both cases this is 2, so

M
2/1/1/S
4 =M

2/2/S
4 =M

3/1/S
4 = 2. (4.4.11)

However M
4/QM
4 = 2

√
2, so for four particles the MK polynomial detects both four

particle entanglement and genuine four party non-locality. It is therefore the natural

generalization of Svetlichny’s inequality.

4.5 Arbitrary numbers of particles.

For n particles we will show that n/QM is stronger that k/(n−k)/S, 1 ≤ k ≤ n−1,

for any bi-partite partition of the set of particles. Partitions of bigger numbers of
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smaller subsets are special cases of these bi-partite partitions. We do this by finding

a generalized Svetlichny inequality.

Proposition; generalized Svetlichny polynomial.

Define the generalized Svetlichny polynomial Sn as

Sn =







Mn : n even

1
2
(Mn +M ′

n) : n odd
(4.5.1)

We will show that the correlations k/(n − k)/S all give the same bound Skn, and

that the bound reached by quantum mechanics is larger by a factor of
√
2 in each

case. i.e

Sn/QMn =
√
2Skn. (4.5.2)

To do this we will use the following properties of the MK polynomials:

(I) The algebraic limit of the MK polynomials is given by

Malg
k =







2
k
2 =M

k/QM
k : k even

2
k−1

2 =M
k/QM
k : k odd

. (4.5.3)

(II) For k even,Mk andM
′
k each contain all of the correlation coefficients, in different

combinations. Mk+M
′
k andMk−M ′

k each contain half of the correlation coefficients.

The algebraic limit for both is M alg
k

(III) For k odd, Mk and M ′
k each contain one half of the correlation coefficients.

These properties can be found in [26]. We will first prove the proposition for n

even. In this case the bound for quantum mechanics is known to be S
n/QM
n = 2

n−1

2 .

There are two cases that can be distinguished; n − k is even, or n − k is odd. We

recall that

Mn =
1

2
Mn−k (Mk +M ′

k) +
1

2
M ′

n−k (Mk −M ′
k) . (4.5.4)
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• For k and n−k even: In (4.5.4), bothMk+M
′
k andMk−M ′

k can be maximized

independently because of property (II) above. Therefore, we can replace them

by Malg
k . We are left with

Skn =
1

2
Malg

k max(Mn−k +M ′
n−k), (4.5.5)

and this maximum is again Malg
n−k. So finally

Skn =
1

2
Malg

k Malg
n−k = 2

n−2

2 . (4.5.6)

• For k and n − k odd: In (4.5.4), Mn−k and M ′
n−k can be optimized inde-

pendently because of (III) above. We have then Skn = Malg
n−k maxMk =

Malg
n−kM

alg
k = 2

n−2

2 .

Thus we have proved the proposition for n even. To prove the proposition for n odd

we must calculate both Skn and SnQMn . We begin with Skn. Inserting (4.5.4) in the

definition of Sn for n odd, we find

Sn =
1

2
Mn−kM

′
k +

1

2
M ′

n−kMk . (4.5.7)

Suppose k odd and n − k even. If we assume correlations k/(n − k)/S, Mk

and M ′
k can both reach the algebraic limit due to property (III). In which case

Skn = 1
2
Malg

k max(Mn−k +M ′
n−k) and due to property (II) this maximum is M alg

n−k.

Thus Skn = 2
n−3

2 .

Suppose k even and n − k odd. If we assume correlations k/(n − k)/S, Mn−k

and M ′
n−k can both reach the algebraic limit due to property (III). In which case

Skn = 1
2
Malg

n−k max(Mk +M ′
k) and due to property (II) this maximum is M alg

k . Thus

Skn = 2
n−3

2 .

We now calculate SnQMn . From the polynomial Sn given by (4.5.7), we define the

operator Sn in the usual way, replacing the a’s in the polynomial with Pauli spin

matrices. Therefore for the particular case k = 1 we have
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Tr(ρSn) =
1

2

[

Tr(ρMn−1σa′n) + Tr(ρM′
n−1σan

)
]

(4.5.8)

which is bounded by 2
n−2

2 because each of terms in the sum is bounded by that

quantity. This bound is reached by generalized GHZ states for the following set-

tings: To maximize 1
2
〈Mn +M′

n〉GHZ for n odd, the σaj
are taken of the form

cosαjσx + sinαjσy. One possible choice for the settings is: αk = α′k +
π
2
for all k,

α′1 = ... = α′n−1 = 0, α′n = π
4
. For such settings, each correlation coefficient becomes

equal to 1√
2
in modulus, with the good sign. Therefore SnQMn = 2

n−2

2 for n odd, and

we have proved the Proposition also for n odd.

4.6 Experiments.

The four particle GHZ state has recently been produced experimentally with polar-

ization entangled photons in [77], and ions in [78]. Recently Zhao et al [79] have

shown a violation of the generalized Svetlichny inequality for a four photon GHZ

state by 76 standard deviations. This confirms four particle non-locality (and four

particle entanglement). Even more recently the same group have produced a five

photon GHZ state [80], although they have not yet shown any Bell inequality viola-

tion for this state.

The situation is therefore that three particle non-locality remains to be demon-

strated (as discussed in the previous chapter), but four particle non-locality has been

shown convincingly.

4.7 Conclusion.

We have shown that it is possible to distinguish n party quantum entanglement not

just against local hidden variables, but also hybrid local non-local variable models
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k/(n − k)/S which allow any correlations within each non-local subset but no cor-

relation between different subsets. This is achieved by a generalized version of the

Svetlichny inequality.

Recent experiments on four particles have demonstrated a violation of the MK

inequality, playing the role of the generalized Svetlichny inequality, and can be taken

as confirmation of four particle non-locality.

M. Seevinck and G. Svetlichny have independently produced inequalities similar

to those presented in this chapter [81].
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4.8 Appendix A.

We want to show

Mn =
1

2
Mn−k (Mk +M ′

k) +
1

2
M ′

n−k (Mk −M ′
k) . 1 ≤ k ≤ n− 1. (4.8.1)

Let us prove this by induction on k [21]. M1 = a1, so this formula is correct for

k = 1. Assuming it is true for k, and substituting for Mn−k and M ′
n−k,

Mn =
1

2

(

ak+1 + a′k+1

2
Mn−(k+1) +

a′k+1 − ak+1

2
M ′

n−(k+1)

)

(Mk +M ′
k) (4.8.2)

+
1

2

(

a′k+1 + ak+1

2
M ′

n−(k+1) +
a′k+1 − ak+1

2
Mn−(k+1)

)

(Mk −M ′
k)

=
Mk a

′
k+1 +M ′

k ak+1

2
Mn−(k+1) +

Mk ak+1 −M ′
k a

′
k+1

2
M ′

n−(k+1) (4.8.3)

= Mn−(k+1)

Mk+1 +M ′
k+1

2
+M ′

n−(k+1)

Mk+1 −M ′
k+1

2
. (4.8.4)

Hence if (4.8.1) is true for k, it holds for k + 1.
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Chapter 5

Non-local correlations as an

information theoretic resource.

Abstract

It is well known that measurements performed on spatially separated entangled

quantum systems can give rise to correlations that are non-local, in the sense that

a Bell inequality is violated. They cannot, however, be used for super-luminal

signalling. It is also known that it is possible to write down sets of “super-quantum”

correlations that are more non-local than is allowed by quantum mechanics, yet are

still non-signalling. Viewed as an information theoretic resource, super-quantum

correlations are very powerful at reducing the amount of communication needed for

distributed computational tasks. An intriguing question is why quantum mechanics

does not allow these more powerful correlations. We aim to shed light on the range

of quantum possibilities by placing them within a wider context. With this in

mind, we investigate the set of correlations that are constrained only by the no-

signalling principle. These correlations form a polytope, which contains the quantum

correlations as a (proper) subset. We determine the vertices of the no-signalling

polytope in the case that two observers each choose from two possible measurements

with d outcomes. We then consider how inter-conversions between different sorts of

59
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correlations may be achieved. Finally, we consider some multipartite examples.
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5.1 Introduction.

In a typical Bell-type experiment, two entangled particles are produced at a source

and move apart to separated observers. Each observer chooses one from a set of

possible measurements to perform and obtains some outcome. The joint outcome

probabilities are determined by the measurements and the quantum state. One of

the more striking features of quantum mechanics is that joint outcome probabilities

can violate a Bell-type inequality [3], indicating that quantum mechanics is not, in

Bell’s terminology, locally causal. This prediction has been confirmed in numerous

laboratory experiments [82].

We can abstract away from this scenario and consider two observers who share a

black box. Each observer selects an input from a range of possibilities and obtains

an output. The box determines a joint probability for each output pair given each

input pair. It is clear that a quantum state provides a particular example of such a

box, with input corresponding to measurement choice and output to measurement

outcome. More generally, boxes can be divided into different types. Some will allow

the observers to signal to one another via their choice of input, and correspond to

two-way classical channels, as introduced by Shannon [83]. Others will not allow

signalling - it is well known, for example, that any box corresponding to an entan-

gled quantum state will not. This is necessary for compatibility between quantum

mechanics and special relativity. Of the non-signalling boxes, some will violate a

Bell-type inequality. The significance of this can be spelt out in information the-

oretic terms: separated observers without the box, who have access to pre-shared

classical random data but no other resources, and in particular who cannot commu-

nicate, will not be able to simulate the box. We refer to any such box (and to the

corresponding correlations) as non-local.

In general, these boxes can be viewed as an information theoretic resource. This

is obvious in the case of signalling boxes, or classical channels. However, it is also

known that non-local correlations arising from an entangled quantum state, even
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though they cannot be used directly for signalling, can be useful in reducing the

amount of signalling that is needed in communication complexity scenarios below

what could be achieved with only shared random data [84]. A local black box is

simply equivalent to some shared random data, which in turn (depending on the

precise nature of the problem) is better than nothing [85].

An interesting question to ask now is; can any set of non-signalling correlations be

produced by measurements on some quantum state? The answer in fact, is no. This

was shown by Popescu and Rohrlich [86], who wrote down a set of correlations that

return a value of 4 for the Clauser-Horne-Shimony-Holt (CHSH) expression [16], the

maximum value logically possible, yet are non-signalling. The maximum quantum

value is given by Cirel’son’s theorem as 2
√
2 [17]. These should be compared with

the maximum value obtainable by non-communicating classical observers, which is

2. Popescu and Rohrlich concluded that quantum mechanics is only one of a class

of non-local theories consistent with causality. In terms of our boxes, there are some

boxes that are non-signalling but are more non-local than is allowed by quantum

mechanics. It is interesting to note that from an information theoretic point of

view, some of these latter are very powerful. For example, van Dam has shown

[87] that two observers who did have access to a supply of Popescu-Rohrlich type

boxes would be able to solve essentially any two-party communication complexity

problem with only a constant number of bits of communication. This should be

contrasted with the quantum case, for which it is known that certain communication

complexity problems require at least n bits of communication even if unlimited

shared entanglement is available [88].

In this chapter we investigate the set of non-signalling boxes, considering them as

an information theoretic resource. Clearly this set includes those corresponding to

measurements on quantum states as a subset. The motivation for studying the wider

set is partly that it is interesting for its own sake. This is true even though we have no

reason to think that correlations other than quantum correlations can be obtained

in nature. It is already clear that the set of non-signalling boxes has interesting
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structure, and one finds analogies with other information theoretic resources, in

particular with the set of entangled quantum states. Another motivation is that a

better understanding of the set of quantum correlations can be gained by placing

it in the context of a wider set. Only in this way, for example, can one hope to

answer Popescu and Rohrlich’s original question, of why quantum correlations are

not more non-local than they are. More generally, a proper understanding of the

information theoretic capabilities of quantum mechanics includes an understanding

of what cannot be achieved as well as what can.

This chapter is organized as follows. In Sec. 5.2.1, we introduce the convex poly-

tope that describes the set of non-signalling correlations. In Sec. 5.2.2, we examine

more closely the particular case of correlations involving two possible inputs, obtain-

ing all the vertices of the corresponding polytope. We then consider, in Sec. 5.2.3,

how inter-conversions between these extreme points may be achieved using local

operations. Sec. 5.3 is devoted to three-party correlations and in Sec. 5.3.4, we ex-

amine how extremal correlations correlate to the environment. We conclude with

some open questions in Sec. 5.4.

This work was done in collaboration with J. Barrett, S. Massar, and S. Piro-

nio from Université Libre de Bruxelles, and N. Linden and S. Popescu from the

University of Bristol. It appears as a paper [6].

5.2 Two party correlations

5.2.1 Definitions

A bipartite correlation box (hereafter, just ‘box’) is defined by a set of possible

inputs for each of Alice and Bob, a set of possible outputs for each, and a joint

probability for each output pair given each input pair. We denote Alice’s and Bob’s

inputs X and Y respectively, and their outputs a and b. The joint probability of

getting a pair of outputs given a pair of inputs is pab|XY . This situation is shown in
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X Y

ba

Figure 5.1: A schematic representation of a bipartite correlation box. Alice inputs

X and gets a as output. Bob inputs Y and gets b as an output.

Fig 5.1.

A concrete example of a correlation box is an experiment with two spin-half

particles, with the inputs X and Y labelling Alice’s and Bob’s analyzer settings and

the outputs a and b labelling the experimental outcomes. In a quantum experiment

like this one, it is generally the case that the outcome of the measurement is obtained

as soon as the measurement is performed. In addition, the entanglement is destroyed

after the measurements, so that if the experiment is to be repeated a new entangled

state is needed. We define boxes to have the same properties. Alice can select her

input at any time and obtains her output immediately, and similarly Bob. There

may of course be a time delay between Alice selecting her input and Bob selecting his

input, but this makes no difference to the correlations for the case of non-signalling

boxes. Further, after a box is used once it is destroyed, and to repeat the experiment

a new box is needed.

The no-signalling polytope.

Since pab|XY are probabilities they satisfy positivity,

pab|XY ≥ 0 ∀ a, b,X,Y (5.2.1)

and normalization,

∑

a,b

pab|XY = 1 ∀ X,Y . (5.2.2)
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Furthermore, in this work we only consider non-signalling boxes, i.e, we require that

Alice cannot signal to Bob by her choice of X, and vice versa. This means that the

marginal probabilities pa|X and pb|Y are independent of Y and X respectively:

∑

b

pab|X,Y =
∑

b

pab|X,Y ′ ≡ pa|X ∀ a,X, Y , Y ′ (5.2.3)

∑

a

pab|X,Y =
∑

a

pab|X′,Y ≡ pb|Y ∀ b, Y ,X,X ′. (5.2.4)

We shall always consider that the number of possible inputs and outputs is finite.

Since the above constraints are all linear, the set of boxes with a given number of

inputs and outputs is a polytope, which we denote by P . It is easy to see that the

set is convex - if two boxes each satisfy the constraints, then a probabilistic mixture

of them will do too.

The local polytope.

In general, the set of non-signalling boxes can be divided into two types, local and

non-local. A box is local if and only if it can be simulated by non-communicating

observers with only shared randomness as a resource. This means that we can write

pab|XY =
∑

λ

pλ pa|X(λ) pb|Y (λ), (5.2.5)

where λ is the value of the shared random data and pλ is the probability that a

particular value of λ occurs. We have that pa|X(λ) is the probability that Alice

outputs a given that the shared random data was λ and the input was chosen to be

X, and similarly for pb|Y (λ).

We recall what is known about the set of local boxes (see for instance [89, 90]).

This set is itself a convex polytope, with vertices corresponding to local deterministic

boxes (all pa|X , pb|Y are 0 or 1). The positivity conditions of Eq. (5.2.1) are trivial

facets of this polytope, while non-trivial facets correspond to Bell-type inequalities.
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Figure 5.2: A schematic representation of the space of non-signalling correlation

boxes. The vertices are labelled L and NL for local and non-local. Bell inequalities

are the facets represented in dashed lines. The set bounded by these is L. The

region accessible to quantum mechanics is Q. A general non-signalling box ∈ P .

Violation of the latter implies that a point lies outside the local polytope, and that

the corresponding box is therefore non-local. We denote the local polytope by L.

Quantum mechanical correlations.

Finally, there is a third set of interest, the correlations obtainable by measure-

ments on bipartite quantum states. We denote this set Q (where Q is defined for

a fixed number of measurement settings and outcomes). The set Q is investigated

in Refs. [17, 90, 91, 92, 93]. It is convex but is not a polytope as the number of

extremal points is not finite. Since the correlations allowed by quantum mechanics

can violate Bell inequalities, Q is non-local. However, as they violate the CHSH

inequality only up to Cirel’son’s bound B = 2
√
2 [91, 86], they form a proper subset

of the no-signalling polytope. Overall, we have that L ⊂ Q ⊂ P . This situation is

summarized in Fig. 5.2.



5.2. TWO PARTY CORRELATIONS 67

5.2.2 The two-inputs no-signalling polytope

Two outputs

Having defined the objects that we are interested in, we begin by considering in detail

the simple case in which Alice and Bob are each choosing from two inputs, each of

which has two possible outputs. We write X, Y , a, b ∈ {0, 1}. The probabilities pab|XY
thus form a table with 24 entries, although these are not all independent due to the

constraints of Sec. 5.2.1. The dimension of the polytope is found by subtracting the

number of independent constraints from 24, and turns out to be 8. To understand

the polytope P , we wish to find its vertices. These will be boxes that satisfy all of

the constraints and saturates a sufficient number of the positivity constraints to be

uniquely determined. In the next subsection, we present an argument that allows

us to find all the vertices of the two-input d-output polytope. Here we simply state

the results for the simple two-input two-output case.

We find that there are 24 vertices, which may be divided into two classes, those

corresponding to local boxes and those corresponding to non-local boxes. Local

vertices are simply the local deterministic boxes, which assign a definite value to

each of Alice’s and Bob’s inputs. There are thus 16 local vertices, which can be

expressed as

pab|XY =



















1 : a = αX ⊕ β,

b = γY ⊕ δ

0 : otherwise,

(5.2.6)

where α, β, γ, δ ∈ {0, 1}. Here and throughout, ⊕ denotes addition modulo 2. The

8 non-local vertices may be expressed compactly as

pab|XY =







1/2 : a⊕ b = X.Y ⊕ αX ⊕ βY ⊕ γ

0 : otherwise,
(5.2.7)

where α, β, γ ∈ {0, 1}. We will refer to these boxes as Popescu-Rohrlich (PR)

boxes.
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By using reversible local operations Alice and Bob can convert any vertex in

one class into any other vertex within the same class. There are two types of

reversible local operations. Alice may relabel her inputs, X → X ⊕ 1, and she may

relabel her outputs (conditionally on the input), a→ a⊕ αX ⊕ β. Bob can perform

similar operations. Thus up to local reversible transformations, each local vertex is

equivalent to the vertex setting α = 0, β = 0, γ = 0, δ = 0, i.e,

pab|XY =







1 : a = 0 and b = 0

0 : otherwise.
(5.2.8)

Each non-local vertex is equivalent to

pab|XY =







1/2 : a⊕ b = X.Y

0 : otherwise.
(5.2.9)

We note that if we allow irreversible transformations on the outputs we may convert

any non-local vertex into a local vertex.

For the case of two inputs and two outputs, it is well known that the only non-

trivial facets of the local polytope L correspond to the CHSH inequalities [20]. There

is an important connection between the CHSH inequalities and the non-local vertices

of P . In order to explain this, we first recall explicitly the CHSH inequalities. Let

the expectation 〈i j〉 be defined by

〈ij〉 =
1
∑

a,b=0

(−1)a+b pab|X=i,Y=j . (5.2.10)

Then the non-trivial facets of L are equivalent to the following inequalities.

Bαβγ ≡ (−1)γ 〈00〉+ (−1)β+γ 〈01〉

+(−1)α+γ 〈10〉+ (−1)α+β+γ+1 〈11〉 ≤ 2, (5.2.11)

where α, β, γ ∈ {0, 1}. For each of the 8 Bell expressions Bαβγ, the algebraic

maximum is Bαβγ = 4. We find that for each choice of α, β, γ the correlations
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defined by Eq. (5.2.7) return a value for the corresponding Bell expression of Bαβγ =

4. Thus there is a one-to-one correspondence between the non-local vertices of P
and the non-trivial facets of L, with each vertex violating the corresponding CHSH

inequality up to the algebraic maximum. These extremal correlations describe in a

compact way the logical contradiction in the CHSH inequalities.

d outputs.

We now generalize the results of the preceding section. Again we have two parties,

Alice and Bob, who choose from two inputs X and Y ∈ {0, 1} and receive outputs

a and b with a joint probability pab|XY . We denote the number of distinct outputs

associated with inputs X and Y by dA
X
and dB

Y
. If Alice’s input is X, for example,

then a ∈ {0, . . . , dA
X
− 1}.

Theorem 1 The non-local vertices of P for two input settings and dA
X
and dB

Y
out-

puts are equivalent under reversible local relabelling to

pab|XY =



















1/k : (b− a) mod k = X.Y

a, b ∈ {0, . . . , k − 1}
0 : otherwise,

(5.2.12)

for each k ∈ {2, . . . ,minX,Y (d
A
X
, dB

Y
)}.

The proof of this theorem can be found in Appendix B, at the end of this chapter.

We note that the case dA
X
= dB

Y
= 2 gives the PR correlations we found previously.

If dA
X
= dB

Y
= k = d then the vertex violates the d-dimensional generalization of the

CHSH inequality [22] up to its algebraic maximum. We call such a box a d-box (a

more complete name would specify that the number of parties and the number of

inputs per party are each two).
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Resource Instantiation Quantitative measure

Shared random data Random variables Mutual information

Shared secret data Random variables Secrecy rate

Entanglement Quantum states Entanglement cost

Non-locality Boxes Classical simulation cost, Bell inequality violation

Table 5.1: Comparison of information theoretic resources.

5.2.3 Resource conversions.

In the preceding section we found all the vertices of the no-signalling polytope for

bi-partite, two-input boxes. As described in the introduction, the ethos adopted

in this work is that boxes, and in particular non-local boxes, can be regarded as

an information theoretic resource, and investigated as such. Useful comparisons

can be drawn with other information theoretic resources, including shared random

data [94], shared secret data [95, 96], and entanglement [97]. In each case, there

is a convex set of possible states and a notion of inter-conversion between different

states. There is also a notion of inter-conversion between different resources. Each

resource is useful for some task(s) and can be quantified via some measure(s). Some

of this is illustrated in Table 5.1.

Note that the quantitative measures given are not the only possibilities. Note

also that even if the measure given vanishes, a useful resource may still be present.

Thus uncorrelated random variables can still be useful (as local randomness), as can

local boxes (as local or shared randomness).

In light of this it is natural to ask what inter-conversions between boxes are

possible, and what would be a good measure of the non-locality of a box? To the

second question, several answers suggest themselves, such as the amount of classical

communication needed to simulate the box (given that the only other resource is

shared random data), and the degree of violation of Bell inequalities [98]. In this

work, however, we concentrate on the first question - an understanding of possible
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inter-conversions is a prerequisite for a good understanding of quantitative measures.

The problem that we consider is whether one can simulate one type of box, using

one or more copies of another type as a resource. Local operations such as relabelling

are allowed. As non-locality is the resource that we have in mind, it is also natural

to allow the parties free access to local boxes (i.e., to local and shared randomness).

We note, however, that neither local nor shared randomness can help if the box to

be simulated is a vertex1, thus none of the protocols we describe below make use

of this. We make the assumption that communication between the parties is not

allowed.

In general, outputs for one box can be used as inputs for another box. This allows

non-trivial protocols to be constructed. As an interesting logical possibility, we note

that the temporal order in which each party uses the boxes need not be the same,

and that this allows loops to be constructed that would be ill-defined if it were not

for the no-signalling condition. (Thus if signalling boxes were to be considered, our

stipulation that outputs are obtained immediately after inputs would have to be

altered.) Such a loop is illustrated in Fig. 5.3. In all the protocols presented below,

the parties use the boxes in the same temporal order. But protocols of the type

illustrated in Fig. 5.3 are an interesting logical possibility.

In the following, we will describe three simple examples. We show that given a d-

box and a d′-box, we can simulate a dd′-box. We will also show that given a dd′-box,

we can simulate one d-box. Finally, an unlimited supply of d-boxes can simulate a

d′-box to arbitrarily high precision. In addition, we will describe a negative result:

it is not in general possible to go reversibly from n d-boxes to m d′-boxes, where

d 6= d′. It follows from this that d and d′-boxes are ultimately inequivalent resources

1For each value of the local or shared randomness, one can write down the box that is simulated,

conditioned on that value occurring. The box simulated by the overall protocol is then the average

of these conditional boxes, with the average taken over the possible values of the randomness. But

if this box is a vertex, then each of the conditional boxes must be the same vertex, and the protocol

could have been carried out without the randomness.
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a
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b
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Figure 5.3: An example of how two parties that are given two boxes may process

locally their inputs and outputs. They result in simulating another type of box

with inputs X,Y and outcomes a, b. Note that due to the no-signalling condition, the

parties can use their two boxes with a different time ordering.

and that in our context, it is inappropriate to suppose that they can be characterized

by a single numerical measure of non-locality2.

Suppose first, then, that Alice and Bob have one d-box and one d′-box and they

wish to simulate one dd′-box. Simulate means that for each value of X ∈ {0, 1},
a procedure should be defined for Alice, using the d and d′-boxes, that eventully

enables her to determine the value of an output a ∈ {0, . . . , dd′ − 1}. Similarly for

Bob for each value of Y and an output b. The joint probabilities for a and b should

satisfy Eq. (5.5.1) (with dd′ inserted instead of d where necessary).

2Similar considerations apply to the other resources we have mentioned. In the case of entan-

glement, for example, reversible inter-conversions are not in general possible for mixed states, thus

there is no unique measure of entanglement for mixed states. In the case of shared random data,

inter-conversions by local operations are rather limited and provide no very meaningful measure of

shared randomness. However, if one expands the set of operations that Alice and Bob are allowed,

then the picture changes. Thus in the case of shared random data, allowing that Alice and Bob can

communicate classically, while demanding that the communication must be subtracted at the end,

gives an operational meaning to the mutual information [94]. Inspired by this, it may be interest-

ing to consider conversions between boxes, with classical communication allowed but subtracted at

the end, or indeed conversions between entangled quantum states with quantum communication

allowed but subtracted at the end. We do not pursue these questions here.
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a0 b0
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a1 b1

a0 .X
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YX

Y

Figure 5.4: Making a 4-box from 2 PR boxes. Alice inputs X into the first box and

a0.X into the second, while Bob inputs Y into both boxes. Alice’s output a is given

in binary by a0 a1 and similarly for Bob’s output b.

Protocol 1: 1 d-box and 1 d′-box → 1 dd′-box

Alice. Alice inputs X into the d-box, obtaining outcome α. She then inputs X into

the d′-box if α = d− 1, and inputs 0 into the d′-box otherwise, obtaining an output

α′. Alice’s output for the protocol is a = α′d+ α.

Bob. Bob inputs Y into the d-box, obtaining output β, and inputs Y into the d′-box,

obtaining output β ′. His output for the protocol is then b = β ′d+ β.

Protocol 1 is illustrated in Fig. 5.4 for the case d = d′ = 2.

We indicate briefly why this protocol works. Recall that a dd′-box satisfies (b − a)

mod dd′ = XY . Write a = α′d + α and b = β ′d + β, where α can take values

α = 0, . . . , d− 1, and α′ can take values α′ = 0, . . . , d′ − 1, and so on. We see that

the condition satisfied by a dd′-box is equivalent to

β − α mod d = XY

β′ − α′ mod d′ =







XY : α = d− 1

0 : otherwise.
(5.2.13)

Protocol 1 is designed precisely to satisfy this condition. We note next that it is
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easy to convert one dd′-box into one d-box.

Protocol 2: 1 dd′-box → 1 d-box

Alice. Alice inputs X into the dd′-box, obtaining an output α. Her output for the

protocol is then a = α mod d.

Bob. Bob inputs Y into the dd′-box, obtaining an output β. His output for the

protocol is b = β mod d.

That Protocol 2 works can be seen from Eq. (5.2.13). Now we show how n d-

boxes can be used to simulate a d′-box to arbitrarily high precision. This is done

using a combination of Protocols 1 and 2.

Protocol 3: n d-boxes Ã 1 d′-box

Alice and Bob begin by using the n d-boxes to simulate a dn-box, as per Protocol

1. Call the outputs for the dn-box α and β. They satisfy (β − α) mod dn = XY .

Alice and Bob now use Protocol 2 to obtain something close to a d′-box: the final

outputs are a = α mod d′ and b = β mod d′.

If dn = kd, this protocol works exactly. Otherwise, one can calculate the errors

resulting in Protocol 3. Denote by k the largest integer such that kd′ ≤ dn. Now

we have that if X = 0 or Y = 0, then (b − a) mod d′ = 0 as required. However,

the probabilities are skewed by an amount ∝ 1/k ≈ d′/dn. If X = Y = 1, then

the probabilities are skewed in a similar manner. But in addition we have that if

b = dn − 1, then (b − a) mod d′ = 1 is not satisfied with probability 1/dn. The

important thing here is that all errors tend to zero exponentially fast as n becomes

large.

We have seen several examples of how inter-conversions between non-local ex-

tremal boxes are possible using only local operations. It is also interesting to con-

sider how boxes may be simulated using only classical communication (CC) and
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shared random data (SR), i.e., without other boxes. For example, we can see that

one d-box may be simulated with one bit of 1-way communication and log2 d bits of

shared randomness.

Protocol 4: 1 bit CC and log2 d bits SR → 1 d-box

Alice and Bob share a random variable α ∈ {0, · · · , d − 1}, where α takes all its

possible values with equal probability 1/d.

Alice. Alice sends her input X to Bob and outputs a = α.

Bob. Bob, knowing X and α, outputs b = (α+ X.Y ) mod d.

This protocol is optimal regarding the amount of 1-way communication exchanged.

This is a consequence of the following lemma, which places a lower bound on the

amount of communication needed to simulate boxes. The lemma is used in the proof

of Theorem 2, our final main result for this section.

Lemma 1 The simulation of n d−boxes using 1-way communication requires at
least n bits of communication if shared randomness is available, and n+n log2 d bits

without shared randomness.

Proof. Note that this bound can be achieved using Protocol 4 for each of the n

boxes, replacing if necessary n log2 d bits of shared randomness by n log2 d bits of

communication from Alice to Bob.

Let us show that this amount of communication is necessary. Suppose first that

both parties have access to shared random data and that communication is allowed

from Alice to Bob. Bob’s output is thus b = b(Y,C, r) where Y = Y 1 . . . Y n are

the joint inputs for Bob, C is the communication and r the shared data. Note

simply that for Alice, there are 2n possible joint inputs into n d-boxes. If Alice is

sending fewer than n bits, there will be at least one pair of joint inputs for which

her communication is the same. Call them X1 and X2. A careful examination of

the definition of a d-box reveals that there will be at least one joint input of Bob’s
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into the n boxes such that his output must be different according to whether Alice’s

input was X1 or X2. Thus < n bits of communication are not sufficient.

If Alice and Bob do not have access to shared randomness, then Bob’s output

is of the form b = b(Y,C). The proof then follows by an argument similar to the

one used above, noting that for Alice there are 2n+n log2 d possible joint input-output

pairs (X,A). ¤

These types of considerations will help us to establish the final result of this

section.

Theorem 2 It is in general impossible, using local reversible operations, exactly to

transform n d-boxes into m d′-boxes.

The theorem follows from the following two lemmas.

Lemma 2 Using n d-boxes, Alice and Bob can exactly simulate at most n d′-boxes,

for d ≥ d′.

Lemma 3 Using n d′-boxes, Alice and Bob can exactly simulate at most n(1 +

log2 d
′)/(1 + log2 d) < n d-boxes for d′ ≤ d.

Proof. We prove Lemma 2 as follows. We know that we can simulate n d-boxes

with n bits of communication and n log d bits of shared randomness. Suppose that

there were a protocol using only local operations that could convert n d-boxes into

N d′ boxes, for some d′ ≤ d, where N > n. As argued above, it follows from

the fact that d-boxes are vertices that this protocol would not need any additional

shared randomness. But then, by combining the simulation of the d-boxes with the

protocol for their conversion, we would have constructed a protocol for simulating

N d′-boxes using only n bits of communication, in contradiction with Lemma 1.

The proof of Lemma 3 is very similar. Note that we can simulate n d′-boxes with

n + n log2 d
′ bits of classical communication and no shared randomness. Suppose

that there were a protocol that converts n d′-boxes into N d-boxes, for some d ≥ d′,
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where N > n(1+log2 d
′)/(1+log2 d). Then we would have constructed a protocol for

simulating N d-boxes using only n+ n log2 d
′ bits of communication and no shared

randomness, again in contradiction with Lemma 1. ¤

5.3 Three party correlations.

5.3.1 Definitions.

In this section, we generalize the considerations of the previous sections to consider

tripartite correlations. As before, we consider that correlations are produced by

a black box with specified inputs and outputs, but now the box is assumed to be

shared between three separated parties, A, B and C.

The no-signalling polytope.

A box is defined by joint probability distributions pabc|XY Z , which satisfy positivity,

pabc|XY Z ≥ 0 ∀ a, b, c,X,Y,Z (5.3.1)

normalization,

∑

a,b,c

pabc|XY Z = 1 ∀ X,Y,Z (5.3.2)

and no-signalling. With three parties it is possible to imagine various types of com-

munication, and correspondingly there are different types of no-signalling conditions.

Obviously we require that A cannot signal to B or C (and cyclic permutations). We

should also, however, require the stronger condition that if the systems B and C

are combined, then A cannot signal to the resulting composite system BC. This is

expressed by

∑

a

pabc|X,Y,Z =
∑

a

pabc|X′,Y,Z ∀ b, c, Y,Z,X,X ′, (5.3.3)
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where, again, we include cyclic permutations. Finally, note that if systems A and

B are combined, the resulting composite system AB should not be able to signal

to C. This type of condition does not require a separate statement, however, as it

already follows from Eq. (5.3.3). Indeed, using the fact that A cannot signal to BC

and that B cannot signal to AC, we deduce

∑

a,b

pabc|X,Y,Z =
∑

a,b

pabc|X′,Y,Z ∀ c,X,X′,Y,Z

=
∑

a,b

pabc|X′,Y ′,Z ∀ c,X,X′,Y,Y ′,Z,

(5.3.4)

which is the condition that AB cannot signal to C. Hence the only conditions we

need to impose on a tripartite box are those of Eqs. (5.3.1), (5.3.2) and (5.3.3). The

set of boxes satisfying these conditions is the polytope P .

Locality conditions.

In the tripartite case, as well as different types of no-signalling condition, there are

different types of locality condition. First, a box is fully local if the probabilities

can be written in the form

pabc|XY Z =
∑

λ

pλ pa|X(λ) pb|Y (λ) pc|Z(λ). (5.3.5)

The set of such boxes is a convex polytope denoted L. Second, we say that a box

is two-way local if either there exists a bi-partition of the parties, say AB versus C,

such that the composite system AB is local versus C, or if the box can be written

as a convex combination of such boxes, i.e.,
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pabc|XY Z = p12

∫

pab|XY (i) pc|Z(i) di (5.3.6)

+ p13

∫

pac|XZ(i) pb|Y (i) di (5.3.7)

+ p23

∫

pbc|Y C(i) pa|X(i) di, (5.3.8)

where p12+p23+p13 = 1. The set of such boxes is again a convex polytope, denoted

L2. Finally, any box that cannot be written in this form demonstrates genuine

three-way non-locality. We have that L ⊂ L2 ⊂ P and also that L ⊂ Q ⊂ P .
In the following, we restrict our attention to the case a, b, c, X,Y,Z ∈ {0, 1}. We

find the vertices of the polytope P and point out some connections with three-party

Bell-type inequalities. Finally we consider some examples of interconversions, in

particular of how to construct tripartite boxes using PR boxes as a resource.

5.3.2 Two inputs and two outputs.

For the tripartite boxes with two inputs and two outputs per observer, Eq. (5.3.2)

expresses 8 normalization constraints, and Eq. (5.3.3) expresses 3 × 12 = 48 no-

signalling constraints. However, as in the bipartite case, there is also some further

redundancy; there turn out to be 38 independent constraints. Therefore the dimen-

sion of this polytope is dim P = 26 − 38 = 26.

Finding the vertices of a polytope given its facets is the so called “vertex enu-

meration problem” for which several algorithms are available, although they are

efficient only for low dimensional problems. We determined the extreme points of

our three-party polytope with Porta [99], cdd [100] and lrs [101]. It turns out that

there are 46 classes of vertices, where vertices within one class are equivalent un-

der local relabelling operations and permutations of the parties. These 46 classes

of extreme points can be divided into three categories: local, two-way local and

three-way non-local.
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Local vertices.

This category contains boxes for which A’s, B’s and C’s outputs are all deterministic.

They all belong to the same class under reversible local operations, a representative

of which is:

pabc|XY Z =







1 : a = 0, b = 0, c = 0

0 : otherwise.
(5.3.9)

Two-way local vertices.

In view of the preceding discussion for bipartite correlations, there is only one class

of extremal two-way local correlations that are not fully local. This is because if a

box is a vertex, there can be only one term in the decomposition on the right hand

side of Eq. (5.3.6). Then it follows from Theorem 1 that this term must describe

a PR box shared between two parties, along with a deterministic outcome for the

third party. Thus any box of this type is equivalent to

pabc|XY Z =







1/2 : a⊕ b = X.Y and c = 0

0 : otherwise,
(5.3.10)

Three-way non-local vertices.

This category contains genuine three-party non-local extremal correlations. It is

much more complex than the two above, since it comprises 44 different classes of

vertices. Out of these, we mention 3 classes of particular interest. The first class

can be expressed as

pabc|XY Z =



















1/4 : a⊕ b⊕ c

= X.Y ⊕ X.Z

0 : otherwise,

(5.3.11)

If we imagine that B and C form a composite system with input Y ⊕ Z and

output b⊕ c, then this is a PR box shared between A and BC. We refer to them as
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“X(Y+Z)” boxes.

Correlations in the second class are equivalent to

pabc|XY Z =



















1/4 : a⊕ b⊕ c

= X.Y.Z ⊕ X̄.Ȳ .Z̄

0 : otherwise,

(5.3.12)

where we define X̄ = X⊕1, and Ȳ , Z̄ similarly. We call them “Svetlichny” correlations

(for reasons explained below).

Finally, the third class contains what we call “XYZ” correlations.

pabc|XY Z =







1/4 : a⊕ b⊕ c = X.Y.Z

0 : otherwise.
(5.3.13)

The XYZ correlations are special because, as W. van Dam pointed out to us [102],

they can be used to solve any three party communication complexity problem with

only 1 bit broadcast by each party. He also pointed out that they have a natural

generalization to n parties: a1⊕ a2⊕ · · ·⊕ an = X1.X2 . . .Xn, where Xi ∈ {0, 1} is the
input of party i and ai ∈ {0, 1} the output of party i. These n-party correlations

can be used to solve any n party communication complexity problem with 1 bit

broadcast by each party. They can be constructed from a supply of PR boxes.

We conclude this section with some remarks on these correlation vertices and

known multipartite Bell-type inequalities. First, each of the X(Y+Z), XYZ, and

Svetlichny boxes violates the Mermin-Klyshko inequality [24, 25] up to the algebraic

maximum. Second, we recall that inequalities can be written down that detect

genuine three-way non-locality. One such is the Svetlichny inequality [1]. If we

define 〈i j k〉 by

〈ijk〉 =
∑

a,b,c

(−1)a+b+c pa,b,c|X=i,Y =j,Z=k, (5.3.14)

then the Svetlichny inequality is
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M = −〈000〉+ 〈001〉+ 〈001〉+ 〈011〉+ 〈100〉+ 〈101〉+ 〈110〉 − 〈111〉 ≤ 4. (5.3.15)

Any local or two-way local box must satisfy this inequality. Quantum mechan-

ically we can obtain M = 4
√
2 using a Greenberger-Horne-Zeilinger (GHZ) state

[35]. X(Y+Z) boxes do not violate the Svetlichny inequality (although they must

violate some Svetlichny-type inequality as they are three-way non-local). Svetlichny

boxes give M = 8, the algebraic maximum of the expression (hence their name);

XYZ correlations give M = 6. From the fact that some quantum states violate

the Svetlichny inequality, we can conclude that in the two-input two-output case,

Q ⊆ L2.

5.3.3 Simulating tripartite boxes.

We consider how we may simulate some of these tripartite boxes, using a supply of

PR boxes as a resource. We will give three examples, showing how to simulate an

X(Y+Z) box with two PR boxes, an XYZ box with three PR boxes and a Svetlichny

box with three PR boxes.

First, suppose that two PR boxes are shared with box 1 between Alice and Bob

and box 2 between Alice and Charles. The following protocol shows how the three

observers may simulate one X(Y+Z) box (see Fig. 5.5).

Protocol 5: 2 PR boxes → 1 X(Y+Z) box

Alice. Alice inputs X into box 1 and box 2, obtaining outcomes a1 and a2. She then

outputs a = a1 ⊕ a2.

Bob. Bob inputs Y into box 1, obtaining an output b.

Charles. Charles inputs Z into box 2 obtaining output c.
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Figure 5.5: Making an X(Y+Z) box from 2 PR boxes.

X a

a

Y
b

b c

c

1 2

3

2

2

1

1

3 3

Z

Figure 5.6: Making an XYZ box from 3 PR boxes.

The protocol works because

a⊕ b⊕ c = a1 ⊕ a2 ⊕ b⊕ c = X.Y ⊕ X.Z (5.3.16)

Suppose now that three PR boxes are shared with box 1 between Alice and Bob, box

2 between Alice and Charles, and box 3 between Bob and Charles. This protocol

(summarized in Fig. 5.6) allows them to simulate one XYZ box.

Protocol 6: 3 PR boxes → 1 XYZ box

Alice. Alice inputs X into box 1, obtaining an output a1. She then inputs a1 into

box 2, obtaining output a2. Alice’s output for the protocol is a = a2.
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Figure 5.7: Making a Svetlichny box from 3 PR boxes.

Bob. Bob inputs Y into box 1, obtaining an output b1. He then inputs b1 into box

3, obtaining output b3. Bob’s output for the protocol is b = b3.

Charles. Charles inputs Z into both boxes 2 and 3, obtaining outputs c2 and c3.

Charles’ output for the protocol is c = c2 ⊕ c3.

The protocol works because

a⊕ b⊕ c = a2 ⊕ b3 ⊕ c2 ⊕ c3 = Z.a1 ⊕ Z.b1 = X.Y.Z. (5.3.17)

It is immediately clear that we may make one Svetlichny box with two XYZ

boxes. Into the first XYZ box, Alice, Bob and Charles input X,Y,Z respectively and

into the second X̄,Ȳ ,Z̄. For the final output, each person adds (modulo 2) the result of

their two outputs. Combining this with Protocol 6, we have shown how to simulate

one Svetlichny box with 6 PR boxes. However, one can do better than this.

As before, we suppose that we have three PR boxes, box 1 shared between Alice

and Bob with outputs a1, b1, box 2 between Alice and Charles with outputs a2, c2

and box 3 between Bob and Charles with outputs b3, c3. Protocol 7 shows how to

construct 1 Svetlichny box. It is summarized in Fig. 5.7.
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Protocol 7: 3 PR boxes → 1 Svetlichny box

Alice. Alice inputs X̄ into box 1, and X into box 2, obtaining a1 and a2. Her final

output is a = a1⊕ a2⊕ 1. Bob. Bob inputs Y into box 1 and Ȳ into box 3, obtaining

b1 and b3. His final output is b = b1 ⊕ b3.

Charles. Charles inputs Z̄ into box 2 and Z into box 3, obtaining c2 and c3. His final

output is c = c2 ⊕ c3.

To see that this works write

X̄.Ȳ .Z̄ ⊕ X.Y.Z = (X ⊕ 1)Y ⊕ (Y ⊕ 1)Z ⊕ (Z ⊕ 1)X ⊕ 1 (5.3.18)

in order to obtain

a⊕ b⊕ c = X̄.Ȳ .Z̄ ⊕ X.Y.Z. (5.3.19)

5.3.4 Non-locality and the environment.

Suppose that we have some three party no-signalling distribution pabe|XY E with par-

ties A,B and E. We will show that if the reduced probability distribution pab|XY =
∑

e pabe|XY E is a vertex of the bipartite no-signalling polytope, then the composite

system AB is local versus E. This is analogous to the result that pure quantum

states cannot be entangled with a third party or the environment. It means that

extremal non-local correlations cannot be correlated to any other system.

By Bayes’ theorem

pabe|XY E = pab|XY Ee pe|XY E

= pab|XY Ee pe|E (5.3.20)

where we have used the fact that AB cannot signal to E to deduce the second

equality. The condition that E cannot signal to AB implies
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pab|XY =
∑

e

pabe|XY E ∀E

=
∑

e

pab|XY Ee pe|E ∀E (5.3.21)

For each value E, the last equality provides a convex decomposition of pab|XY in

terms of non-signalling correlations, with e playing the role of the shared random-

ness. Since we supposed that pab|XY is extremal, this decomposition is unique and

pab|XY Ee = pab|XY ∀e, E. We then deduce

pabe|XY E = pab|XY pe|E, (5.3.22)

i.e., that AB is uncorrelated with E.

A natural question that we leave as an open problem is whether the converse is

true: If pab|XY is in the interior of the no-signalling polytope, is it always possible to

extend it to a tripartite distribution pabe|XY E such that AB is non-local versus E?

(It is always possible, if pab|XY is not a vertex, to write it as pab|XY =
∑

e pabe|XY E,

where E takes the single value E = 0. One can also require that E take several

values, in such a way that pabe|XY E is non-signalling. What is non-trivial is the

requirement that pabe|XY E is non-local in the partition AB versus E. We do not

know if this is possible in general.)

5.4 Discussion and open questions.

In conclusion, we have defined non-signalling correlation boxes and investigated their

potential as an information theoretic resource. Once the structure of the set of such

boxes is understood as a convex polytope, it is clear that there are analogies with

other information theoretic resources, in particular the resource of shared quantum

states (with non-locality taking the place of entanglement). With this in mind, we

have shown how various interconversions between boxes are possible. The set of
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multipartite boxes in particular appears very rich. Finally, we furthered the analogy

with quantum states by demonstrating how non-locality is monogamous, in much the

same way that entanglement is monogamous. We finish with some open questions.

Non-local vertices and Bell inequalities.

We saw in Sec. 5.2.2 that for the two-settings two-outcomes polytope there is a

one-to-one correspondence between extremal non-local correlations and facet Bell

inequalities (non-trivial facets of the local polytope). One might wonder whether this

one-to-one correspondence holds in general. It appears that for more complicated

situations involving more possible inputs or outcomes, then it does not. It would be

interesting to investigate what is the precise relation between non-local vertices and

facet Bell inequalities. This might help understand further the geometrical structure

of non-local correlations.

Other vertices.

We have given a complete characterization of two-inputs extremal non-local boxes

in the bipartite case and presented some examples in the tripartite case. In general,

one might also consider extremal boxes involving more inputs, more outcomes or

more parties.

For instance, a natural way to generate more complex boxes is by taking products

of simpler ones. Suppose Alice and Bob have access to two boxes p0a0b0|X0Y 0
and

p1a1b1|X1Y 1
, where for simplicity we consider that there are M possible inputs and d

possible outputs for each box. If Alice inputs X0 and X1 in each of the two boxes and

outputs a = d a1+a0 and similarly for Bob, they have now produced a non-local box

with M 2 inputs and d2 outputs pab|XY = p0a0b0|X0Y 0
. p1a1b1|X1Y 1

, where X =M X1 + X0

and similarly for Y . If the two original boxes were extremal for the (M,d) polytope

will the product be extremal for the (M 2, d2) polytope? In the case of quantum

states, the analogous result of course holds - a product of two pure states is itself a

pure state. We have not yet been able to show that this result holds in the case of
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boxes.

Inter-conversions.

We have so far been able to achieve only a limited set of inter-conversions between

extremal boxes. This is especially true for the three party case, where there are

46 classes of vertices and we have investigated only 5 of these. Understanding

what kinds of inter-conversions between extremal boxes are possible is necessary to

appraise their relative power as an information-theoretic resource.

The motivation is also to answer the general question of whether there exist

inequivalent types of non-local correlations. Note for instance that the three-way

non-local correlations of eqs. (5.3.11), (5.3.13) and (5.3.12) cannot be reduced to

two-way non-local ones using only local operations. This follows from the fact

that the outcomes for two out of the three parties are totally independent of one

another (unless the outcome of the third party is communicated to them). In this

sense genuinely tripartite extremal correlations and bipartite extremal correlations

belong to inequivalent classes. Are there inequivalent classes of bipartite extremal

correlations? In other words, are there two bipartite extremal boxes, such that

one cannot simulate the other even approximately, no matter how many copies are

available?

Another problem is whether all bipartite and multipartite correlations can be

constructed using PR boxes, as is the case for all the extremal boxes presented in

this paper (and thus also for probabilistic mixtures of them). PR boxes could then

be viewed as the unit of non-local correlation, in analogy with the bit, qubit and

ebit, which are the units of classical and quantum information theoretic resources.

Interior points.

We have only considered conversions between extremal probability distributions. It

would be interesting to consider the interior points of the polytope, which comprise

quantum correlations. In particular we would like to find out if distillation of such
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mixed correlations is possible, i.e., if given a number of copies of a mixed box we can

by local operations obtain some number of extremal boxes. Note that Cirel’son’s

bound [17] shows that the quantum correlations Q, are a proper subset of the set

of all non-signalling correlations P . Thus it is impossible to distill correlations in Q
to extremal correlations. But apart from this, we do not know of any constraint on

possible distillation of non-local correlations.

Finally, one could consider distillation in a new context, where we allow some

communication between the parties but account for it at the end of the protocol (as

noted above, an analogous approach was considered in Ref. [94] in the context of

classical distillation of shared randomness). Alternatively, following Ref. [96], one

could introduce a new element, that of secrecy. Suppose that inputs and outputs

are considered to be secret, and that Alice and Bob have a supply of noisy (that is

non-extremal) boxes. Can Alice and Bob distill a supply of extremal boxes, whose

inputs and outputs are also secret, via public communication?

As we outlined in the introduction, non-local extremal correlations can be a very

powerful resource for communication complexity problems. This will also be the

case for correlations that can be distilled to these with no or little communication.

On the other hand, Cirel’son’s bound and results in communication complexity [88]

put limits on the power of quantum mechanics as a resource in distributed tasks. A

better understanding of the possible inter-conversions between non-local correlations

might bring an information theoretic explanation of these limitations.
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5.5 Appendix B.

This section contains a proof of theorem 1, derived by S. Massar and S. Pironio.

Theorem 1. The non-local vertices of P for two input settings and dA
X
and dB

Y

outputs are equivalent under reversible local relabelling to

pab|XY =



















1/k : (b− a) mod k = X.Y

a, b ∈ {0, . . . , k − 1}
0 : otherwise,

(5.5.1)

for each k ∈ {2, . . . ,minX,Y (d
A
X
, dB

Y
)}.

Proof of Theorem 1. A probability table pab|XY is a vertex of P if and only if it

is the unique solution of Eqs. (5.2.1),(5.2.2),(5.2.3) and (5.2.4) with dim(P) of the
positivity inequalities (5.2.1) replaced with equalities.

It will be useful to distinguish two kinds of extremal points: partial-output ver-

tices and full-output vertices. Partial-output vertices are vertices for which at least

one of the pa|X = 0 or pb|Y = 0. They can be identified with vertices of polytopes

P ′ with fewer possible outputs: d′A
X
< dA

X
or d′B

Y
< dB

Y
. Conversely, the vertices of a

polytope P ′, with d′A
X
< dA

X
or d′B

Y
< dB

Y
can be extended to vertices of P by mapping

the outcomes of X′ and Y
′ to a subset of the outcomes of X and Y , and by assigning

a zero probability pa|X = 0 and pb|Y = 0 to extra outcomes. Full-output vertices are

vertices for which all pa|X 6= 0 and pb|Y 6= 0, i.e., for which all outputs contribute non-

trivially to pab|XY . Thus the extremal points of a given two-settings polytope consist

of the full-output vertices of that polytope and, by iteration, of all the full-output

vertices of two-settings polytopes with fewer outcomes. Hence in the following, we

need construct only the full-output vertices for a polytope characterized by dA
X
and

dB
Y
.

The joint probabilities pab|XY form a table of
∑

X,Y
dA

X
dB

Y
entries. These are not all

independent because of the normalization and no-signalling conditions. There are 4

normalization equalities expressed by Eq. (5.2.2) and
∑

X
dA

X
+
∑

Y
dB

Y
no-signalling
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equalities expressed by Eqs. (5.2.3) and (5.2.4). But for each value of X, the no-

signalling condition for one of Alice’s outputs can be deduced from the conditions

of normalization and no-signalling for the dA
X
−1 other outputs. A similar argument

applies for each value of Y and Bob’s outputs. Hence Eqs. (5.2.2), (5.2.3) and (5.2.4)

form a set of only 4 +
∑

X
(dA

X
− 1) +

∑

Y (d
B
Y − 1) =

∑

X
(dA

X
) +

∑

Y (d
B
Y ) linearly

independent equations. The dimension of the no-signalling polytope is thus

dim(P) =
1
∑

X,Y =0

dA
X
dB

Y
−

1
∑

X=0

dA
X
−

1
∑

Y =0

dB
Y
. (5.5.2)

This is the number of entries in the table pab|XY that must be set to zero to obtain

a vertex. Moreover, to obtain a full-output vertex, these must be chosen so that

neither pa|X = 0 nor pb|Y = 0. If we fix a particular pair of inputs (X, Y ), then no

more than dA
X
dB

Y
−max(dA

X
, dB

Y
) probabilities may be set to zero, otherwise there will

be fewer than max(dA
X
, dB

Y
) probabilities pab|XY > 0, and thus one of Alice’s or one

of Bob’s outcomes will not be output for these values of X and Y . Because of the

no-signalling conditions it will not be output for the other possible pairs of inputs,

so the vertex will be a partial-output one. Overall, the maximal number of allowed

zero entries for a full-output vertex is

Z =
∑

X,Y

(

dA
X
dB

Y
−max(dA

X
, dB

Y
)
)

. (5.5.3)

Such a vertex is thus possible if dim(P) ≤ Z, or

1
∑

X=0

dA
X
+

1
∑

Y =0

dB
Y
≥

1
∑

X,Y =0

max(dA
X
, dB

Y
) . (5.5.4)

This condition is fulfilled (with equality) only for dA
X
= dB

Y
= d, ∀X,Y ∈ {0, 1}.

We can thus restrict our analysis to d-outcome polytopes. The extremal points

of more general ones, where dA
X
6= dB

Y
, will be the full-output extremal points of

d-outcomes polytopes for d = 2, . . . ,minX,Y (d
A
X
, dB

Y
).

Using dA
X
= dB

Y
= d, ∀X,Y ∈ {0, 1} in the discussion before Eq. (5.5.3), it follows

that the dimension of a d-outcome polytope is 4d(d− 1) and that for a given pair of
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inputs exactly d(d−1) probabilities must be assigned the value zero, or equivalently

that d probabilities must be > 0. We can therefore write the probabilities as

pab|XY







> 0 if b = fXY (a)

= 0 otherwise,
(5.5.5)

where fXY (a) is a permutation of the d outcomes. Indeed, if fXY (a) is not a permu-

tation, then at least one of Bob’s outcomes will not be output.

We can relabel Alice’s outcomes for X = 0 so that f01(a) = a, we can relabel

those of Bob for Y = 0 so that f00(a) = a and finally those of Alice for X = 1 to

have f10(a) = a. In other words,

pab|XY







> 0 if (b− a) mod d = 0

= 0 otherwise,
(5.5.6)

for (X,Y ) ∈ {(0, 0), (0, 1), (1, 0)}. It remains to determine f11. It must be chosen so

that the probability table pab|XY is uniquely determined, i.e., so that specific values

are assigned to the probabilities different from zero. In fact, it is easy to show that

this can only be the case if the permutation f11 is of order d, i.e., f k11(a) = a only

for k = 0 mod d.

The only remaining freedom in the relabelling of the outcomes so that property

(5.5.6) is conserved, is to relabel simultaneously the outputs for all four possible

inputs. We can relabel them globally so that f11(a) = (a + 1) mod d. This implies

that pab|11 = 1/d if (b− a) mod d = 1. This completes the proof. ¤



Chapter 6

Quantifying entanglement.

Abstract.

Quantifying entanglement has been the aim of a huge amount of recent research.

Except in a few special cases it remains an unsolved puzzle. This chapter contains

an overview of the main results in this area, and a framework for interpreting some

new results relating to multipartite entanglement which are presented in chapter 7.

93
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6.1 Introduction.

In quantum information applications entanglement is thought to be closely related

to the possibilities of gains over classical procedures [104], and applications such as

teleportation [45] and super dense coding [46] consume entangled pure states as a

resource. This has motivated recent attempts at quantifying entanglement. This

task has proven to be extremely challenging but the following chapter presents some

of the main results.

6.2 Separability criterion.

A mixed state ρ ∈ H1 ⊗ ...⊗Hk is separable if it may be written

ρ =
∑

i

pi|φ1i 〉〈φ1i | ⊗ ...⊗ |φki 〉〈φki |. (6.2.1)

Where |φmi 〉 ∈ Hm and
∑

i pi = 1. The definition of separability provides no simple

way of telling if an arbitrary state is entangled or not [105]. It is therefore important

to develop separability criterion which allow us to perform simple tests to assess the

entanglement properties of a given state. An important result in this area is the

Peres-Horodecki separability criterion for bi-partite states.

Peres-Horodecki separability criterion [106, 57].

Let ρ be a bipartite density matrix on H = HA ⊗HB, which we may write

ρ = ρmµ,nν (6.2.2)

The Latin indices refer to system A and Greek indices to system B. The partial

transposition operation defines a new hermitian matrix σ as follows.

σmµ, nν = ρnν,mµ (6.2.3)
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Here the Latin indices have been transposed but not the Greek ones. In the case

of separable states this partial transposition operation always results in a physical

state, i.e σ is positive. To see this let

ρ =
∑

i

pi ρ
′
i ⊗ ρ′′i (6.2.4)

where ρ′i ∈ HA and ρ′′i ∈ HB. Then

σ =
∑

i

pi (ρ
′
i)
T ⊗ ρ′′i . (6.2.5)

This is a valid (non-negative) density matrix. Thus the Peres-Horodecki separability

criterion may be stated:

Negativity under partial transposition (PPT) ⇒ non-separability.

The Horodecki’s have shown that this condition is in fact necessary and sufficient

for systems of dimension 2× 2 and 2× 3 [57].

Of course we may be interested in which states are separable, in which case the

following criterion may be used [107, 108, 109].

For a bi-partite system ρ of overall dimension d, Tr ρ2 < 1
d−1 ⇒ ρ is sepa-

rable.

Single copy and asymptotic conversions.

Because of the incomplete nature of our knowledge in this area it is useful to make

distinctions between the different types of systems we may consider. For example

pure or general mixed states, bi-partite or multipartite, and continuous or discrete

systems. Continuous variable systems are not considered in this review (For a review

specific to continuous variable systems, see [110]).

Quantifying entanglement is based on the premise that we can convert an en-

tangled state from one form to another. The resources we are usually allowed are

local operations and classical communication (LOCC). There are then two main
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approaches, single copy and asymptotic (many copy) conversions. Although within

these two main strands there are many more subtle distinctions one can make.

6.3 The single copy approach.

We are interested in what sort of transformations are possible on a single state under

LOCC. A key result in this area is Nielson’s theorem [111]. This provides necessary

and sufficient conditions for exact conversions for bi-partite pure states. First we

need the following definition of majorization.

x is majorized by y (x ≺ y).

If x = (x1, x2, ..., xd) and y = (y1, y2, ..., yd), let x
↓ mean the reordering of x so that

the components are in decreasing order. Then x ≺ y if

k
∑

j=1

x↓j ≤
k
∑

j=1

y↓j for k = 1, ..., d (6.3.1)

Where equality holds when k = d. Now suppose we are given two bi-partite pure

states |ψ〉 and |φ〉. Define the reduced density matrices as

ρψ ≡ TrB (|ψ〉〈ψ|), ρφ ≡ TrB (|φ〉〈φ|), (6.3.2)

and let λψ and λφ be the vectors whose components are the eigenvalues of ρψ and

ρφ.

Nielsen’s theorem.

A bi-partite pure state |ψ〉 may be transformed to another bi-partite pure state |φ〉
by LOCC with certainty if and only if λψ ≺ λφ. We can express this in chemical

notation as |ψ〉 → |φ〉, and say |φ〉 is exactly reducible to |ψ〉. Just as chemical

reactions often require catalysts, so too with quantum state conversions. |φ〉 is

catalytically reducible to |ψ〉 if there exists some state |σ〉 such that
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|ψ〉 ⊗ |σ〉 → |φ〉 ⊗ |σ〉 (6.3.3)

Jonathan and Plenio [112] have found examples where a catalyst allows a trans-

formation to be achieved with certainty, where without the catalyst it may only be

done with a chance of failure.

Two states may only be obtained from each other with certainty if they are

related by local unitaries (LU)[114, 115]. Even for simple bi-partite systems typ-

ical states are not related by LU [116, 117, 118]. Thus a categorization based on

exact reducibilities presents a problem in that the number of inequivalent types

of entanglement must be labelled by continuous parameters. Because of this the

weaker stochastic reducibility has been used (SLOCC). Here we no longer require

that a conversion be achieved with certainty, only with some non-zero probability.

The optimum strategy for converting between any two pure states under SLOCC

is presented in [119]. It is optimal in the sense that the probability of a successful

conversion is the highest possible. This optimum value may be calculated as fol-

lows: Suppose we wish to convert |ψ〉 into |φ〉 under SLOCC. Using the Schmidt

decomposition,

|ψ〉 =
n
∑

i=1

√
αi|i〉A|i〉B, αi ≥ αi+1 ≥ 0,

n
∑

i=1

αi = 1, (6.3.4)

|φ〉 =
n
∑

i=1

√

βi|i〉A|i〉B, βi ≥ βi+1 ≥ 0,
n
∑

i=1

βi = 1. (6.3.5)

Then the maximum probability of obtaining state |φ〉 from |ψ〉, P (ψ → φ), is given

by

P (ψ → φ) = min l∈[1,n]

∑n
i=l αi

∑n
i=l βi

. (6.3.6)

Dür, Vidal and Cirac [71] have shown that for 3 party qubit systems there are

just two types of inequivalent (under SLOCC) tripartite entanglement. Two repre-

sentatives of these classes are the GHZ and W states.
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The problem of converting to a 2 qubit mixed state from a pure state is considered

in [113]. We can also note that other reducibilities are possible, such as stochastic

reducibilities with catalysis, and reducibilities without communication.

6.4 The asymptotic approach.

The asymptotic approach to quantifying entanglement means that we are interested

in the transformation properties of large numbers of identical copies of our state.

This has proved to be a particularly successful approach in the case of bi-partite

pure states.

Ideal measures.

There is some consensus about desirable properties any asymptotic entanglement

measure should satisfy [114, 120]. Let E be an entanglement measure. Then E

should have the following properties.

(a) limN→∞E(ρ⊗N) = NE(ρ)

(b) E(ρ) = 0⇔ ρ is separable.

(c) Local unitary operations on ρ leave E(ρ) invariant.

(d) E(ρ) can not be increased by local measurements (POVM) and classical com-

munication.

Measures satisfying property (a) are said to be asymptotically additive. It is

possible to define a stronger additivity; E is fully additive if E(ρ1 ⊗ ρ2) = E(ρ1) +

E(ρ2) for all ρ1, ρ2. Measures satisfying property (d) are said to be entanglement

monotones.
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Two party pure states.

There is a simple and elegant categorization of bi-partite pure state entanglement

- the von Neumann entropy of the reduced density matrix. This quantity satisfies

all of the conditions above, and is fully additive. For a quantum state ρ defined on

H = HA ⊗HB, the von Neumann entropy is defined as

S(ρ) = −Tr (ρLog ρ). (6.4.1)

The reduced density matrices are

ρA = TrB(ρAB) (6.4.2)

and

ρB = TrA(ρAB). (6.4.3)

Then the reduced entropies are defined as SA(ρAB) = S(ρA) and SB(ρAB) = S(ρB).

If ρAB is pure then the entanglement of ρAB is defined

E(ρAB) = SA(ρAB) = SB(ρAB). (6.4.4)

This measure has a physical interpretation as follows. Suppose we have some

partially entangled pure state |χ〉AB. To measure the entanglement we convert n

copies of this state to k copies of the maximally entangled singlet state. We are

allowed to perform local operations only, and can communicate classically. We

require that the transformation is reversible. Then in the asymptotic limit it can be

shown that

E(χ) ≡ lim
n→∞

k

n
= SA(χ) = SB(χ). (6.4.5)

Since the Von Neumann entropy of the reduced state is such a useful entanglement

measure, we require that any other entanglement measure reduces to this measure
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in the case of pure bi-partite systems. i.e we add condition (e) to the conditions of

an ideal entanglement measure.

(e) E(ρ) = SA(ρ) for pure bi-partite systems.

Two party mixed states.

In contrast to the situation for pure states there exist entangled states ρ which can

not be reversibly converted into singlets under asymptotic LOCC [121]. Thus two

measures of mixed state entanglement have been proposed; the entanglement cost

and the entanglement of distillation. The general scheme is as follows. We wish to

convert m copies of a bi-partite state ρ into n copies of σ under LOCC so that the

asymptotic ratio m
n
is minimal. Generally a perfect transformation

ρ⊗m → σ⊗n (6.4.6)

is impossible, so we require only that ρ⊗m approaches ρ⊗n to arbitrary precision as

m is increased. If the final state of ρ⊗m is ρ′, the distance measure used between

the two states is the fidelity

F (ρ′, σ⊗n) = (Tr(
√
σ⊗n ρ′

√
σ⊗n)1/2)2. (6.4.7)

If the final state σ desired is the singlet state then the process of conversion is

distillation, and the entanglement of distillation, Ed, is defined

Ed(ρ) = lim
n→∞

m

n
(6.4.8)

If the starting state ρ is a singlet state then the entanglement cost may be defined

Ec(σ) = lim
n→∞

m

n
. (6.4.9)

We can also define the entanglement of formation as follows. We may imagine

producing some state σ according to the following protocol. σ can be decomposed

as
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σ =
∑

i

pi |ψi〉〈ψi|. (6.4.10)

Therefore if we make each state |ψi〉 from singlets, and mix them with probability pi

we see that it takes on average
∑

i pi SA(ψi) singlets to make σ. The entanglement

of formation, Ef , is defined as the average entanglement of the pure states in the

decomposition, minimized over all possible decompositions [122]:

Ef (σ) = min
∑

i

pi SA(ψi). (6.4.11)

Concurrence.

For bi-partite mixed states the entanglement of formation involves an optimization

over all possible decompositions of the state which is difficult to compute analytically.

Wooters [123] proved a result which gives the entanglement of formation for states

of two qubits. He did this by defining a quantity called the concurrence. Let

ρ̃ = (σy ⊗ σy)ρ
∗(σy ⊗ σy). (6.4.12)

The asterisk denotes complex conjugation in the basis {|00〉, |01〉, |10〉, |11〉}. Then

the concurrence, C(ρ), is defined

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4}, (6.4.13)

where the λi’s are the square roots of the eigenvalues, in decreasing order, of the

matrix ρρ̃. Now define

E(C) = h
(1 +

√
1− C2

2

)

, (6.4.14)

h(x) = −x log2x− (1− x) log2(1− x). (6.4.15)

The concurrence is an entanglement measure in its own right, ranging from 0

for separable states to 1 for the singlet state. However it is also related to the
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entanglement of formation by

Ef (ρ) = E(C(ρ)). (6.4.16)

Negativity.

The negativity of a state was introduced by Vidal and Werner [124] as a computa-

tionally tractable measure of mixed state bi-partite entanglement. It is based on the

Peres separability criterion. Let ρTA be the partial transpose of ρ, and let ||ρTA||1
denote the trace norm of ρTA , defined as; ||X||1 = Tr

√
X†X. The negativity of ρ is

defined

N (ρ) ≡ ||ρ
TA||1 − 1

2
. (6.4.17)

It is also possible to define the logarithmic negativity, EN (ρ), as

EN (ρ) ≡ log2||ρTA ||1. (6.4.18)

N (ρ) is an entanglement monotone, and the logarithmic negativity has the prop-

erty that it is additive. Vidal and Werner have shown in addition that the loga-

rithmic negativity provides an upper bound on the distillable entanglement on a

state.

Ed(ρ) ≤ EN (ρ). (6.4.19)

Relative entropy of entanglement.

For two mixed states σ and ρ, the relative entropy between σ and ρ is given by

D(σ||ρ) = Trσ(log σ − log ρ). (6.4.20)
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D(σ||ρ) can be interpreted as a measure of how difficult it is to distinguish measure-

ment outcomes on ρ from measurements on σ. Vedral et al [120] have proposed the

relative entropy of entanglement, Er(σ) as an entanglement measure.

Er(σ) = minρ∈SD(σ||ρ), S is the set of separable states. (6.4.21)

The idea behind this measure is that it quantifies the difference between the state

σ and the separable state ρ whose measurement statistics most closely match those

of σ. This measure satisfies properties (b), (c), (d) and (e) [120], but is not fully

additive [125].

Multipartite pure states and MREGS.

We have seen how bi-partite pure states may be reversibly converted to singlets

under LOCC. The MREGS is the generalization of this concept for pure multipartite

systems. For these systems it is not possible to reversibly convert every state into

singlets shared between the parties, even in an asymptotic sense [115]. It may

however be possible to asymptotically reversibly convert any state into some larger

set of entangled states. The set of such states with the smallest number of elements

is an MREGS, denoted Gn for a n party system. Thus while for bi-partite pure

states entanglement is a scalar, for multipartite systems it would be a vector.

For two pure states ψ and φ, φ is asymptotically reducible to ψ under local

operations and classical communication (φ ¹ ψ) if and only if

∀ε, δ > 0 ∃N,n,L s.t |( n
N

)− 1| < δ and (6.4.22)

F (L(ψ⊗N), φ⊗n) ≥ 1− ε.

L is a locally implementable operator, acting on all N copies of ψ, to convert it to n

approximate copies of φ. Here F (ρ, σ) = (Tr(
√
σ ρ
√
σ)1/2)2 is the fidelity between

two states.
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Asymptotic reducibilities and equivalences can have non integer yields. We can

denote this by allowing tensor exponents to take any non-negative real value. φ⊗x

is asymptotically reducible to ψ⊗y under LOCC denotes

∀ε, δ > 0 ∃N,n,L s.t |( n
N

)− x

y
| < δ and (6.4.23)

F (L(ψ⊗N), φ⊗n) ≥ 1− ε.

Pure states φ⊗x and ψ⊗y with x, y ≥ 0 are asymptotically equivalent (φ⊗x ≈ ψ⊗y)

if and only if φ⊗x is asymptotically reversible to ψ⊗y and vice versa.

To formalize the idea of MREGS, given a set of states G = {ψ1, ψ2, ..., ψt}, their
entanglement span Sp(G) is the set of states that G can generate reversibly under

asymptotic LOCC. i.e

Sp(G) = {ψ |ψ ≈
t
⊗

i=1

|ψi〉⊗xi , xi ≥ 0}. (6.4.24)

The set of xi are entanglement coefficients, which are not unique in general. A set of

minimal cardinality able to generate the full class of m party states is an MREGS,

which we denote by Gm. For example for two party states G2 = {|ψ−〉}. It is not

known if the entanglement coefficients are unique for an MREGS, as is desirable.

Very little is known about MREGS for n-partite systems. Even for the sim-

plest case n = 3 it is not known whether G3 is finite or not. We do however have

some lower bounds coming from conditions on the reduced entropies and relative

entropies of entanglement. These conditions are reviewed below, but discussion of

their implications to specific MREGS sets is postponed until the next chapter.

Constraints on MREGS.

When considering which states may belong to an MREGS we are interested in the

type of transformations we may achieve reversibly under LOCC. These transforma-

tions are constrained by considerations of reduced entropy and relative entropy of

entanglement.
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Reduced entropies.

For two states to be asymptotically equivalent they must have the same reduced

entropies [115]. For example, by considering the reduced entropies it is possible to

show that a four party GHZ may not be reversibly converted into singlets shared

between the four parties. This is discussed more fully in the next chapter.

Relative entropy of entanglement.

A consideration of reduced entropies for three party pure states gives no restric-

tion on, for example, the reversible conversion of the GHZ state to singlets. Linden

et al [126] have found a further restriction based on relative entropy of entangle-

ment. Again suppose that given two pure states ψ and φ we wish to convert ψ to φ

reversibly under LOCC. Then

Er(ψBC) = Er(φBC). [126] (6.4.25)

i.e the relative entropy of entanglement for any two parties must remain constant.

This shows that it is impossible to convert a GHZ state into singlets reversibly under

asymptotic LOCC. To see this we note that the reduced two party state of the GHZ

state is the maximally mixed state - which is separable with Er = 0, whereas the

the singlet shared between any two parties has Er = 1.

6.5 Other measures.

Three-way tangle.

Coffman, Kundu and Wootters [127] have proposed a generalization of the concur-

rence for three party pure states of qubits. Firstly to define the tangle.

τAB = (C(ρAB))
2. (6.5.1)

Where C(ρAB) is the concurrence of ρAB as defined in equation 6.4.13. We can
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also consider the quantity τA(BC), the tangle between A and the pair BC because

although the state space of BC is four dimensional, only two of those dimensions

are needed to express the pure state |η〉ABC . So we can treat A and BC as a pair

of qubits. The three-way tangle τABC can then be defined as

τABC = τA(BC) − τAB − τAC . (6.5.2)

The idea behind this is that essential three-way entanglement of A is the tangle

between A and BC minus the tangle between A and B, and A and C. For example

the GHZ state has three-way tangle 1 (= τA(BC)), whilst the W state has three-way

tangle equal to 0.

Schmidt measure.

The Schmidt measure has been proposed as a measure of multipartite entanglement

for both pure and mixed states [129]. It has been shown to be an entanglement

monotone. For pure states it is a natural generalization of the Schmidt rank. Con-

sider an n particle pure quantum system |ψ〉. Each party holds a system with

dimension di, so |ψ〉 ∈ H = Cd1 ⊗ ...⊗ Cdn . We may choose to write

|ψ〉 =
R
∑

i=1

αi|ψi1〉 ⊗ ...⊗ |ψin〉 (6.5.3)

where |ψij〉 ∈ Cdj for j = 1, ..., n, and αi ∈ C, i = 1, ...R. Let r be the minimal

number of product terms R in such a decomposition of |ψ〉. Then the Schmidt

measure, P , is

P (|ψ〉〈ψ|) = log2r. (6.5.4)

When we consider a bi-partite state this reduces to the Schmidt rank of that

state. For mixed states ρ,
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P (ρ) = min
∑

i

λiP (|ψi〉〈ψi|) (6.5.5)

where the minimum is taken over all possible decompositions of the form ρ =
∑

i λi|ψi〉〈ψi|.

The above is a summary of some of the more important ideas in quantifying

entanglement, although it is certainly not exhaustive. In the next chapter I present

some new work concerning reduced entropies of multipartite states and MREGS.
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Chapter 7

Entropy inequalities and MREGS.

Abstract.

In the previous chapter we saw various approaches to understanding multi-partite

entanglement. In this chapter we focus on one specific approach; that of considering

the reduced entropies of states. This investigation of multipartite entanglement was

the original motivation for our work, however we also aim to better understand the

constraints on the allowed reduced entropies.

In particular, suppose that we are given a list of reduced entropies - can we find

a corresponding quantum state? The reduced entropies could be constrained by

general linear inequalities such as strong subadditivity. They may be restricted by

constraints imposed on the system, such as restricting the dimension of the Hilbert

space. There could also be other constraints from new entropy inequalities.

If the dimension of the Hilbert space is not restricted then the only presently

known constraints on the reduced entropies come from strong subadditivity (SSA)

- all of the other known entropy inequalities being equivalent to this. SSA is a

key result with many important applications in quantum coding theories. In this

chapter we identify sets of reduced entropies, which although allowed by SSA can

not be achieved by any quantum state [128].

Following Pippinger [132], if we define the entropy allocation to be the vector

109
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reduced entropies for every possible subset of the parties, then the linear constraints

of SSA mean that these entropy allocations are restricted to a polyhedral cone. In

this chapter we enumerate all of the extreme rays of the cone described by SSA

for four parties. We find states corresponding to all but two of the extreme rays,

and by considering a classical analogy conjecture that no such quantum states exist.

This conjecture has subsequently been proven by Linden and Winter [128]. We also

suggest a stronger conjecture; that there are new linear entropy inequalities.

Systems associated with Quantum Information applications can often be de-

scribed by qubit states. We therefore consider the space of reduced entropies under

a restriction to pure three party qubit states. We would like to know how the region

of allowed entropy allocations is further confined by this restriction. For example,

the reduced entropies are now bounded above by 1, but we find that there are also

further restrictions on the allowed reduced entropies.

We also make a connection to a proposed method for classifying multipartite

entanglement; MREGS, or the minimal reversible entanglement generating set. In

particular we show that states corresponding to the extreme rays of the cone of

entropy allocations must be included in the MREGS. We show that considerations

of reduced entropies mean that a certain set of states must belong to the three and

four particle MREGS.
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7.1 Introduction.

We have seen how classifying multipartite entanglement is an extremely challenging

task. One possible approach is to use a measure we understand well from the

bi-partite situation - the reduced entropy - and apply it to the multipartite case.

In this multipartite setting we now have several different ways of making the bi-

partite division of the parties, and following Pippinger [132] can define the entropy

allocation to be the vector formed by taking each of the possible reduced entropies

as its components. In this chapter we will consider the structure of the space of

allowed entropy allocations.

The reduced entropy of a state is defined as follows: Let ρ be an n-particle

quantum state. If the parties holding the state are labelled 1, 2, ..., n, let X denote

some non-trivial subset of the parties, and X̄ the remaining parties. Then the

reduced density matrix of subset X of the parties is

ρX = TrX̄(ρ) (7.1.1)

and the reduced entropy of subset X,

SX(ρ) = S(ρX). (7.1.2)

For a state of n particles there are 2n − 1 possible non-trivial subsets of the

particles. With each of these subsets we can associate a reduced entropy and write

the entropy allocation ~S as the vector of these reduced entropies. For example in

the two party case ~S = (S1, S2, S12).

In analyzing the structure of the space of allowed reduced entropies we would

like to be able to answer the question; given a list of reduced entropies - can we

find a corresponding quantum state? The constraints which may restrict the set

of reduced entropies that can be achieved could take the form of general entropy

inequalities such as strong subadditivity (SSA), they could be caused by restrictions

on the state, such as a requiring that it can be described by a Hilbert space of finite
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dimension for each particle. Finally there could be new entropy inequalities. In this

chapter I will consider all of these possibilities.

Suppose initially that the state is not restricted by the dimension of its Hilbert

space. What are the constraints on its reduced entropies? In general we know

surprisingly little about this. The linear entropy inequalities which provide necessary

conditions for a state corresponding to a given set of reduced entropies to exist are

based around satisfying SSA.

Derived by Lieb and Ruskai [131] in 1973, SSA is a very important result at the

heart of quantum information science. Many familiar results such as subadditivity,

weak monotonicity and the triangle inequality follow immediately from SSA. Indeed

every presently known result concerning the reduced entropies of a composite quan-

tum system can be derived from SSA [97]. SSA has many applications in quantum

coding theories, such as the Holevo Bound on accessible information [133].

Given any state ρ123 of three parties SSA may be expressed as follows,

S123(ρ) + S3(ρ) ≤ S13(ρ) + S23(ρ). (7.1.3)

A familiar consequence of SSA is subadditivity1,

S12(ρ) ≤ S1(ρ) + S2(ρ). (7.1.4)

SSA is also equivalent to weak monotonicity (WM). This is shown in appendix C,

at the end of this chapter.

S12(ρ) + S13(ρ) ≥ S2(ρ) + S3(ρ). (7.1.5)

The linear constraints of SSA restrict the entropy allocations to belong to a

polyhedral cone, which we label Bn. The subscript n gives the number of particles.

1We may see this as follows: SSA is true for all states, in particular it is true for pure states.

For a pure state of three parties it is well known that S123 = 0, S3 = S12, S13 = S2 and S23 = S1.

This gives subadditivity.
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For one, two, and three party mixed states requiring that the entropy allocation

lies inside the cone Bn is a necessary and sufficient condition for a corresponding

quantum state to exist [132]. If the entropy allocation lies on the boundary of Bn

then there is a weaker result - there exists a state that approaches the required

entropy allocation to arbitrarily close approximation.

More precisely, if we label the set of entropy allocations allowed for quantum

states by An, then Pippinger has shown that the topological closure of An,
2 denoted

Ān, is a convex cone. This is a remarkable result - it means that if we can find states

corresponding to the extreme rays of Bn, then because of this convexity property

there must exist a state that approaches any entropy allocation within the set An

to arbitrarily close approximation.

In this new notation we have that Ān = Bn, for n = 1, 2, 3. If we have more than

three particles then there are sets of inequalities, based on SSA, that give necessary

conditions for a corresponding quantum state to exist. In this chapter we enumerate

all of the extreme rays of B4, the polyhedral cone formed by the constraints from

SSA for four party mixed states. We find states corresponding to all but two classes

of these extreme rays, and conjecture that no such states exist. This conjecture is

based on the following observations inspired by a classical analogy.

The classical analogy concerns probability distributions in several independent

random variables. One may define entropy allocations with components comprising

the various Shannon entropies of these probability distributions. As in the quantum

case these Shannon entropies are constrained by linear entropy inequalities; classical

strong subadditivity and strong monotonicity (SM). However in 1997 Zhang and

Yeung [7] found a new classical inequality, inequivalent to classical SSA and SM for

systems of 4 random variables.

We note that the quantum version of this Yeung Zhang inequality is violated by

the entropy allocations for which we found no corresponding states. Conversely, all

of the entropy allocations for which we succeeded in finding corresponding states do

2The topological closure of An is the smallest closed set containing every element of An
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not violate this new inequality. As further support for our conjecture we also show

that the quantum analogue of the Yeung Zhang inequality is true for pure quantum

states.

Subsequently Linden and Winter [128] have shown the entropy allocations for

which we were unable to find any corresponding state can not in fact be achieved by

any quantum state. This allows us to conjecture that there may be new quantum

entropy inequalities, inequivalent to SSA, still to be discovered. This is still an open

question, but if true would be the first new entropy inequality for 30 years.

The final type of restriction imposed on the allowed entropy allocations comes

from restrictions to the allowed states. Often systems associated with Quantum

Information protocols can be described by qubit states. We therefore consider the

reduced entropies allowed in the special case of three party pure qubit systems.

Because the reduced entropies of qubit systems are bounded above by one, it is

immediately clear that the space of allowed entropies is no longer an open ended

cone, but must be bounded by a polygon. In fact we find there are further restrictions

within this polygon.

In this chapter we also make a connection between the set of allowed reduced

entropiesAn and MREGS. MREGS concerns asymptotic equivalences between states

under LOCC. The main idea here is that extreme rays of Ān are a basis for the

space of entropy allocation vectors because the space is convex. For two states to be

asymptotically reversibly convertible to one another their reduced entropies must

be the same, hence states giving the basis vectors for the space of entropy allocation

vectors must be included in MREGS. This allows us to conclude that certain sets of

states must belong to the MREGS for 3 and 4 particle states. These arguments are

independent of whether or not there are new entropy inequalities.

The plan for this chapter is as follows. In section 7.2 the formal definitions of

An, Bn and entropy allocations are provided. Pippinger [132] provides us with an

algorithm for generating the complete set of entropy inequalities resulting from SSA.

In section 7.3 we enumerate the extreme rays of Bn for n = 2, 3, 4. In particular in
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section 7.3.1 we go on to show Ā3 = B3. In section 7.3.2 we consider B4, for which

we discuss the classical analogy in section 7.4. Here we show that the quantum

analogue of the Yeung-Zhang inequality is true for pure states. In section 7.5 we

consider the space of entropy allocations for three party pure qubit systems. In

section 7.6 we discuss the connection between the extreme rays of Ān and MREGS.

Finally we give our conclusions and some open questions in 7.7.

The work in this chapter was done in collaboration with S. Popescu and N. Linden

form the University of Bristol, and A. Thapliyal form UC Berkeley.

7.2 Entropy inequalities and convex cones.

In this section we give the definitions of the entropy allocation ~S, the space of allowed

entropy allocations An, and the polyhedral cone Bn. Bn is the space bounded by the

constraints given by the linear entropy inequalities of SSA. The cone Bn contains

An as a subset.

7.2.1 Entropy allocations.

What we mean by the entopy allocation is most easily seen by example; suppose we

have a three particle state ρ123, with particles labelled 1,2,3. The entropy allocation

is the vector of reduced entropies, ~S(ρ) = (S1, S2, S3, S12, S13, S23, S123).

Definition: ~S(ρ).

In general let ρ be an n particle mixed quantum state and N = {1, 2, ..., n}, where
the numbers label the particles. X ⊆ N is some subset of the particles. Let X̄

denote the set of particles that are in N but not in X. Then ρX = TrX̄(ρ). For each

possible distinct X ⊆ N we may associate a reduced entropy SX(ρ). The set of all

such reduced entropies {SX(ρ)}X⊆N are the components of the entropy allocation

~S(ρ). Thus the entropy allocations are vectors in R2n−1.



116 CHAPTER 7. ENTROPY INEQUALITIES AND MREGS.

Definition: An.

Let An ⊆ R2n−1 denote the set of entropy allocations for n particle mixed quantum

states.

7.2.2 Convex cones.

Definition: Convex cones.

Let Ω be a set of vectors in R2n−1. Ω is a convex cone if and only if the following

two conditions are met.

∀X ∈ Ω, ∀λ ∈ R, λ ≥ 0⇒ λX ∈ Ω (7.2.1)

∀X ∈ Ω, ∀Y ∈ Ω, ∀λ ∈ R; 0 ≤ λ ≤ 1

⇒ λX + (1− λ)Y ∈ Ω. (7.2.2)

Theorem.

Let Ān denote the topological closure of An, i.e the smallest closed set containing

every element of An. Then Ān is a convex cone [132].

This is a remarkable result: It means that if we can find states corresponding to

the extreme rays of Bn then by convexity we may achieve any interior point, and

approach any point on the boundary to arbitrarily close precision.

7.2.3 Entropy inequalities.

Recall that our aim is to find the constraints on the reduced entropies. Some of

these constraints are imposed by SSA. For an n particle quantum system there are

various ways of applying SSA, and it is possible to simply write these out by hand
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for low numbers of particles. However Pippinger has provided a recipe for generating

all of the inequalities as described below.

For technical simplicity weak monotonicity is used as well as SSA, although they

are actually equivalent. Suppose N = {1, ..., n} and I, J ⊆ N . Let I\J denote the

set of elements that are in I but not in J . Then SSA and WM become

SI(ρ) + SJ(ρ)− SI∪J(ρ)− SI∩J(ρ) ≥ 0, (7.2.3)

SI(ρ) + SJ(ρ)− SI\J(ρ)− SJ\I(ρ) ≥ 0. (7.2.4)

Pippinger [132] provides an algorithm for ensuring that every possible distinct appli-

cation of these inequalities is achieved. Let i, j, k = 1, 2, ..., n. Distinguish instances

of SSA where

I\J = {i}, J\I = {j}, and i < j, (7.2.5)

and distinguish instances of WM when

I ∩ J = {k}, I ∪ J = N, and k + 1 ∈ I, (7.2.6)

where k + 1 = 1 if k = n. This algorithm ensures that each possible distinct

application of SSA and WM is considered. The combined set of all the distinguished

inequalities is also a minimal set in the sense that no equation in this set may be

deduced from the others.

Definition: Bn.

The set of all the distinguished entropy inequalities describe a cone in R2n−1 which

we label Bn.

We know that Ān ⊆ Bn, however if Ān ⊂ Bn there must be some other constraints

on the reduced entropies of a multipartite quantum system in addition to SSA. We



118 CHAPTER 7. ENTROPY INEQUALITIES AND MREGS.

will go on to enumerate all of the extreme rays of B2, B3 and B4. We note that

Pippinger [132] found that for a special case of weakly symmetric states, defined

by having reduced entropies which depend only on the number of parties in the

partition, then Ān = Bn ∀n.

7.3 The structure of An.

Ān is a convex cone, contained as a subset of Bn. This means that if we can find

states corresponding to all of the extreme rays of Bn this is enough to prove Ān = Bn.

This in turn means that we have necessary and sufficient conditions for a state to

exist corresponding to any set of reduced entropies - at least up to arbitrarily good

approximation.

To describe Bn we used Pippinger’s algorithm to generate the complete set of

bounding inequalities. Finding the extreme rays of Bn is then a convex hull problem.

There are several well known algorithms for enumerating the extreme rays of a

polyhedra; we used Mathematica [134] and lrs [101].

The following sections describe the results of the calculations for two, three and

four particle systems. The results for two and three particles appeared previously

in [132]. We include the calculations here as they provide a useful background to

the generalizations made in the section on four particle systems. They confirm the

validity of the algorithms used, and are rather simpler than the original proofs.

We also used these results to draw conclusions about MREGS for three and four

particles, as discussed in section 7.6.

Two party mixed states.

We wish to find the extreme rays of B2. To do this we write out the complete list

of entropy inequalities, which in this simple case just result from subadditivity. We

use lrs and Mathematica to compute the extreme rays of the polyhedral cone. We

find that the three extremal entropy allocation vectors of B2 may each be generated
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by singlets held between two of the parties, and conclude that Ā2 = B2. This

means that satisfying subadditivity is a necessary and sufficient condition on the

set of reduced entropies for a corresponding state to exist that produces this set of

reduced entropies up to arbitrarily close approximation.

7.3.1 Three party mixed states.

For the situation of three party mixed states the entropy allocation vectors ~S have

components S1, S2, S3, S12, S13, S23, S123. The complete set of entropy inequalities

from SSA and WM was produced using Pippinger’s algorithm. This set of con-

straints, which bounds B3, is given by A.~S ≥ 0, where

A =

































































1 1 0 −1 0 0 0

0 0 −1 0 1 1 −1
1 0 1 0 −1 0 0

0 −1 0 1 0 1 −1
0 1 1 0 0 −1 0

−1 0 0 1 1 0 −1
1 0 0 0 0 −1 1

0 −1 −1 1 1 0 0

0 1 0 0 −1 0 1

−1 0 −1 1 0 1 0

0 0 1 −1 0 0 1

−1 −1 0 0 1 1 0

































































(7.3.1)

Using lrs and Mathematica we find eight extremal of rays B3, given by the rows

of B.
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B =









































1 1 0 0 1 1 0

0 1 1 1 1 0 0

0 1 0 1 0 1 1

1 0 0 1 1 0 1

1 0 1 1 0 1 0

0 0 1 0 1 1 1

1 1 1 1 1 1 1

1 1 1 2 2 2 1









































(7.3.2)

We now identify states which produce each of these entropy allocation vectors.

As we are dealing with mixed states we may consider the states to be pure between

four parties, labelled A, B, C and D. The first six entropy allocations in B corre-

spond to singlets, for example, shared between A-B, B-C, B-D, A-D, A-C and C-D

respectively. The seventh entropy allocation corresponds to a four party GHZ.

|GHZ〉4 =
1√
2
(|0000〉+ |1111〉). (7.3.3)

The eighth entropy allocation corresponds to a maximally entangled 4-party state;

|ME〉4 =
1

3

2
∑

i,j=0

|i〉|j〉|i+ j mod (3)〉|i+ 2j mod (3)〉. (7.3.4)

|ME〉4 =
1

3
(|0000〉+ |0112〉+ |0221〉 (7.3.5)

+|1011〉+ |1120〉+ |1202〉

+|2022〉+ |2101〉+ |2210〉).

We conclude that Ā3 = B3, i.e that SSA and WM are necessary and sufficient

conditions on the set of reduced entropies for a corresponding state to exist that

produces this set of reduced entropies up to arbitrarily close approximation.
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7.3.2 Four party mixed states.

Pippinger’s algorithm produces forty distinct inequalities for the four party case.

These describe a polyhedral cone in fifteen dimensions, with each entropy allocation

vector having components S1, S2, S3, S4, S12, S13, S14, S23, S24, S34, S123, S124, S134,

S234, S1234. As before a numerical computation found the extreme rays.

Because we are considering mixed states we may imagine a pure five part system

labelled A,...,E. Of the total of seventy six extremal rays, 10 are singlets, and five

are GHZ4. There is also a GHZ5 shared between all five parties.

|GHZ〉5 =
1√
2
(|00000〉+ |11111〉). (7.3.6)

There are 5 states of the 4-party maximally entangled state, for example

|ME〉 = 1

3

2
∑

i,j=0

|i〉A|j〉B|i+ j mod (3)〉C |i+ 2j mod (3)〉D|0〉E. (7.3.7)

For states with entropy allocation vectors of the form

~S = (1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 2), (7.3.8)

there are 5 permutations. To construct a state corresponding to this we will use

error correcting codes: Let |0L〉5 and |1L〉5 be be the logical 0 and 1 for the 5 qubit

error correcting codes [97]. i.e

|0L〉5 = 1

4
(|00000〉+ |10010〉+ |01001〉+ |10100〉 (7.3.9)

+|01010〉 − |11011〉 − |00110〉 − |11000〉

−|11101〉 − |00011〉 − |11110〉 − |01111〉

−|10001〉 − |01100〉 − |10111〉+ |00101〉),
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|1L〉5 = 1

4
(|11111〉+ |01101〉+ |10110〉+ |01011〉 (7.3.10)

+|10101〉 − |00100〉 − |11001〉 − |00111〉

−|00010〉 − |11100〉 − |00001〉 − |10000〉

−|01110〉 − |10011〉 − |01000〉+ |11010〉).

Then the following state has the required reduced entropies.

|ψ〉 = 1√
2
(|0〉A|0L〉

5
BCDE + |1〉A|1L〉

5
BCDE), (7.3.11)

where each of the parties A,B,C,D has one qubit and E has two. For states with

entropy allocation vectors of the form

~S = (1, 1, 2, 2, 2, 3, 3, 3, 3, 2, 2, 2, 3, 3, 2) (7.3.12)

there are 10 permutations. Again we can find a corresponding states based on error

correcting codes. Let |0L〉7 and |1L〉7 be be the logical 0 and 1 for the 7 qubit error

correcting codes [97]. i.e

|0L〉7 = 1√
8
(|0000000〉+ |1010101〉+ |0110011〉+ |1100110〉 (7.3.13)

+|0001111〉+ |1011010〉+ |0111100〉+ |1101001〉),

|1L〉7 = 1√
8
(|1111111〉+ |0101010〉+ |1001100〉+ |0011001〉 (7.3.14)

+|1110000〉+ |0100101〉+ |1000011〉+ |0010110〉).

Then the following state has the required reduced entropies.

|ψ〉 = 1√
2
(|0〉A|0L〉

7
BCDE + |1〉A|1L〉

7
BCDE), (7.3.15)
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where each of the parties A,B has one qubit and C,D,E have two. This accounts

for 36 of the 76 extremal rays. Of the remaining extremal entropy allocations 30 are

permutations of

~S1 = (3, 3, 3, 3, 6, 4, 4, 4, 4, 4, 5, 5, 5, 5, 2), (7.3.16)

and 10 are permutations of

~S2 = (2, 2, 2, 3, 4, 4, 3, 4, 3, 3, 4, 3, 3, 3, 3). (7.3.17)

Based on the other states corresponding to extreme rays it was tempting to think

that these entropy allocations might be achieved for states of 14 and 12 qubits,

grouped amongst the 5 parties A,...,E. However considering the classical analogue of

the entropy inequalities led us to conjecture that these entropy allocations can not be

achieved for any quantum state. The evidence for this is discussed in the following

section. Whilst the arguments are not conclusive, the conjecture has turned out to

be correct, and it has subsequently been shown by Linden and Winter [128] that no

quantum state exists with entropy allocation vectors ~S1 or ~S2.

7.4 The classical analogy.

In this section we review the classical analogy of the entropy inequalities. Yeung and

Zhang have discovered a new inequality (Y-Z inequality), inequivalent to classical

SSA and SM. We show that entropy allocations ~S1 and ~S2 violate a quantum version

of this inequality. Furthermore, all of the entropy allocations for which we succeeded

in finding corresponding states do not violate this new inequality. We also show that

the quantum Y-Z inequality is true for pure states.

In the classical setting we are now concerned with entropy allocation vectors

for probability distributions in n independent random variables. The components

of the entropy allocation vectors are given by the Shannon entropies. Yeung and
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Zhang have shown that classical SSA and strong monotonicity are insufficient to

characterize the space of reduced entropies for systems of four or more random

variables. They did this by deriving a new entropy inequality, which we discuss

below.

Definition: ~H(X).

Here we give the formal definitions of the classical entropy allocation ~H(X). This

is of the same form as the quantum state entropy allocations, but with the reduced

von Neumann entropies replaced by Shannon entropies. Let X = (X1, ...., Xn) be

an n-component random variable and N = {1, ..., n}. For I ⊆ N , let XI denote the

random variable formed by tracing over the variables not in I. For each I ⊆ N we

may associate an entropy HI(X) = H(XI), where H(X) is the Shannon entropy

defined as follows: Let px be the probability Pr(X = x), then

H(X) = −
∑

x

pxLog px. (7.4.1)

The collection of entropies {HI(X)}I⊆N is the entropy allocation. Thus the

entropy allocations are vectors in R2n−1.

Definition: Ac
n.

Let Acn ⊆ R2n−1 denote the set of classical entropy allocations for n component

probability distributions.

Theorem.

Yeung and Zhang [137] have shown that Ācn is a convex cone, where Ācn is the

topological closure of Ac
n.
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Polymatroid inequalities.

Polymatroid inequalities are the classical equivalent of the SSA andWM inequalities.

Suppose N = {1, ..., n} and I, J ⊆ N . Classical SSA becomes

HI∪J(X) +HI∩J(X) ≤ HI(X) +HJ(X). (7.4.2)

Let I\J denote the set of elements that are in I but not in J . Strong monotonicity

(SM) gives

HI\J(X) ≤ HI(X). (7.4.3)

Definition: Bc
n.

By applying every possible instance of these inequalities we obtain a convex cone

Bc
n.

Yeung and Zhang have shown that Ācn 6= Bc
n for n ≥ 4. They did this by

constructing a new inequality, which can not be deduced from the polymatroid

inequalities.

The Yeung-Zhang inequality.

For a system of four independent random variables X1, X2, X3 and X4 Yeung and

Zhang derived the following inequality

I(X1;X2) + I(X1;X3, X4) + 3I(X3;X4|X1)

+I(X3;X4|X2)− 2I(X3;X4) ≥ 0.

Where I(X,Y ) is the mutual information for independent random variables X and

Y . We will expand the terms so that the inequality is given in terms of the Shannon

entropies. We have the following definitions
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I(X1;X2) = H(X1)−H(X1|X2) = H(X1) +H(X2)−H(X1, X2), (7.4.4)

I(X1;X3, X4) = I(X1;X3) + I(X1;X4|X3), (7.4.5)

I(X1;X4|X3) = H(X1|X3)−H(X1|X4, X3)

= H(X1, X3)−H(X3)−H(X1, X3, X4) +H(X3, X4).

(7.4.6)

Expanding the terms gives

−H1−2H3−2H4−H12+3H13+3H14+H23+H24+3H34−4H134−H234 ≥ 0 (7.4.7)

We define the quantum version of this inequality by replacing the Shannon entropies

HI with reduced von Neumann entropies SI . We can make the following remarks

about the quantum analogue of the Y-Z inequality.

The Quantum Y-Z inequality is true for pure states.

We do not presently know whether the quantum version of the Y-Z inequality is

true in general. We can however perform a check where we consider pure states,

and show that the quntum Y-Z inequality for four party pure states is a consequence

of SSA. Any three party state satisfies strong subadditivity and weak monotonicity.

In particular

−S3 + S13 + S23 − S123 ≥ 0 (7.4.8)

−S2 + S12 + S23 − S123 ≥ 0 (7.4.9)

−S2 − S3 + S12 + S13 ≥ 0 (7.4.10)



7.4. THE CLASSICAL ANALOGY. 127

−2S1 − 2S2 + 2S13 + 2S23 ≥ 0. (7.4.11)

Summing these inequalities implies

−2S1 − 4S2 − 2S3 + 2S12 + 4S13 + 4S23 − 2S123 ≥ 0. (7.4.12)

Now we may always consider a three party mixed state as a pure state of four

parties. For this state S1 = S234 etc so we may expand (7.4.12) as

−S1− 2S3− 2S4−S12+3S13+3S14+S23+S24+3S34− 4S134−S234 ≥ 0. (7.4.13)

This is the quantum analogue of the Y-Z inequality (7.4.7).

Extreme rays of B4 and the quantum Y-Z inequality.

The two entropy allocation vectors ~S1 and ~S2 for which we have been unable to

find corresponding states are precisely those which violate (7.4.13). Substituting

the entropy values in ~S1 (7.3.16) into (7.4.13) gives -2, a violation of the inequality.

To see that ~S2 (7.3.17) gives a violation of the quantum Y-Z inequality we need to

take a permutation of (7.4.13) where we have renamed the parties as follows;

A→ A, B → B, C → D, D → E, E → C. (7.4.14)

The inequality then reads

−S1−2S4−S12−S13+3S14−4S23+S24+3S123+S134+3S234−2S1234 ≥ 0, (7.4.15)

and this inequality is violated by ~S2.

We also checked that all of the extreme rays for which we could find corresponding

states did not violate the new inequality, or any version of the new inequality with

the particle names permuted.
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These observations allowed us to conjecture that states corresponding to ~S1 or

~S2 do not exist. This has subsequently been proven [128]. This opens the possibility

that there may be new quantum entropy inequalities, along the lines of the Yeung

Zhang inequality.

7.5 The entropies of a three qubit pure state.

In the above section we demonstrated that Ā2 = B2. Now we may always imagine

a mixed state of two particles as a pure state of three particles. We may therefore

interpret this result as demonstrating that for three party pure states if we are given

a list of reduced entropies, we know whether or not a closely corresponding state

exists. This state is subject to no constraints however, and in particular is allowed

to be of any dimension. In fact the only constraints on the reduced entropies come

from subadditivity. Here we consider a different type of restriction on the possible

reduced entropies of a state. Often systems associated with Quantum Information

protocols can be described by qubit states, and in this section we consider a restric-

tion to pure three party qubit states. In the previous unrestricted case the reduced

entopies belonged to an open cone, and we would like to know how this region of

allowed entropies is further confined by the new restriction. For example, the re-

duced entropies are now bounded above by 1, so the allowed region is now bounded

by a closed polygon. In fact we find that there are also further restrictions on the

allowed reduced entropies as shown below.

The entropy inequalities applicable to this situation are

S1 + S2 − S3 ≥ 0 (7.5.1)

S1 − S2 + S3 ≥ 0 (7.5.2)

−S1 + S2 + S3 ≥ 0. (7.5.3)

A recent paper by Sudbery et al [135, 136] characterizes qubit states in an alter-
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native way. This characterization is based on the eigenvalues of the reduced states

of the system, and provides necessary and sufficient conditions for a qubit state with

a given list of reduced state eigenvalues to exist. These conditions are based on the

satisfaction of a set of polygon inequalities.

For a pure state ρ123 of three parties, let λ1, λ2, and λ3 be the smallest eigenvalues

of ρ1, ρ2 and ρ3 respectively. Then the necessary and sufficient conditions on the λ′s

to characterize the reduced density matrices for three party states are the following

polygon inequalities:

λ1 ≤ λ2 + λ3

λ2 ≤ λ1 + λ3

λ3 ≤ λ1 + λ2.

(7.5.4)

We require each λ to be greater than or equal to zero. Because these are the

smallest eigenvalues λ1, λ2, λ3 ≤ 1
2
.

This eigenvalue description is related to the reduced entropies as follows: Let

S(λ) be defined as

S(λ) = −λLog (λ)− (1− λ) Log (1− λ) (7.5.5)

so that Si(ρ) = S(λi).

This characterization implies subadditivity is satisfied. If λ2 + λ3 ≤ 1
2
then

S(λ2 + λ3) is monotonic and hence

S(λ1) ≤ S(λ2 + λ3) ≤ S(λ2) + S(λ3). (7.5.6)

The last inequality comes from concavity of the entropy. If λ2 + λ3 > 1
2
then

S2 + S3 ≥ 1 and since S1 ≤ 1 this implies subadditivity.

The converse is not true, i.e satisfaction of subadditivity (7.5.1)-(7.5.3) does not

imply satisfaction of the polygon inequalities (7.5.4). For example S1 = 1, S2 =

0.5, S3 = 0.5 satisfies the entropy inequalities (7.5.1)-(7.5.3), but the corresponding
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eigenvalues λ1 = 0.5, λ2 = 0.11, λ3 = 0.11 violate the polygon inequalities, showing

there is no qubit state with these reduced entropies. Other regions are also unob-

tainable. Suppose S1 = S2 + S3; a plane in the three dimensional space. We can

show only the lines S1 = S2 and S1 = S3 are obtainable.

S1 = S2 + S3 ⇒ (7.5.7)

λ1 = S−1(S(λ2) + S(λ3)).

From concavity we have S−1(S(λ2) + S(λ3)) ≥ λ2 + λ3 with equality if and only if

λ2 = 0 or λ3 = 0 , i.e if S2 = 0 or S3 = 0.

It is not known how the set of allowed entropy allocations is restricted for qubits

in general. For a projection to two dimensions, where we consider the ratios of the

reduced entropies, we have the following results: We may achieve any point in this

new space to arbitrary precision, though not every point exactly. This is shown in

the following section.

Entropy Ratios.

We consider ratios of the reduced entropies. Define the new variables Y = S3/S1

and X = S2/S1 for S1 6= 0. Without loss of generality we can ensure that this last

condition is met for generic states by requiring that

S1 ≥ S2, S1 ≥ S3. (7.5.8)

S1 = 0, and hence S2 = 0 and S3 = 0, only if the state is a product state. This also

gives the following ordering condition on the eigenvalues of the reduced states.

λ1 ≥ λ2, λ1 ≥ λ3. (7.5.9)

The set (X,Y ) allowed by subadditivity is now bounded by a triangle with vertices

(0,1), (1,0) and (1,1), i.e
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X + Y ≥ 1,

X ≤ 1,

Y ≤ 1.

(7.5.10)

The vertices correspond to a product state of one party verses an entangled state

of the other two, and for example, a GHZ state at (1,1). The W state is also at

this vertex. As a consequence of our earlier result that S1 = S2 + S3 ⇒ S1 = S2 or

S1 = S3 no qubit system can achieve the line Y = −X + 1 unless X = 0 or X = 1.

Although there is a line of inaccessible relative entropies ratios, we can in fact

generate any point in the space to arbitrary precision using a very restricted subset of

possible states - states that are an arbitrarily small distance from product states. Let

L(X,Y ) be the set of (X,Y ) which can actually be achieved to arbitrary precision

for two dimensional quantum states. We can choose to write

λ1 =
1

ε
λ2, (7.5.11)

λ1 =
1

δ
λ3, (7.5.12)

for some ε, δ ∈ R>0. The conditions on the eigenvalues to be consistent with a qubit

state are λ1 ≥ λ2 and λ1 ≥ λ3 and λ1 ≤ λ2 + λ3. These are implied directly by the

following conditions on ε and δ.

ε+ δ ≥ 1,

ε ≤ 1,

δ ≤ 1.

(7.5.13)

Now,

S(λ2)

S(λ1)
=
−λ2 Log λ2 − (1− λ2) Log (1− λ2)

−λ2

ε
Log λ2

ε
− (1− λ2

ε
) Log (1− λ2

ε
)
, (7.5.14)

S(λ3)

S(λ1)
=
−λ3 Log λ3 − (1− λ3) Log (1− λ3)

−λ3

δ
Log λ3

δ
− (1− λ3

δ
) Log (1− λ3

δ
)
. (7.5.15)
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If we take the limits of these functions we find that limλ2→0
S2

S1

= ε, and similarly

limλ3→0
S3

S1

= δ. These limits mean that the state is approaching a product state.

Thus L(X,Y ) ∼= (ε, δ) where ε and δ obey exactly the conditions on the entropy

ratios (7.5.10).

7.6 Extreme rays of Ān and MREGS.

In this section we show how considering the extreme rays of Ān allows us to conclude

that certain sets of states must belong to the n+ 1 particle MREGS. The essential

idea is that the extreme rays of Ān are a basis for the space of entropy allocation

vectors because the space is convex. For two states to be asymptotically reversibly

convertible to one another their reduced entropies must be the same, hence states

giving the basis vectors for the space of entropy allocation vectors must be included

in MREGS. We show that considerations of reduced entropies mean that a certain

set of states must belong to the three and four particle MREGS.

Pure states and mixed states.

The above results on Ān and Bn all refer to n part mixed states, but the concept

of an MREGS is only valid for pure states. However we can use the following well

known results to convert between the spaces of entropy allocations for pure and

mixed states. The first result is that for a pure state ψ12, S1(ψ) = S2(ψ). The

second is that for any density matrix ρ1 there exists a purification to a pure state

ρ12 such that ρ1 = Tr2 ρ12.

Lemma.

These results mean that if a mixed state is an extreme ray of Ān then its purification

will be an extreme ray of the space of entropy allocations for pure states of n + 1

particles.
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A more detailed description of MREGS was given in the previous chapter, in

section 6.4, however we begin by recalling that the crucial concept in MREGS is

that of asymptotic reducibility between two states, and that given a set of states

G = {ψ1, ψ2, ..., ψt}, their entanglement span Sp(G) is the set of states that G can

generate reversibly under asymptotic LOCC. i.e

Sp(G) = {ψ |ψ ≈
t
⊗

i=1

|ψi〉⊗xi , xi ≥ 0}. (7.6.1)

The set of xi are entanglement coefficients, which are not unique in general. A set of

minimal cardinality able to generate the full class of m party states is an MREGS,

which we denote by Gm. We will now show how characterizing Ān allows us to

conclude that certain states must belong to MREGS. First we need the following

definitions.

Definition: isentropic.

states ρ and σ (mixed) are isentropic if and only if ~S(ρ) = ~S(σ).

Definition: scaled isentropic.

states ρ and σ (mixed) are scaled isentropic if and only if ~S(ρ) = λ~S(σ) for some

real λ.

Theorem.

If ∃ a pure state |ψ〉 of n particles s.t ~S(ψ) is an extreme ray of Ān−1, then a state
scaled isentropic to |ψ〉 is in Gn.

Proof.

Recall that Ān−1 is the closure of the set of entropy allocation vectors for mixed

n− 1 part states, or equivalently pure n part states. Now for two states φ and ψ to

be asymptotically reducible they must have the same reduced entropies [115] ,
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φ ≈ ψ ⇒ SX(φ) = SX(ψ) ∀X ⊆ N (7.6.2)

⇒ ~S(φ) = ~S(ψ). (7.6.3)

In particular

φ⊗x ≈ ψ⊗y ⇒ xSX(φ) = y SX(ψ) ∀X ⊆ N (7.6.4)

⇒ x ~S(φ) = y ~S(ψ). (7.6.5)

Suppose Gn = {µ1, µ2, ..., µw}. Now for any state |ρ〉 ∈ Sp(Gn)

~S(ρ) =
∑

i

xi ~S(µi), xi ∈ R≥0. (7.6.6)

Let {χ1, χ2, ..., χs} be a set of states so that each χi produces an entropy allocation

vector which is a scaled isentropic to the ith extremal ray of Ān−1. Suppose χi or

any state scaled isentropic to χi were not in the MREGS Gn. Therefore we know

χi /∈ Sp(Gn) because ~S(χi) is an extreme ray, and hence Gn is not an MREGS. ¤

MREGS for three and four particles.

In the previous sections we found states corresponding to the extreme rays of Ān for

n = 2, 3. Here we summarize the implications of this for the three and four party

MREGS.

We found that the extreme rays of B2 corresponded to three pairs of singlets

shared between the parties. We conclude that this analysis based on reduced en-

tropies gives a MREGS for three party states which must include states scaled

isentropic to |ψ−〉AB, |ψ−〉AC and |ψ−〉BC . This result was found in by Linden et al

[?].

By enumerating the extreme rays of B3 and finding a state corresponding to each

extreme ray we conclude that a state scaled isentropic to each element of the set
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{6× |ψ−〉, |GHZ4〉, |ME〉4} (7.6.7)

must be included in G4.
Arguments based on reduced entropies provide a ‘lower bound’ on the size of Gn

but we already know that these are not sufficient conditions because of the stronger

considerations of relative entropy of entanglement. For example, an argument based

only on reduced entropies shows that G3 must contain singlets. However by showing

that the relative entropy of entanglement between two states must remain constant

during any reversible transformation Linden et al [?] demonstrated that the GHZ

state can not be generated reversibly under asymptotic LOCC by just these singlets.

The next conjecture, that

G3 = {3× |ψ−〉, |GHZ〉} (7.6.8)

constitutes the three particle MREGS, was disproved by Acin, Vidal and Cirac [138].

Moving on to the four party MREGS, the situation is even less clearly understood.

The conjecture that G4 = {6× |ψ−〉, 4× |GHZ〉3, |GHZ〉4} is an MREGS for four

party pure states was disproved by Wu and Zhang [139] (again using relative entropy

of entanglement). They found that the state

|ψ〉 = 1

2
(|0000〉+ |0110〉+ |1001〉 − |1111〉) (7.6.9)

can not be generated by G4 by asymptotically reversible LOCC.

7.7 Conclusion.

In this chapter we considered different types of restrictions on the space of reduced

entropies of multipartite states. We know that for three or fewer particles SSA is nec-

essary and sufficient condition on the reduced entropies that a closely corresponding

quantum state exists. By considering the space of reduced entropies allowed by SSA



136 CHAPTER 7. ENTROPY INEQUALITIES AND MREGS.

for four particles we conjecture that there are new inequalities, similar to the clas-

sical inequalities discovered by Yeung and Zhang, which further restrict this space.

We also considered the restrictions imposed on the reduced entropies by requiring

the Hilbert space of each particle to be two dimensional, i.e for qubit systems. Fi-

nally we showed how the space of allowed entropy allocations is related to MREGS.

In particular we showed certain sets of states must belong to the three and four

particle MREGS. We finish with some open questions.

Entropy inequalities.

For mixed states of two and three parties, the fact that we can find states corre-

sponding to all of the extreme rays of B2 and B3 demonstrates that Ā2 = B2, and

Ā3 = B3.

For four party mixed states the fact that there are extreme rays of Ā4 which can

not be achieved by quantum states [128] supports the conjecture Ā4 6= B4, and this

is of course the main open question remaining from this work. In general the issue

of whether An = Ān remains open, but we can note Yeung and Zhang have shown

that classically Ac
n 6= Ācn for n ≥ 3.

For classical random variables Yeung and Zhang have not claimed that their

new inequality, combined with SSA and SM completely characterizes the space of

reduced entropies, even for 4 particles. i.e let Cc
n be the space of entropy allocations

bounded by the complete set of SSA, SM, and all distinct applications of the Y-Z

inequality. Then it is not presently known if Ācn = Cc
n for n ≥ 4.

Similarly, in the quantum setting even if we take the quantum version of the Y-Z

inequality and use it to further restrict the space Bn to a new space Cn, we do not

know the relationship between Ān and Cn.

One possible avenue for future work is to consider a slightly different question:

Given the largest set of rays for which we know corresponding quantum states exist,

what is the set of bounding inequalities? In this way it may be possible to guess the

form of new inequalities which provide sufficient conditions for states with a given
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entropy allocation to exist.

MREGS.

We have shown how consideration of the space of reduced entropies allows us to

conclude that a certain set of states must belong to the MREGS. This argument

is quite general and is independent of the issue of whether Ān = Bn. By finding

the extreme rays of Ān for the specific cases n = 2, 3 we were able to conclude that

certain states must be included in the 3 and 4 particle MREGS. While the arguments

given in this chapter can give a ‘lower bound’ on MREGS, they certainly do not

represent a definitive classification. For example, it is not even known if G3 is finite.
Also there are stronger constraints imposed by considering the relative entropy of

entanglement.

7.8 Appendix C.

Strong subadditivity and weak monotonicity are in fact equivalent. To see this we

use two well known facts: For any density matrix ρ1 there exists a pure state ρ12

such that ρ1 = Tr2 ρ12. Also if ρ12 is pure then S(ρ1) = S(ρ2).

To show that SSA implies WM. For some ρ123 there is a purification ρ1234. For

this pure state

S(ρ1) + S(ρ2) = S(ρ234) + S(ρ2). (7.8.1)

Now from SSA we have;

S(ρ234) + S(ρ2) ≤ S(ρ23) + S(ρ24) = S(ρ23) + S(ρ13) (7.8.2)

The result is WM. Now to show that WM implies SSA; For some ρ123 there is a

purification ρ1234.
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S(ρ123) + S(ρ3) = S(ρ4) + S(ρ3)

≤ S(ρ14) + S(ρ13) = S(ρ23) + S(ρ13).

This is strong subadditivity. ¤



Chapter 8

Conclusion.

Summary and future directions.

In this thesis I have tried to understand different aspects of quantum non-locality,

particularly for multipartite systems. If we perform experiments on quantum sys-

tems then a signature of non-locality is violation of a Bell inequality. These were

the subject of the first part of this thesis. In particular, I considered Bell type

inequalities that reveal not just non-locality, but a more specific type of non-local

correlation that must involve every single particle in a system. This was an idea

first suggested by Svetlichny [1], and I give the generalization of his inequality for

n particles. I showed that quantum mechanics exhibits this type of n-particle non-

locality, by demonstrating that the GHZ states violate the generalized Svetlichny

inequality.

If we imagine an abstract experiment, then regardless of the details, the informa-

tion we hope to extract is a set of probabilities for different outcomes, conditionally

on the measurement settings we may select. If we think in terms of these probability

distributions then Bell inequalities describe the boundaries between the probability

distributions which are local, and those which are non-local. Quantum mechanics

famously produces non-local correlations, but can not be used for super-luminal

139
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communication. In understanding this quantum non-locality it is interesting to

consider why the correlations obtainable are not ‘more non-local’ than quantum

mechanics predicts. We might imagine that the restriction that we can not use spa-

cially separated states to signal would mean only a limited form of non-locality was

allowed. Whilst a no-signalling constraint does restrict the space of allowed proba-

bility distributions, it still allows sets of correlations which are more non-local than

quantum mechanics. This was first noted by Popescu and Rohrlich who concluded

that quantum mechanics is only one of a class of non-local theories consistent with

causality [86].

The second part of this thesis concerns this class of non-local theories. We aim

to shed light on why quantum mechanics does not allow these more powerful corre-

lations by placing them within this wider context.

The non-local nature of quantum mechanics is a consequence of the possibility of

entangled states. For bi-partite states the nature of this entanglement is reasonably

well understood, but for multipartite systems we only have a very limited under-

standing at present. A possible approach to this problem is to use a concept that

has proved very successful in the bi-partite case - the reduced von Neumann entropy

- and apply it in the multipartite setting. Then will now be several ways of making a

bi-partite division of the state, and so our measure of entanglement will be a vector

- the entropy allocation.

The third subject of this thesis concerns these entropy allocations. By analyzing

the structure of the space of allowed entropies we aim to better understand the

constraints on the reduced entropies. In particular this approach allows us to place a

‘lower bound’ on the fundamentally inequivalent types of multipartite entanglement

by showing certain sets of states must belong to MREGS, the minimal reversible

entanglement generating set.

In the following paragraphs I outline in more detail the results found in these

three areas of study. In each case I also suggest some open questions remaining

from this work, and possible avenues for future research.
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Multipartite Bell inequalities.

Bell inequalities allow us to distinguish between local and non-local correlations.

However as Svetlichny first discovered [1], in a multipartite setting we can make

more subtle distinctions. We may imagine that the correlations in a system could

be described by a number of non-local subsystems, but with only local correlations

present between the subsystems themselves. Svetlichny produced an inequality for

three parties that is able to distinguish the case of genuine three party non-locality

from weaker forms.

In chapter 3 we revisited Svetlichny’s inequality. Experiments to produce three

particle entangled states have only recently been achieved [67, 68]. Although quan-

tum mechanics predicts Svetlichny’s inequality can be violated, we showed that the

particular measurements performed in these experiments are such that they will

not exhibit genuine three particle non-locality between the measurement outcomes.

However we show that a simple modification to the experiments would make such a

demonstration possible.

In chapter 4 we gave a generalization of Svetlichny’s inequality for n particle

systems. We show that for even number of particles the Mermin-Klysko (MK)

inequality plays the role of the generalized Svetlichny inequality, and that for odd

numbers of particles a simple modification to the MK inequality gives the generalized

Svetlichny inequality.

The four particle GHZ state has recently been produced experimentally [77, 78].

Recently Zhao et al [79] have shown a violation of the generalized Svetlichny in-

equality for a four photon GHZ state by 76 standard deviations. This confirms four

particle non-locality. Even more recently the same group have produced a five pho-

ton GHZ state [80], although they have not yet shown any Bell inequality violation

for this state.

The set of Svetlichny inequalities is not complete in the sense that we do not have

a set of inequalities which, if they are all satisfied, allow us to conclude that the
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state exhibits only a limited form of non-locality. Rather we have only a sufficient

condition to demonstrate genuine non-locality. This is in contrast to the situation

where we are only concerned with whether a state exhibits any non-locality. In this

case Werner and Wolf, and Zukowski and Bruckner [26, 27] have found a set of

inequalities which are complete in the sense that the inequalities are satisfied if and

only if the correlations permit a local hidden variable model (we consider only pure

states). It would be interesting to achieve something similar for Svetlichny’s notion

of limited non-locality. This problem is essentially that of enumerating the facets of

a convex hull. It is likely that this problem would be computationally tractable for

three parties.

Non-local correlations as an information theoretic resource.

An interesting question one can ask is; why is quantum mechanics not more non-

local than it is? With this in mind Chapter 5 presents a different, more abstract,

notion of non-locality. We imagine that the source of non-local correlations is a

box with a set of possible inputs. Each observer selects one of these inputs and

receives an output. The box determines a joint probability for each set of outputs,

given the inputs. A quantum state provides an example of such a box, with input

corresponding to measurement settings and output to measurement outcome.

These boxes may be classified as signalling or non-signalling. In general our

intention is to regard these boxes as an information theoretic resource. This is

immediately clear in the case of the signalling boxes - They can be used to send

a message. However these are ruled out by special relativity, so we confine our

attention to the non-signalling boxes. This class of boxes can be further categorized

as local or non-local. A local box is equivalent to shared random data, and so may

be useful in some tasks. However, the most interesting cases are the non-local boxes.

If we consider these boxes as an information theoretic resource we find that they

are very powerful. For example, van Dam has found that they are able to solve

communication complexity problems more efficiently than any quantum, or classical
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strategy [102].

The set of non-signalling boxes has an interesting structure, and can be under-

stood as a convex polytope. We can make several analogies between these non-

local boxes and quantum mechanics. For example, we find there are analogies to

monogamy of entanglement. We can make inter-conversion between boxes just as

we can make inter-conversions between states.

There remain many open question arising from this work. In particular we may

consider the following questions.

Vertices and Bell inequalities. For the polytope of two-input two-output boxes

there was a one to one correspondence between the vertices of the polytope and

the Bell inequalities which bound the region of local probability distributions. This

relationship does not seem to hold in general however, and it would be interesting

to establish the precise relationship.

New vertices. We do not yet have a complete characterization of the vertices if we

allow more parties, inputs and outputs.

Inter-conversions. Understanding the types of inter-conversions that are possible

between boxes is important to quantify their relative power as information theoretic

resources. For the two party case we have considered quite a wide range of inter-

conversions, but for the three party case we only considered a limited set of possible

inter-conversions.

One non-local vertex seemed particularly important in these inter-conversions.

This is the PR box [86]. We found that all of the correlations we considered could

be constructed using these PR boxes. It is tempting to think of these boxes as the

unit of non-local correlation, just as ebits are the units of quantum correlations.

It would be interested to see if we can extend this analogy to cover all possible

non-local correlations.

Interior points and distillation. We only considered inter-conversions between the

vertices of the polytope of no-signalling correlations. Quantum correlations are

a subset of this polytope, so it may well be worthwhile to consider interior points.
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These interior points may be thought of as mixed boxes because they can be obtained

by probabilistic mixtures of the vertices. In particular we would like to find an

analogy of distillation, i.e given a number of copies of a mixed box (an interior

point) can we distill with local operations any extremal correlations?

Having set up a framework in which we can understand non-local correlations, we

hope that by thinking about some of the above questions we may find an information

theoretic explanation for the limited power of quantum correlations.

Entropy inequalities.

In chapter 7 we used the reduced entropies as a method of characterizing multipar-

tite states, and were particularly interested in the constraints on the allowed reduced

entropies. If we consider a situation where there are no constraints on the states,

then we know that for three or fewer particles strong subadditivity (SSA) provides

necessary and sufficient conditions on the reduced entropies for a closely correspond-

ing state to exist. By enumerating the extreme rays of the space of reduced entropies

allowed by SSA for four parties we were able to make two conjectures. The first is

that two classes of extreme ray are unobtainable for any quantum state - this has

subsequently turned out to be true [128]. The second is that there may be new en-

tropy inequalities. These conjectures were based on an analogy with a new classical

inequality derived by Yeung and Zhang [7]. If true this second conjecture would

be a very interesting result - SSA has proved to be a very useful tool in quantum

information science, and no new entropy inequalities have been discovered for 30

years. Of course this is the main open question left by this work, and is currently

the subject of active research.

We also made a connection between the extreme rays of the space of allowed

reduced entropies and MREGS. This allowed us to conclude that a certain set of

states must belong to the MREGS for three and four particles. This is independent

of the question of whether or not there may be new entropy inequalities. Arguments

based on reduced entropy provide necessary but not sufficient conditions for states
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to be in MREGS, so the arguments presented give a ‘lower bound’ on the set of

states to be included. By considering relative entropy of entanglement it has been

shown that other states must be in MREGS.

The above paragraphs contain a summary of the main results that I have found

in the areas of multipartite Bell inequalities, non-local correlations, and entropy

inequalities. They also contain a review of some of the open questions arising directly

from this work.

Entanglement, particularly for multipartite systems, has proved to have an ex-

tremely rich structure. The most important questions in this area remain unsolved

despite the considerable attention they have received over the last decade or so.

For example, we do not yet know the inequivalent classes of entangled states, nor

do we understand the precise role of entanglement in quantum computation. Fi-

nally, there are deeper question that remain unanswered - no satisfactory physical

mechanism for non-locality has been proposed. Nevertheless, as many authors have

[140, 141, 142, 143] noted, Quantum Information has given us new insight into ques-

tions about the foundations of quantum mechanics; hopefully a trend which will

continue in the future.
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