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Abstract

This thesis aims to describe the interaction between a tunnelling electron current and a

local spin in a steady magnetic field. A spin in a steady magnetic field should decohere back

to the equilibrium magnetisation direction in a defined time T1. A current passing through

a local spin within a tunnel junction has been observed to contain an a.c. component at

the frequency defined by the precessional frequency of the local spin in the magnetic field.

This oscillation remains after a time T1 has elapsed.

The nature of the electron current tunnelling through a magnetic field is first studied

using wave-matching techniques at a barrier wall symbolising the tunnel junction. This

is explored in both a non-relativistic and relativistic framework, and the polarisation

of an incoming unpolarised electron after it has crossed the barrier is calculated. The

polarisation is found to depend upon the width of the barrier, and the strength of the

magnetic field.

The problem is then reformulated into a scattering event using a Delta Shell potential in

the Lippmann-Schwinger formalism. The bound states, scattering states and resonances

are investigated, and the phase shifts caused by this potential are examined. A semi-

relativistic approach is found to capture the energy dependence of the non-relativistic,

whilst sufficiently showing the spin-orbit coupling caused by the electron spin.

The scattering from a local spin is then investigated, first as a static, then as a precessing

spin. The phase shifts, the scattering amplitudes and the total scattering cross section is

examined here, and the response of the electrons to the local spin is shown to be closely

related to the orientation of the electron spin and the type of scattering that occurs.

Finally, the scattering cross section through both potentials is calculated to determine

the size of the influence of the STM tip on the local precessing spin. It was found that

oscillations were observed in the cross section as the effect of a second potential was

increased, suggesting that it is necessary to include both potentials when modeling this

scenario with the simple potentials used here.
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Chapter 1

Introduction

1.1 The Importance of Single Spin Detection

The ability to measure a single spin is considered an important achievement in the field

of Quantum Computation. A classical computer uses macroscopic regions of magnetic

materials to store information as a series of 1’s and 0’s, and uses transistors made from

semiconductor material as switches. In the field of quantum computation, quantum me-

chanical objects are sought to replace these mechanisms. The advantage of using quantum

mechanical objects as storage devices, is that they can be placed into a state that is neither

a 1 nor a 0, but rather a superposition of both states. The availability of this superposition

of states can in principle result in computations that are performed in parallel instead of

in series. Particular algorithms [3] have been predicted to perform exponentially faster

when using quantum computation than when using a classical approach.

Obviously this is an attractive idea for sheer computational ability, but this is not the only

motivation for advancing the field of quantum computation; overcoming the quantum limit

is another. Moore’s Law describes the rise in the number of transistors able to fit onto

a silicon chip. As we advance to the limit of miniaturisation, the quantum nature of the

atoms used will need to be considered. A move away from conventional methods will be

needed, such as moving from using mesoscopic currents to using single electrons instead.

The simplest example of a quantum mechanical object is a quantum bit (a qubit), a two

level quantum system that can be put into a superposition of its two eigenstates. The

1



1. Introduction

general state of such an object will be written as

C0 | 0〉 + C1 | 1〉, (1.1)

where the probability of each state occurring is given by the square of its coefficient C0,1.

When such a system is measured the qubit is projected into one of its two eigenstates with

the probability associated with that state.

Possible two-level systems used in quantum computation experiments could be; an electron

charge (0 or 1 electrons being the two states); the spin of an electron [4]; single ions in

their ground and excited state [5]; nuclear spins [6, 7], and correlated many electron states.

In this work we are concerned with a single electron spin as the qubit of choice. The two

spin configurations - spin up and spin down, are the two levels, and the electron can be

put into either state quite simply with an applied magnetic field.

For the actual physical construction of a quantum computer, there are a number of re-

quirements set out by the ‘DiVincenzo checklist’: [8]

• The system must have identifiable qubits.

• An initial state must be able to be prepared.

• The system should be isolated from its environment.

• Manipulation of the system via universal gates must be possible.

• A strong measurement (readout) must be possible.

Each possible implementation of a quantum computer will find at least one of the require-

ments in the checklist difficult to meet. Possibly the most common difficulty however, is

the isolation of the system from its environment. In order for the system to be measured,

there must be some interaction with the outside world. However this leads to decoherence,

the destruction of the quantum state, as the energy of the state is transferred to and

from the environment. Any superposition that existed decays into its classical equivalent

leaving no more extra information than a classical operation. The decoherence of a system

often occurs at a faster rate than a coherent measurement can be made. This decoherence

time, τd, varies immensely according to the qubit system. A nuclear spin can take 104

seconds to decohere, and electrons in a GaAs substrate can take as little as 10−10s [9].

2



The Importance of Single Spin Detection

For quantum computations that use spin qubits, spin decoherence is a large barrier to

their successful implementation. In an Optically Detected Magnetic Resonance (ODMR)

experiment [10], approximately 106 readings are needed to acquire a coherent result.

A continuous measurement of the spin state, which is the alternative measurement ap-

proach, would induce decoherence which would collapse the spin state before any reading

can be made. Successful quantum computation using spins has been achieved in room-

temperature liquid-state Nuclear Magnetic Resonance (NMR) experiments [7, 6]. A solu-

tion of molecules is used, encompassing ensembles of up to 1012−18 spins, each molecule

differentiated due to their slightly differing chemical environment. In particular Ref. [7]

demonstrated the implementation of Shor’s factoring algorithm with 7 spin-1/2 nuclei fac-

torising the number 15. The NMR technique has difficulties with some of the checklist

requirements however; the thermal distribution of spin states make the preparation of the

initial state difficult, and the large numbers of molecules involved in such experiments

are impractical if it becomes necessary to scale the system. The thermal spin distribu-

tion ceases to be a problem when only a single spin is examined. In this case an output

measurement could be made faster than the time it takes for the spin to relax.

With a reduced number of spins (∼ 70), Rugar et al. [11, 12] have shown manipulation

and control of spins using a Magnetic Resonance Force Microscope (MRFM). A cantilever

with a small magnet at the tip combined with a microwave field are used to selectively

capture positive fluctuations of paramagnetic spin centres in SiO2. The spins are cyclically

inverted by the cantilever, and can eventually create a mean polarization in the system.

To image the location of a single spin however, an experimental run of ∼ 13 hours was

needed to distinguish the spin signal from the background noise level (due to the low

signal-to-noise ratio).

The most appealing approach for a quantum computer would be the solid-state approach.

Microfabrication techniques are already in use such that multiple systems can be repro-

duced easily, reducing the problem of scalability. Solid state qubits could be single electrons

in a semiconductor quantum dot or electrons on a superconducting circuit with Josephson

junctions [13].

Single quantum dots use the Zeeman-split energy levels of an electron as qubits [14].

Double dots can be used with the singlet and triplet states of two electrons acting as

3



1. Introduction

the qubit [4]. Careful manipulation of tuning parameters and the use of simple gate

operations have been shown to increase the decoherence time of spin states from ∼ 10ns

to greater than 1µs. However the inhomogeneous environment in a quantum dot may cause

fluctuations in the Zeeman splitting of electrons in that dot. Lee et al. [15] study the extent

to which these fluctuations cause operating errors in the dot. Some energy fluctuations may

be due to changes of the electronic Landé g factor, but possibly the dominant mechanism

for spin decoherence and relaxation is the electron-nuclear interaction. It was found that

the precession frequency of the electrons is affected by the magnetic field of the nucleus

(BN ) as well as the applied magnetic field B0. This precessional frequency ωe, is then

given by

ωe = geµB

√
(B0 + BN )2 + (BN )2. (1.2)

Spins in semiconductors have long decoherence times which should make them easier to

detect. By introducing a trapping level within tunnelling distance of the conductance

channel, the presence of a spin has been detected using a Field Effect Transistor [16]. The

trap levels are spin-split using a magnetic field, and the transition between one trapped

electron and two trapped electrons is detected. By using an Electron Spin Resonance

technique and selecting the appropriate frequency, the single trapped electron ‘flips up’ in

energy allowing a second electron to enter the trap, and reducing the current through the

conduction channel.

Aside from the solid state approach to monitoring and manipulating quantum mechanical

objects, there are other novel constructions used to perform calculations quantum me-

chanically. Two such ideas are those of ion traps and molecular cascades. A 9Be+ ion has

been shown to have a coherence time on the scale of minutes, and be extremely versatile

in the implementation of gates [5], as have trapped Ca+ ions [17]. Neutral atoms have

been trapped on microchips - a highly desirable potential system due to its reproducibility

[18]. However, using groups of atoms as qubits introduces the problem of addressing the

individual atoms. If lasers are used to select them the atoms have to be spaced such that

they are optically resolvable, but still have the tight confinement needed to keep their

quantum state well defined.

4



Quantum Transport

Although not a quantum computation, Heinrich et al. [19] have used interacting cascades

of carbon monoxide molecules as nanoscale logic gates, leading the way to magnetic cascade

computation. This work can potentially be expanded to make systems which could be

easily reset and combined in large numbers to perform many calculations simultaneously.

1.2 Quantum Transport

Quantum computational interests aside, it is important to be able to read out measure-

ments from these small devices on the macroscopic scale. One area of study bridging this

gap between the microscopic and macroscopic world, is the study of molecular wires and

chains of metallic atoms which make a connection between two bulk leads or connectors.

Much work has already been done on calculating conductance or transmission through

molecules in a tunnel junction [20, 21, 22]. In Ref. [20] the conductance through benzene

molecules sandwiched between two gold leads was studied using a combination of Density

Functional Theory and Non-Equilibrium Green’s Functions. Calculations were performed

on molecules both stretched and relaxed, touching none, one and two extra gold atoms.

This method included molecule-lead interactions, and the effect of contact atomic relax-

ation. The authors found a large difference in the conductivity when the number of gold

atoms was increased, and could map the increase in conductance with an increased electron

transfer from the Au leads to the benzene molecules.

In Ref. [22] the transmission of electrons through various benzene-derivative organic

molecules is calculated using the Breit-Wigner formula. This is expressed in terms of

the broadening of particular energy levels available for tunnelling. The current through

such systems are calculated by integrating the transmission probabilities over the appro-

priate energy window around the Fermi energy. Speyer et al. [21] calculate conductance

through a system using yet another method. The system (a polyaniline chain) is treated

as if it is composed of a discrete lattice of components. Using a transfer matrix variant

model, the electron flux can be calculated at intermediate steps as it propagates through

successive rings of the chain. The transmission coefficient of the last step in the chain

is inserted into the Landauer-Büttiker formula to find the conductance. First Princi-

ples calculations of band structures give the hopping energy of each step of the system.

5



1. Introduction

This method is less computer-intensive than other approaches as it does not need Non-

Equilibrium Green’s Functions, and once the correct hopping terms are found, gives good

agreement with experiment.

Transport through wires composed of metallic atoms have also been studied [23, 24, 25].

When there are large numbers of electrons in the system (as there will be in a metallic

chain), a full ab-initio numerical technique can be used to calculate the effective potential

(Veff). This is the potential seen by all the electrons from the ground state of the leads and

the atomic chain. In Ref. [23] a chain of Al atoms are modeled connected to 3D jellium

leads. When the number of atoms in the chain rises above one, making a quantum wire,

conductance quantization is seen, showing the opening of different transmission modes.

This is also seen in Ref. [24], where an experimental and theoretical study of transport

through lead nanowires of various widths is carried out. By going to the superconducting

state, which closes off particular modes, the authors are able to examine some of the

transmission modes individually.

Any discrepancy between experimental and theoretical results in quantum transport in-

vestigations could be due to neglecting electron-electron correlation effects in simulations.

When considering tunnelling into molecules, these can be incorporated by including a de-

scription of the electronic structure of the molecule e.g. the HOMO-LUMO gap [22]. In

the study of a chain of Pt atoms Ferretti et al. [25] include self-energy terms detailing

the electron-electron correlations as well as the coupling between the leads and the atoms

in the chain. This has the effect of reducing the transmission of electrons through the

chain, taking account of the effect that the reduced dimensionality of the system has on

the localisation of electrons.

When describing electron transport in a tunnelling experiment, we should be aware that

there may be more than one tunnelling path open to the electrons [26]: a) Bulk to bulk

tunnelling, b)tunnelling via scattering from the surface molecule, c) tunnelling through

the surface molecule to the bulk, d) tunnelling via scattering from the tip molecule, e)

tunnelling through the tip molecule. Each of these channels can be entered into an equa-

tion for the transition matrix, and the conductance can be found by taking into account

interference from these different channels.

This approach involves viewing the molecule as a scattering centre. This is an alternative

6



Structure of the Thesis

view to conductance/transmission that is often used in the description of electron motion

through tunnel junctions as well as through wires or bulk material. Zarand et al. [27]

studies the transition matrix of electrons scattering from a single magnetic impurity, and

Ref. [28] studies a scattered wavefunction after its interaction with an impurity inside a

wire. The presence of an impurity (representing a scatterer) in a lead will obviously affect

the transmission through that lead, but in Ref. [28] it is shown that in a 2D wire, the

strength of the impurity will NOT affect the transmission signature. In a weak scattering

regime it is shown that near the threshold energy for scattering the scattering pattern

doesn’t even depend on the location of the scatterer.

1.3 Structure of the Thesis

This work details an analytic approach to modeling electrons interacting with a single spin

in a tunnel junction. The bulk of this work is based on a scattering theory model which

examines the transition of electrons through various single potentials. Two potentials are

then combined to investigate the scattering cross section for the entire system.

In Chapter 2 I discuss the theoretical and experimental details of a scanning tunnelling

microscope (STM). I then describe in detail the particular STM experiment I will be

studying, and discuss current explanations in the literature.

In Chapter 3 I approach the problem through wave tunnelling techniques. I employ wave-

matching in coordinate space, and discuss the effects felt when a barrier is asymmetric,

and when we consider the incoming electron wave to be relativistic.

In Chapter 4 I introduce a Delta Shell model as an analytic treatment of an STM tip. The

virtues of the model are described, then I look at the bound states and scattering states

caused by such a potential. Chapter 5 deals with the relativistic version of the model and

the derivation of the semi-relativistic limit.

Chapter 6 and 7 detail the adaption of the model to include a single spin, thus representing

an impurity with a single spin rather than the STM tip. A stationary spin interacting

with the spin of the tunnelling electrons is first discussed, then we assume the impurity

spin is precessing in a magnetic field and describe the effect this has on the scattering

states.
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Chapter 8 combines a bare potential shell with a potential shell featuring a spin to model

the STM experiment. The scattering cross section through both potentials is derived and

the influence of the spin on the entire system is examined.

Chapter 9 will draw together my conclusions.
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Chapter 2

Background: Electron Spin

Detection and Scanning

Tunnelling Microscopy

In this chapter we give general background information about Electron Spin Resonance

(ESR) and Scanning Tunnelling Microscopy (STM) experiments, and we introduce the

ESR-STM hybrid experiment [29], which is the main motivation for this work.

We begin by recounting the main points of electron spin theory that are exploited in an

ESR experiment, and will then talk through a standard STM experiment describing the

main points of the technique. Several successful techniques have been used to theoretically

describe results achieved with an STM and I will go through some of the methods used.

We will then discuss the results of two ESR-STM experiments performed by Manassen

et al. [30] and Durkan et al. [29], and compare their results. We explore some current

theories in the literature which try to explain the observed phenomenon, and discuss the

implications and results of these papers.
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2. Electron Spin Detection and Scanning Tunnelling Microscopy

2.1 The Behaviour of an electron in a Magnetic Field:

Electron Spin Resonance

The magnetic moment of an electron is made up of the orbital angular momentum l, and

the intrinsic angular momentum, S. S can be visualised by applying a static magnetic

field in one direction (say the z direction) to a beam of unpolarized electrons. By passing

through such a field, the electrons will acquire one of two possible polarizations. They

will have a magnetic dipole moment aligned either parallel (µ+) or anti-parallel (µ−)

to the applied field. For electrons these are the only two possible orientations, and the

general theory of angular momentum dictates that such components must differ by ~ and

be distributed symmetrically around zero [31]. The two values of this property S are

therefore ±~/2.

The relation between the intrinsic angular momentum and the magnetic dipole moment

is given by

µ = γS , (2.1)

where the gyromagnetic ratio γ, is given by −g|e|/2me for electrons. g is the Landé

g-factor which is ≈ 2 for electrons.

If we isolate the spin magnetic moment by putting the orbital angular momentum l to zero,

we can study the motion of µ as a magnetization vector. In a magnetic field a torque of

strength µ×B0 will change the direction of µ with time, Figure 2.1. For B0 = (0, 0, B0),

it is easy to show that

µx = µ sin(α) cos(ω0t) ; µy = µ sin(α) sin(ω0t) ; µz = µcos(α) (2.2)

where µ sin(α) is the projection of µ in the x y plane, α is the angle the magnetic field

makes with the z axis, and ω0 = γB0 can be identified as the frequency of rotation in the

x y plane (the Larmor precession frequency).

We now introduce an oscillating magnetic field B1, of frequency ω1 perpendicular to the

static magnetic field. If ω1 is equal to the precession frequency ω0, B1 can tip the magne-

tization vector completely towards the x y plane in a time tπ/2 = π/2γB1. But if tπ/2 is
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Figure 2.1: A magnetic moment precessing around the direction of an applied magnetic

field.

too long, the spin responds to the perturbation through interactions with its environment

and re-establishes equilibrium magnetization along the direction of the static field before

it can be completely tipped. This is called longitudinal relaxation and is quantified by the

time constant T1 [32].

The motion of the three magnetization vectors after a perturbation due to B1 are given

phenomenologically by the Bloch Equations

dµx

dt
= −γµyB0 + γµzB1 sin(ω1t) −

µx

T2
,

dµy

dt
= −γµxB0 − γµzB1 cos(ω1t) −

µy

T2
,

dµz

dt
= −γ(µxB1 sin(ω1t) − µyB1 cos(ω1t)) +

µ0 − µz

T1
. (2.3)

As well as the oscillatory term due to B1, µx and µy also have a term which describes

the tendency for the system to lose its magnetization in the x y plane due to transverse

relaxation. This relaxation is quantified by T2, the transverse relaxation time and describes

the interaction of the spin with all of its neighbouring spins. If all the spins in a sample

start in phase at t = 0, by t = T2 the spins will be completely out of phase with one another

and the net magnetisation in the x and y directions will be zero. The magnetization in the
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2. Electron Spin Detection and Scanning Tunnelling Microscopy

z-direction depends on B1 only, and includes the enhancement of µz due to longitudinal

relaxation. µ0 is the thermal equilibrium magnetisation and represents the magnetisation

vector at time t = 0.

In an ESR experiment, a condition called resonance is exploited. The quantum mechanical

description of a precessing spin is summarised in Appendix A, and can be used to explain

this effect. For such a system as detailed above, the probability of finding the system in

the spin up state, ↑, at time t is given by

4µ2
BB2

1

~2

sin2(1
2(2µBB0t/~ − ω1t))

(2µBB0t/~ − ω1t)2
, (2.4)

where µB = e~/2m. The resonance condition is defined as when the system maximally

absorbs energy from the applied a.c. field. This occurs in equation 2.4 when ω1 = 2µBB0/~.

For a g-factor of 2, this frequency is the Larmor precession frequency mentioned above:

ω1 =
2µBB0

~
=

2

~

e~

2m
B0 =

2e

2m
B0 =

ge

2m
B0 = γB0 = ω0 . (2.5)

This shows clearly that when the applied magnetic field oscillates at the Larmor frequency

of the sample, maximum absorption (resonance) occurs.

One use of Electron (and Nuclear) Spin Resonance is to study a liquid or powder in order

to decipher its constituents. The sample under study is placed into the two perpendicular

fields described above. The frequency of the oscillating field is swept until a large ab-

sorption of energy is observed. The frequency that this occurs at gives information about

which spins are in the sample, and also their relative quantity can be determined. ESR

measurements typically require ∼ 1019 spins in order for a signal to be detectable so tends

to be used on bulk samples.

2.2 Scanning Tunnelling Microscopy

2.2.1 Experimental Techniques

The attraction of scanning tunnelling microscopy is its ability to image down to the atomic

level. First developed in 1982 by Gerd Binnig and Heinrich Rohrer [33], the scanning tun-

nelling microscope has spawned a whole family of microscopes which use a tip or cantilever
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very close to a surface to produce a topographical image of a surface. In conventional STM,

a tip, typically made from tungsten or platinum, will be sharpened to as sharp a point

as possible using electrolytical etching or cleaving techniques. An ideal tip will have a

single atom at the end of it. This tip is raster-scanned in the x-y plane over a surface at

a distance of a few Angstroms above the surface. The scan is driven by two piezo-drives

perpendicular to each other and to a third drive that controls the height of the tip above

the sample. As it is scanned, a potential difference is placed between the tip and the sam-

ple. Electrons from the occupied states in the tip (or the surface), will then tunnel across

the gap into the unoccupied surface (tip) states depending on which way the voltage bias

is applied. The tunnelling current that results from this is exponentially dependent on the

distance between the tip and the surface, and is studied as a function of the x-y position

of the tip.

There are two main scanning modes - constant current mode, and constant height mode.

For constant current mode, the feedback system attached to the tip changes the height of

the tip in the z-direction such that the tunnelling current is maintained at the same value.

The resulting scan is then a map of height z as a function of x-y position. A constant height

scan will give a map of current value against x-y position. Constant current techniques may

involve a lag in time before the z piezo-drive responds, and a constant height scan cannot

give an absolute value of the height of the tip above the sample, and is highly sensitive to

vibrational disturbances. Due to the high sensitivity required in both these techniques, it

is imperative that vibrations are kept to a minimum. This can be achieved somewhat by

making the unit small and stiff such that the first mechanical resonant frequency is very

high.

An STM can be used for a variety of purposes. As well as imaging the surface distribution

of atoms and electronic structure, an STM can initiate and study chemical reactions, and

be used for spectroscopic uses (see for example Ref. [34]). When examining a metal

surface, an STM will be operated at a few milli-electron volts, drawing a current typically

between 10 and 100pA. The majority of the tunnelling current is from the surface atoms,

where the electron wavefunction overlaps significantly with the tip wavefunction. The

next atom down, being about 3 Å away, will contribute about 0.1% to the current. This

suggests that for atomic resolution, the macroscopic shape of the tip isn’t as important

13



2. Electron Spin Detection and Scanning Tunnelling Microscopy

as having a single atom at the end of it. For topographic studies though the shape is

important. If the cone angle of the tip isn’t narrow, it won’t penetrate into deep and

narrow grooves between the surface atoms. Techniques can be applied to account for the

tip shape [35, 36] when reconstructing topographies.

An important development in the field of scanning tunneling microscopy is the use of

spin-polarized probes. By using a tip coated in a ferromagnetic material, spin-polarized

electrons will tunnel into the sample surface. The spin-polarized current will then see the

magnetic structure of the surface in addition to the chemical structure [37], and properties

such as magnetic domain structure, and even hysteresis on the nanoscale, [38] can be

imaged. It is also possible to use the polarization of the electrons as an indicator of which

angular momentum wavefunction is contributing most to the tunnelling process [39].

2.2.2 Theoretical studies of the STM

This section draws upon a review of STM theories by Drakova [40] in which more details

and references can be found.

Perturbation Theory

The first theoretical development in the study of a tunnelling microscope involved the use

of perturbation theory. J. Bardeen [41] considered multiple-particle tunnelling using the

simple electron transition probability

Pmn =
2π

~
| Mmn |2 ρn . (2.6)

Mmn is the tunnelling matrix element from the initial to the final states of the electron,

and ρn is the density of the final states of the electron.

Bardeen treats the problem by dividing the system into two, halfway between the two

sides, inside the barrier. Two proposed wavefunction solutions each exist in one side of

the barrier and they overlap inside the barrier assuming that they are not perturbed by

the presence of the other electrode. The wavefunctions are reflected at the barrier, but

also decays exponentially inside the barrier. Only considering elastic tunnelling, a time-

dependant solution is constructed and the matrix element (which was postulated to be a
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constant for metal-metal barrier systems) is given by

Mmn =

∫
Ψ∗0(H − Emn)Ψmn dτ . (2.7)

This is the overlap of the two wavefunctions integrated over their adjoining surface. From

this we can get the current density operator in the barrier region which appears to be zero

outside the barrier, and independent of position once we look inside the barrier region.

By treating any tip-sample interaction as negligible, this model can only hope to reproduce

results in which the tip is a large distance from the surface, and any variation in the

conductance occurring from such a model can only arise from a change in the density of

states the electrons are tunnelling into.

Bardeen’s approximation looks at the tunnelling process only and ignores the difference

between the mechanisms responsible (i.e. localised states are treated the same as propa-

gating states). Further more, because this is a perturbation method, the approximation is

only valid in the weak coupling limit (for small tunnelling currents). For a realistic system

with a large number of defects, this can be interpreted as the limit in which the tunnelling

rates are smaller than the scattering (of localised into propagating states) rates due to the

defects.

Tersoff and Hamann [42] use these results and model an STM with the following additions;

the surface being examined is treated exactly, and the tip is modeled as a locally spherical

potential well. The Bardeen formulism gives the tunnelling current as

I =
2πe

~

∑

mn

f(Em)[1 − f(En + eV )] | Mmn |2 δ(Em − En), (2.8)

where m(n) represents the probe (surface), and f represents the Fermi Function. If the

tip was a point probe, the matrix elements would be proportional to the wavefunction of

the surface at the position of the probe (r0). It is shown in [42] that the spherical tip

approximation is only important for the normalisation of the current and doesn’t change

the behaviour of the current as a function of potential. For simple s-wave tunnelling, the

tunnelling current is proportional to the bare surface local density of states at the Fermi

level, so any tip artefacts appear to not affect the observed currents.

This is another result that only holds for large tip-surface distances. In a real scan a
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sign reversal of the conductance is observed with a small tip-surface distance [43, 44], and

perturbation theory cannot reproduce these results.

Three dimensional scattering and the generalised Ehrenfest theorem

Analytic models can describe the basic tunnelling processes, but to accurately describe a

realistic scenario, ab initio calculations based on density functional theory are needed. To

make an improved model of an STM experiment it is important to treat the wavefunctions

exactly. To this end, a three dimensional model is developed in which each tunnelling event

is viewed as a scattering process. The electrons approach from deep inside the tip (surface)

region as a plane wave wavefunction, scatter from the tunnel junction and pass into the

surface (tip) region, leaving the scattering centers as plane waves again. The incoming

wave | i+〉 should be a eigenfunction of the whole STM system, and the outgoing wave | f〉
just an eigenfunction of the surface Hamiltonian. The tunnelling current is not affected by

potentials far from the tunnel junction, so modeling the probe and surface with only a few

layers of atoms is physically and mathematically adequate. The current is calculated from

the generalised Ehrenfest theorem, and is written as a product of the transition matrix

for tunnelling and a Delta function in energy:

Jf←i =
4πe

~
| 〈f | Vtunn | i+〉 |2 δ(Ef − Ei) (2.9)

This expression for the current factorises into Stip, representing the eigenfunctions of

the total Hamiltonian with boundary conditions corresponding to the incident wave; and

into Selectrode, which corresponds to the eigenfunctions of the wave for the outgoing wave

(which has no contribution from the tip). These can be understood to be indicative of

the local electron densities of the relevant parts of the system. When these are used

on wavefunctions localised in the tunnel barrier region (wavefunctions chosen to define

the tip shape in space), Selectrode includes information on the electronic structure of the

sample, and Stip describes the tip-surface interaction information that was missing in the

perturbation method described above. This is the main benefit of using this method; the

ability to resolve numerically these two physical aspects of the tunnelling process. In Ref.

[1] Doyen et al. successfully use this model to show the sign reversal of the conductance
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at low tip-surface amplitudes (Figure 2.2).

Figure 2.2: The sign reversal of the corrugation amplitude is correctly calculated in Ref.

[1] using three dimensional scattering to model the STM experiment.

Current Density Integration

The current density integration approach to calculating an STM current involves intro-

ducing an interface between the tip and the surface, over which the current density is

integrated. The interface can be placed either in a vacuum barrier if modeling an STM

[45], or within the surface itself. This appears to be a physically transparent method, but

the current density is not an observable and requires the simultaneous measurement of

position and momentum. Calculating the initial states and the Green operator of the tip

environment both require many summations over states making this a possibly computa-

tionally intense method.

Work has been done to show the equivalence of this method to Bardeen’s Transfer Hamil-

tonian [46] in the weak perturbative limit. Starting from this, Doyen [44] has shown that

by extending the equivalence to the strong coupling limit, an equivalence to the gener-

alised Ehrenfest theorem (for a single electron current) can also be found. The equivalence

does depend on normalization methods however - the current density wavefunctions have
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to preserve total flux before and after the scattering event (total scattered wavefunction

= incoming plane wave + scattered wave), and the wavefunctions used in the Ehrenfest

approach are normalized according to formal scattering theory (total scattered wave =

incoming wave).

Scattering using the Landauer-Büttiker approach

The tunnelling current can be calculated from the tunnelling probability using the Landauer-

Büttiker approach. The probability is given by the scattering matrix elements Sif

P =
∑

i,f

S∗ifSfi = TrS†S (2.10)

These elements are closely related to the transition matrix elements of the Ehrenfest

method, and can be shown to give the exact same result for the conductance. Usually,

when using this approach, the electrodes are structureless, in much the same way as the

potential far from the tunnel junction in the Ehrenfest method was assumed to not affect

the tunnelling current.

The Landauer approach only considers the coherent current due to wavefunctions expand-

ing throughout all space. Incoherent states, such as surface and localised states are not

included. However lattice defects may couple these states to the propagating coherent

states, which results in the Landauer transmission ignoring these possible transmission

channels. This method is often used for calculating transport through quantum wires [23],

or through systems in which the transmission of the current through each component can

be defined [47, 14].

Wortmann et al. [48] explore the difference between the Landauer and Bardeen approaches

for conductance through a tunnelling barrier when describing the scenario as two semi-

infinite volumes. They use an embedding potential technique using a surface located in

space between the two sides. They found that both methods yielded the same results for a

simple analytic model with a wide barrier. Once a realistic model was examined however,

with localised interface states as well as propagating states, the Bardeen approach gave

more accurate results, again in the limit of a thick barrier (which arises from the built-in

limitations of the Bardeen model anyway). The Landauer approach was only accurate for
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when the conductance was mainly due to Bloch states.

The above approaches are all based on single-particle calculations. The natural next step

in the development of a theory for STM tunnelling is by treating the system in a many-

body framework.

Many-Particle Theories

An STM system can be regarded as being in a non-equilibrium state, and the tun-

nelling current can be calculated using the Keldysh formulism. This involves writing

non-equilibrium Green’s Functions (NEGF) for a system of interacting particles in terms

of the Green’s Functions for a non-interacting electron gas. With realistic models of the

tip and the sample this can be an effective way to calculate the STM current. It is

used when more atomic detail is required, and by combining Density Functional Theory

and NEGF, this method has been shown to more accurately describe electron transport

through molecular [20] and atomic [49] devices. A drawback of this technique however is

that it can become computationally intensive.

Further Developments

The above approaches are all incomplete in that they do not explain the large corrugation

amplitude (atomic resolution) seen in metals which are practically free-electron-gas-like

metals. The charge density at these points of high amplitude are not large enough to

account for the experimental results. It was suggested by Drakova et al. [2] that treating

the charge tunnelling as an excited-state problem may be the solution to this. This is

the basis of the dynamic theory of tunnelling. If we view tunnelling electrons as being

injected locally into the sample, an excited state with a finite lifetime may occur which

may have a very different transition probability to the ground state. The response of the

surrounding medium to this excited state and its subsequent relaxation can increase the

atomic resolution and has been shown [2] to match the increased corrugation amplitude

seen in many experimental cases (Figure 2.3).
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Figure 2.3: Work from Ref. [2] showing the calculated increase in corrugation amplitude

using dynamic relaxation theory over mean field theory.

2.3 Detection of a single electron spin:

The ESR-STM experiment

2.3.1 Experimental Detail

The two experiments below describe the discovery of an a.c. component in a tunnelling

current when particular molecules are studied in a d.c. magnetic field.

This experiment was first performed by Manassen et al. in 1989 [30]. The authors studied

a partially oxidized Si(111) surface with tips made from etched tungsten. A magnetic field

was applied using two parallel bar magnets under the surface such that the magnetic field

was perpendicular to the surface, and the strength of the field was modified by varying their

separation. A circuit to separate the a.c. current from the d.c. current was constructed

and was shown to be capable of detecting a 0.25 nA current at a frequency of 500 MHz. A

slow conventional STM scan was performed with an r.f. power spectrum being measured

every 3 Å. It was found that when the tip was far from a spin centre, the r.f. component

was very small. It increased as the spin centre was approached and decreased as the tip
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then receded from the spin, Figure 2.4.

Figure 2.4: (a) Consecutive r.f. power spectra of the tunnelling current, measured at

different lateral separations of the tip from a spin centre in a field of 12 G. (b) A power

spectrum near another spin centre in a 172 G field. (c) Same as in (a) except for a field

strength of 185 G.

For a Landè g-factor of 2, for an electron, the Larmor frequency is given by

ωL =
geµBB

~
=

2µBB

~
(2.11)

The peak frequency in the power spectrum was found to obey this expression to within

2 MHz for varying magnetic field strengths. The exact nature of the spin centres were not

known due to an inability to successfully image partially oxidized surfaces. The authors

postulated that the difference between the measured frequency and the Larmor frequency

could be due to either the possible different configurations of spin centres which could

vary the gyromagnetic factor, or the small electric field originating from the STM tip.

The expected value for the Larmor frequency was also limited by the accuracy to which

the magnetic field could be measured.

There was some initial controversy with the findings in this work which is subsequently

addressed by the author in Ref. [50]. The ability to detect such a small r.f. signal was
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verified by the addition of a small coil that could generate a small a.c. magnetic field

component to the d.c. field. A phase-sensitive detection technique was used with a lock-in

amplifier, and it was shown that an STM tip was capable of picking up a modulated signal.

The more recent experiment by Durkan et al. [29] involved the study of the organic

molecule BDPA (α,γ-bisdiphenylene β-phenyl allyl). It is a stable free radical (has one

unpaired electron) with a conjugated π electron system and a 13C nucleus. The orbital

angular momentum is s-wave. Conventional ESR experiments indicate a longitudinal

relaxation time (T1) of 1.1 × 10−7 s and a transverse relaxation time (T2) of 1.0 × 10−7 s

[51]. Later experiments [52] give T2 as 0.5 × 10−7 s when BDPA is carried in mineral oil.

BDPA has an isotropic g-factor of 2.0026 ± 0.0002 which has been shown to be constant

over the temperature range 77 K to room temperature [53].
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Figure 2.5: The chemical structure of BDPA, the molecule used in Ref. [29] (from[52]).

Each vertex represents a carbon atom and each line represents a bond. The vertices with

only three bonds are understood to have a hydrogen atom attached as the fourth bond.

The vertex with three bonds and a dot however, symbolises one unpaired electron, which

is the signature of a free radical molecule.

In Ref. [29] BDPA was deposited onto highly-orientated pyrolytic graphite (HOPG) to a
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concentration of ∼ 100 molecules per µm2. This substrate was chosen as it has negligible

spin-orbit coupling, so should not interact with the molecule or the tunnelling electrons,

and the experiment was performed in air. Typical molecular cluster sizes were 40 − 60 Å

across and 2 − 3 Å high. The sample was mounted on a series of permanent Sm/Co

magnets which varied in magnetic strength from 190− 300 Gauss. The magnetic axis was

pointing through the sample in the direction of the tip, Figure 2.6. The STM tips used

were electrochemically etched from Pt-Ir or mechanically formed from Au. The potential

difference across the tip and surface was recorded as 350 mV with a tunnelling current of

1.4 nA. The range of frequencies expected for electrons interacting with the given magnetic

field ranged from 585− 840± 0.28 MHz, with the error determined by the accuracy of the

Hall probe measuring the strength of the magnetic field.

Figure 2.6: The experiment performed by Durkan et al. . BDPA is evaporated onto HOPG

then placed into a constant magnetic field. The surface is imaged using conventional STM.

Taken from C. Durkan with kind permission.

The STM tip was used in conventional mode to locate the molecular cluster, which typ-

ically contained a few molecules. It was then held stationary over a cluster and the

tunnelling current spectrum was measured using an r.f. amplifier. The spectrum was

sampled every 40 ms, and using a noise spectroscopy technique, a peak was seen at a

given frequency for 100 ms - 1 s before disappearing. The size of the oscillating current is
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calculated in Ref. [54] to be ∼ 10−15 A.

When the magnet beneath the sample was changed, the peak frequency increased with the

magnetic field according to equation 2.11 (shown in Figure 2.7). The Landè g-factor can

be inferred from the graph in Figure 2.8 to be 2± 0.1, although it is of limited resolution.

Figure 2.7: STM spin spectra of BDPA clusters (a), (b) taken a few nanometers apart.

(c) shows a scan on the bare HOPG. The graphs are shifted vertically for clarity, and the

vertical scale is arbitrary. Taken from [54].

For a constant magnetic field, a shift of peak frequency occurred after a short while; the

authors suggest that this may be caused by a given molecule only interacting for a short

time before switching off or saturating, and another molecule taking its place to interact

with the tunnelling current. The r.f. signal on the bare HOPG surface was also studied.

No peaks were found, verifying that the effect observed arises from the molecule itself and

is not an artefact of the experiment construction.

Another free-radical molecule studied by Durkan is TEMPO [54]. It has a nuclear spin

of 1, and therefore exhibits hyperfine splitting in a magnetic field. Three peaks were

observable in the STM spectra, Figure 2.9, the centre one being at the Larmor frequency
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Figure 2.8: Plot of central frequency of STM spin spectra peaks on clusters as a function

of the applied magnetic field. From this, the authors obtain a value of g = 2± 0.1. Taken

from [54].

for the applied field. This technique is obviously capable of detecting nuclear as well as

electronic spins.

The most recent developments by Durkan [55] are towards the study of a spin-polarized

STM (SP-STM). This is achieved by coating a non-magnetic tip with a few layers of iron.

This results in closed magnetic domains on the end of the tip, and the tunnelling electrons

are expected to take on the magnetic character of the domain they exit from. It was

observed in this experiment that maximum conductance was achieved if the moment on

the end atom of a tip was in the same direction as the magnetic moment on the surface

atom, and minimum conductance was observed if they pointed in the opposite direction

to one another.

2.3.2 Discussion

Both experiments use a d.c. magnetic field supplied by permanent magnets whose axis

points in the same direction - towards the tip of the STM. In neither experiment is an a.c.

field applied, the only use of it in Manassen’s experiment is to verify that the equipment
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Figure 2.9: STM spin spectra of TEMPO clusters. The three peaks are evidence of

hyperfine splitting. Taken from [54], the vertical scale is arbitrary.

can detect an a.c. signal. Yet both experiments detect a small a.c. current of the order of

106 smaller than the expected d.c. current.

The form of the spin centres studied by Manassen are unknown, and are not easily imaged

using a conventional STM in order to find their location. Instead, Manassen provides a

mapping of the spin locations based solely on their spin signal. In contrast, the BDPA

used by Durkan is located with ease, and it is known for certain whether the tip is held

over a spin centre or not. The spin signals measured by Manassen were reported to be

localised over approximately 10 Å , with measurements taken at 3 Å intervals. We are

told that the BDPA molecules are 40-60 Å across, but do not know how the signal varies

across the molecule. However the frequency hopping noticed by Durkan could be due to

the extended molecule size; we may expect no modulation of the spin if the tip is directly

above the spin (due to its symmetric oscillation around the z-direction magnetic field),

and an increased modulation as we move slightly to one side. Although Manassen claims

that the size of the signal rather than the frequency changed as the spin was passed over

by the tip.

This is not a conventional ESR experiment in which a second magnetic field is applied

perpendicular to the static field in the z direction. The only possible source of perturbation

to the spin appears to be the tunnelling electrons. However there should be nothing

unusual about the electrons. All the tips used are non-magnetic so the electrons should
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be unpolarised. It is unlikely that both sets of results featured contamination of the tip,

and recent private communication with Durkan suggests that the use of a deliberately

spin-polarised tip resulted in no spin signal being detected. One reason for this though,

may be because it appears that an atomically-sharp tip is required to see a spin signal.

Coating a tip with a ferromagnetic material inevitably makes it ‘blunt’ in STM tip terms.

The tip limits the reproducibility of the experimental conditions. It is difficult to quantify

the shape and structure of the tips used; they can be imaged after they are used, but their

exact structure during the experiment is not known. Producing atomically similar tips is

practically impossible, and once the system is disturbed to allow for changing of tip or

magnetic field, there is no way to know whether the same molecule is being imaged again.

The nature of the spin centres observed by Manassen are unknown, but the BDPA molecule

studied by Durkan is well characterised. When considering the motion of the tunnelling

electrons past and through this molecule, we need to ask how the spin of the molecule

is even precessing coherently for the length of time necessary for the measurement to be

taken?

Examining the motion of the electrons ballistically, a tunnelling current of 1 nA, which

represents the charge per second passing through the impurity molecule into the substrate

below, corresponds to an electron transition frequency of 1010 Hz. The applied magnetic

field of 200 G corresponds to an electron precession frequency of ωL/2π = 500 MHz. This

results in a time period of T = 2 ns. For a spin relaxation time (T1) of 110 ns, these

values mean that typically, 50 precessions of the impurity molecule will occur before the

molecular spin decoheres back to its equilibrium value. During one of those precessions,

∼ 10 electrons (for a 1 nA current) will pass by the molecule. This results in 600 electrons

passing before the molecule decoheres. If we instead imagine that the tunnelling electrons

are precessing, and the molecular spin is static, the electron will have completed ∼ 0.1 of

its precession by the time it has passed the molecule.

The experiments detected an oscillation in the rate of electron transition - in Ref. [54],

Durkan calculates the oscillation to be of an amplitude of ∼ 10−15 A. For every million

electrons that pass by the molecule, their numbers will therefore change by ±1 in one

molecular precession. The questions to ask then, are how does the tunnelling current

interact with the BDPA molecule, and how does this interaction project onto the tunnelling
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current spectrum?

2.3.3 Theoretical Explanations

As well as asking how the tunnelling electrons interact with the molecular electron, we

can ask whether there are any correlations between the separate tunnelling electrons (for

a non-spin-polarized tip). Balatsky, Manassen et al. [56] claim that no correlations within

one precessional period are needed in the spin polarization of the tunnelling electrons to

produce a current noise at the Larmor frequency.

Instead the noise arises from a 1/f noise already present in the conduction electrons

in metals. These are fluctuations in the magnetization of conduction electrons caused

by a superposition of consecutive random events starting at t0, each of which follow an

exponential relaxation law;

N(t − t0) = N0 exp (−(t − t0)/τ) (2.12)

For a distribution of relaxation times τ , the overall spectral density takes on a 1/f form.

Balatsky et al. claim that it is the coupling of this 1/f magnetic noise from the tunnelling

electrons with the local molecular spin that creates the peak in the current noise at the

Larmor frequency.

It is necessary however to have a mechanism which causes this distribution in relaxation

times. This could be due to local magnetic defects or polarizing fields. It is also suggested

that the individual dephasing events in a metal that are responsible for the T2 relaxation

of conduction electrons, are similar to the relaxation events responsible for general 1/f

noise.

Durkan, [54] shows using a WKB method, that the spin current through the tunnelling

junction will be affected by the applied magnetic field, introducing correlations into the

current. The magnetic field splits the tunnelling current into spin-up and spin-down

electron components creating a spin-polarized component which may be responsible for the

detected effect. This component should remain constant as the magnetic field is increased,

and should also increase as the temperature is decreased. For standard experimental values

of 4 eV for barrier height, 0.7 nm for barrier width, 20 mT for the applied magnetic field,
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and at a temperature of 300 K, Durkan calculates the polarized current to be equal to

65 fA.

Another paper by Balatsky and Manassen [57] asks the question: What is the role of a

direct Heisenberg interaction between the local spin and the tunnelling electrons? They

consider the spin polarization of the tunnelling electrons to be zero on a long time scale

but not on the time scale of one precession of the local spin.

The spin-dependant tunnelling matrix element is given by

Γ̂ = Γ0 exp

[
−
√

φ − JS(t)σ̂

φ0

]
(2.13)

φ0 is the energy due to the distance between the sample and the tip, φ is the barrier height,

and JS(t)σ̂ is the exchange interaction. Γ0 describes all the spin-independent tunnelling,

and the current can be given by the sum of electrons tunnelling with each different spin

orientation. By assuming that the Heisenberg exchange coupling between the tunnelling

electrons and the local spin is a fraction of an electron-volt, the effective barrier as seen

by the tunnelling electrons (which determines the current) is determined by the local spin

orientation, which is assumed to be periodic and slow compared to the rate of electrons

tunnelling.

The current dispersion is given as a multiple of the Larmor frequency component of the

local spin, and the spin spectrum of the tunnelling electrons. They calculate the magnitude

of the fluctuating current (in time) due to this exchange interaction to be of the order of

10 pA for a dc current of 1 nA. This will give a peak at the Larmor frequency once there

is some polarization in the tunnelling current at a time scale of the relaxation time of the

local spin. (It is noted that if the spins of the tunnelling electrons are totally uncorrelated,

the noise component of the current will be smeared out over the full frequency range, and

it is only if there is a degree of spin polarization, which this model does not provide, that

a strong peak will appear at the Larmor frequency.)

Balatsky also asks in [58] under what conditions is it possible to detect the single spin

precession with an STM? He suggests the coupling interaction is a spin-orbit one, and

that the local spin is characterized by a Zeeman-split wavefunction;

29



2. Electron Spin Detection and Scanning Tunnelling Microscopy

| Ψ〉 = α |↑〉 + β |↓〉 (2.14)

which evolves in time as

α =| α | exp (−iE↑t) ; β =| β | exp (−iE↓t + iφ(t)) (2.15)

with φ(t) representing a drifting phase which determines the spin coherence time (which

is long enough here for the precession to be well-defined), and is related to the ESR spin-

relaxation time. The mechanism here is based on the time-dependent modification of the

tunnelling density of states induced near the precessing spin in the presence of an applied

current, (also put forwards as an explanation in [30]). The unpolarized tunnelling electrons

are treated as though the local spin moment S is static for each instantaneous orientation

and the correction to the conduction electrons density of states is sought. The introduction

of a current to the system creates a shift of k0 to the equilibrium momentum distribution

of the tunnelling electrons. This is inserted into the Greens Function of the system,

which is then used to calculate the correction to the density of states. The correction

depends on the distance of the tunnelling electrons from the spin centre through a Bessel

Function dependence, and it was found that if S oscillated at the Larmor frequency, a

time dependence of the correction is found.

Work has been done by several authors on the transmission or conductance of electrons

via a molecule or other system with one or two energy levels. Zhu and Balatsky [47], find

that a Larmor oscillation in the conduction is found when tunnelling through a precessing

spin if a spin-flip interaction between the conduction electrons and the single molecule is

allowed. Galperin et al. [59] discuss using the ratio of the spectrum amplitudes at zero and

the Larmor frequency as a measure of the spin-dependant tunnelling. They use a two-lead

Kondo model which consists of, amongst other terms, tunnelling matrix elements due to

the exchange interaction for the electrons tunnelling from the leads to the molecule, and

a direct tunnelling matrix element. They assume the exchange tunnelling is much smaller

than the direct tunnelling component and the total magnetic field is given as a sum of the

external applied field and the additional field produced by the tunnelling electrons. They
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find an expression for the zero-frequency power spectrum that relies on the angle of the

tunnelling electrons’ polarization with the external field.

Summary

A recent experiment by Durkan et al. [29], claimed to have detected the presence of a

single electron spin via the modulation of an STM current through the organic molecule

BDPA. Placed in a magnetic field, an STM tip was held stationary over the molecule

and a modulated tunnelling current was observed. The frequency of the modulation was

the same as the Larmor frequency of the free electron, suggesting that the local spin was

somehow coupled to the tunnelling electrons. There is no obvious reason in this experiment

though, with only a steady magnetic field, why the local spin should be precessing.

Possible theoretical explanations include a time-dependent modification of the conduction

density of states induced near the precessing local spin by the presence of an applied

current, and magnetic defects causing a 1/f noise in the tunnelling electrons which then

couple to the local spin spectrum.

There are two approaches to take when studying these experiments:

1. If the local spin is precessing, under what mechanism is it doing so (knowing that it

is expected to be pointing in the equilibrium magnetisation direction)?

2. Assuming the local spin is precessing, how does this motion project itself into the

tunnelling current spectrum?

We aim to examine both approaches, starting with the assumption that the local spin is

not precessing.
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Chapter 3

Tunnelling Through a Barrier

In this chapter we attempt to understand the form of an electron current as it passes

an impurity which is inside the vacuum barrier of an STM. We treat the leads of the

experiment (here the STM tip and the surface) as if they are at equal potential, and the

vacuum barrier is represented by a barrier wall through which the electrons must tunnel.

We study the wavefunction of the incoming plane of electrons as it moves through the

barrier. We are interested in the wavefunction after the barrier has been traversed. The

system is treated both non-relativistically and relativistically, with and without applied

magnetic fields.

In the following sections, unless otherwise stated, the barrier is treated as rectangular, of

a height V0 and a width a, starting at z = 0 and ending at z = a.

V (z) =





0 : z < 0

V0 : 0 ≤ z ≤ a

0 : z > 0

(3.1)

3.1 Non-Relativistic Barrier Tunnelling

The method for studying quantum mechanical tunnelling through a barrier or a well is well

known. We start with the general Schrödinger equation for a particle under the influence

of a potential V (z):

− ~
2

2m
∇2Ψ + V (z)Ψ = EΨ . (3.2)
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V0

Incoming Transmitted

0 a
z

Reflected

Figure 3.1: A wave approaching a barrier of height V0 and width a. The wave decays

exponentially inside the barrier and is partially transmitted on the other side. Part of the

wave is reflected at the front face of the barrier (shifted upward for clarity).

The system is separated into areas of different potentials, changing the Schrödinger equa-

tion accordingly. Trial wavefunctions are substituted into the equations hopefully satisfy-

ing the Eigenvalue equation with appropriate wavevectors. Boundary conditions are then

applied to the wavefunctions. They must match at the barrier boundary (must be contin-

uous) and their derivative must also match (the wavefunctions are smooth). This ensures

the model is physical. The wavefunctions must also be normalised such that Ψ(z) → 0 as

z → ±∞.

3.1.1 Tunnelling with no Magnetic Field

The wave will approach the barrier from the left (Section I), and will take the form of

a plane wave. In the barrier (Section II) the wave exponentially decays, and in Section

III as the wave leaves the barrier we expect the wave to be a translated fraction of itself

in section I. The trial solutions include both forward and backward-moving waves. The

wavefunctions are chosen such that the wavenumbers k and k′ are real for an incoming

electron with energy E less than the barrier height V0.
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Ψ(z) =





A exp (ikz) + B exp (−ikz) : I

C exp (−k′z) + D exp (k′z) : II

AS(E) exp (ik(z − a)) : III

(3.3)

The coefficients represent the wave amplitudes and S(E) is the fraction of the initial wave

amplitude transmitted through the barrier. These are substituted into the appropriate

one-dimensional Schrödinger equation;

− ~
2

2m

d2

dz2
Ψ(z) = EΨ(z) : I, III

− ~
2

2m

d2

dz2
Ψ(z) + V0Ψ(z) = EU(z) : II

(3.4)

to give momentum values of k =
√

2mE/~ and k′ =
√

2m/~(V0 − E) for Sections (I, III)

and II respectively. Boundary conditions are applied at z = 0 and z = a such that the

wavefunctions are continuous and smooth.

A + B = C + D

ikA − ikB = −k′C + k′D



 z = 0

C exp (−k′a) + D exp (k′a) = AS(E)

−k′C exp (−k′a) + k′D exp (k′a) = ik′AS(E)



 z = a

(3.5)

From these equations we find an expression for S(E), the transmitted amplitude fraction

of the wave

S(E) =
2ikk′

2ikk′ cosh(k′a) + (k2 − k′2) sinh(k′a)
. (3.6)

The current density must be conserved through the barrier such that the incident current

density equals the reflected plus the transmitted current densities (Jinc = Jref + Jtrans).

This can be calculated in the non-relativistic case with the expression

Jn = − i~

2m
(Ψ∗n∇Ψn − Ψn∇Ψ∗n) . (3.7)

This results in the incident probability amplitude equalling the sum of the reflected (R)

and transmitted (T) probability amplitudes; 1 = R + T . R (T) is given by the square of

the ratio of the reflected (transmitted) wave amplitude to the incoming wave amplitude.

Specifically, the transmissivity is given by
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T =

∣∣∣∣
AS(E)

A

∣∣∣∣
2

=

(
1 +

sinh2(k′a)(k2 + k′2)2

4k2k′2

)−1

. (3.8)

3.1.2 Tunnelling with a Magnetic Field in the Barrier

We first postulate that the magnetic field is felt in the vacuum barrier only. There seems to

be little consensus in the literature as to whether this is an accurate representation of the

physical picture. It was found in Ref. [60] that STM images of p-doped InAs(110) were not

changed when placed in fields of up to 6 Tesla. However, a paper the following year [61] by

the same group, using fields of up to 6 Tesla detected oscillations of the conductance with

a change in the magnetic field. This was through n-doped InAs(110) and the oscillations

were attributed to Landau-level splitting of the conduction band of the surface. A study

of Au(111) in Ref. [62] found that a magnetic field appeared to enhance standing wave

patterns on the surface image, and suppress atomic imaging. However it was shown in

Ref. [63] that simply changing the tip, and therefore changing the electronic structure

of the tip was enough to produce this effect. The authors of [62] acknowledge that the

changes could be either due to the tip or the surface and are currently investigating the

effect of a magnetic field on the Au(111) surface in more detail.

With these results in mind, and the fact that the magnetic fields described above were

much bigger than those used in the Durkan experiments, we decide to try both limiting

the field to the barrier, and allowing it to permeate the whole of the system. We first

restrict it to the barrier and choose it to be in the direction B = (0, 0, B), i.e. pointing

along the short axis of the barrier.

A magnetic field results in energy differences for electrons with spins aligned with or

against the direction of the field of a magnitude ±geµBB. geµB is the usual Landé g-

factor and Boltzmann constant for electrons in a magnetic field of strength B. We choose

the incoming electron wave to be of a generic spin formation, with equal numbers of

electrons with spin up and spin down (1 and 2 respectively).
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The wavefunctions are given by

z < 0 ΨI =

(
A1

A2

)
exp (ik0z) +

(
B1

B2

)
exp (−ik0z)

0 < z < a ΨII =

(
C1 exp (k1z)

C2 exp (k2z)

)
+

(
D1 exp (−k1z)

D2 exp (−k2z)

)

z > a ΨIII =

(
U1

U2

)
exp (ik0(z − a)) ,

(3.9)

where

k0 = 1
~

√
2mE

k1 = 1
~

√
2m(V0 − E − geµBB)

k2 = 1
~

√
2m(V0 − E + geµBB) .

(3.10)

The wavefunctions and their derivatives were matched at the barrier walls (z = 0 and

z = a), and were rearranged using Cramer’s Rule to find the transmission and reflection

coefficients (U1,2 and B1,2 respectively) of both spin wavefunctions. Cramer’s Rule is used

for solving Linear systems of non-singular matrices. The solution of AX = B is given by

Xn =
det An

det A
, (3.11)

where An is the matrix formed by replacing the nth column of A with the column matrix

B. The transmitted components were calculated separately for spin up and spin down

(i = 1, 2) and were given by

Ti = |Ui|2 =

(
1 +

sinh2(kia)(k2
0 + k2

i )
2

4k2
0k

2
i

)−1

. (3.12)

This is exactly the same form as for non-relativistic tunnelling with no magnetic field.

We can find the polarisation of the total transmitted wave with the equation

P =
T↑ − T↓
T↑ + T↓

. (3.13)

Figure 3.2 shows the polarisation result - a small excess of up spins over down spins. The

difference corresponds to a spin polarisation of 1 in 50,000 for moderate magnetic fields

such as used in the Durkan experiment (0.019−0.03 T). The polarisation effect is constant

at low energies, then seems to increase sharply at energies very close to the barrier height.

The graphs in this chapter are plotted in Atomic Units (details given in Appendix B).
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Quantity Symbol Experimental Value Value in A.U.

Tip Bias V0 0.5 − 8 eV 0.018 − 0.3 ht

Barrier Width a 10Å 20 Bohrs

Magnetic Field B0 0.019 − 0.03 T 7.6 − 12 × 10−8 AU

Table 3.1: Experimental values and their equivalent in Atomic Units.

For the Durkan experiment, the experimental values and the equivalent values in Atomic

Units are given in Table 3.1.
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Figure 3.2: The polarisation of electrons when tunnelling through a barrier with an applied

magnetic field, as a function of magnetic field and electron energy. The barrier has the

dimensions; V0 = 0.3 ht and a = 20 Bohr. The polarisation is scaled by 104.

In Figure 3.3 we show the behaviour of the separate spin components when the barrier

height is increased; there is a small constant polarisation for low energies, a steep rise in

energy when close to the barrier height, and an oscillating behaviour when the energy is

greater than the barrier height (when the momentum becomes imaginary). Changing the

barrier height appears to have no effect on the size or pattern of the transmission. The

sole effect seems to be to move the graph in energy such that the sharp rise is always at the

energy of the barrier height. The spin up component leads the spin down component, but
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the differences in transmission are too small to be resolved in the graphs for the magnetic

fields we are interested in. It is more informative to study the polarisation.

0.25 0.35 0.4 0.45 0.5 0.55 0.6
EHhtL

0.2

0.4

0.6

0.8

1
Tw

Figure 3.3: Transmission of the spin up component as a function of the electron energy for

a tunnelling event with a magnetic field of B = 1 × 10−7 AU in the barrier. The barrier

width is 20 Bohrs, and the three plots are for barrier heights of: Light Blue - 0.3 ht, Dark

Blue - 0.4 ht, Green - 0.5 ht

Figure 3.4 shows how the polarisation of the transmitted wave changes as the barrier width

is increased. Figure 3.4(a) shows the same barrier heights as in Figure 3.3, and Figure

3.4(b) shows the approximately linear relationship between the energy of the barrier height

and the maximum polarisation. Plotted in Figure 3.4(b) is also the electron energy at

which the maximum polarisation occurs; it appears to consistently occur at a slightly

higher energy than the barrier height. This is slightly inside the barrier and must be an

artefact resulting from the matching of the travelling wave outside the barrier and the

exponentially decaying wave inside the barrier.

This difference in energy between barrier height and maximum polarisation can be seen

clearer in Figure 3.5, which is a plot of the changing polarisation with increasing barrier

width, a. The barrier height here is 0.3 ht and the peak of the curve for a = 20 Bohrs

quite clearly occurs at E ∼ 0.31 ht. As the width is increased, the polarisation is seen to
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(a) When the barrier height is increased, the

polarisation graph shifts in energy to the energy

of the barrier height. The graphs are for the

same barrier heights as in 3.3.
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(b) Maximum polarisation as a function of in-

creasing barrier height (solid line). The dashed

line represents the energy at which the maxi-

mum polarisation occurs.

Figure 3.4: The dependence of the polarisation on barrier height. A magnetic field of

B = 1×10−7AU is in the barrier only. The barrier width is a = 20 Bohrs. The polarisation

is scaled by 104.

increase, most likely due to the influence of the magnetic field being felt over a greater

distance. The rise in polarisation which is usually seen as the barrier height is approached,

becomes sharper as the width is increased, and occurs at successively lower energies until

the energy of the barrier is reached.

To summarise, these results appear to show that increasing the barrier height increases the

energy of maximum polarisation which always occurs at an energy slightly higher than

the barrier height. There seems to be no effect however on the value of the maximum

polarisation. When reducing the barrier width, on the contrary, the amplitude is greatly

reduced. The reduction of the barrier also increases the energy of the maximum polar-

isation. The width of the barrier positively affects the maximum polarisation and the

location in energy appears to be solely decided by the barrier height.

3.1.3 Tunnelling with a Magnetic Field all over

We now examine the transmission and polarisation of a wave that is moving through an

area of continuous magnetic field, both inside and outside of the potential barrier. This

involves changing the form of the k values outside of the barrier to include the magnetic

energy -
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Figure 3.5: Increasing the width of the barrier with a constant barrier height of 0.3ht and

a magnetic field in the barrier of 1× 10−7 AU. Light Blue - 10 Bohr, Dark Blue - 20 Bohr,

Green - 40 Bohr. The polarisation is scaled by 104.

k01 =

√
2m

~2
(E + gµBB)

k02 =

√
2m

~2
(E − gµBB) (3.14)

The momentum values inside the barrier remain the same, and the polarisation of the

resulting wave after the barrier is as we might expect. It behaves much like the graph of

the previous section at high energies, but is significantly different at lower energies. At

very small energies, as E ≈ 0, the wave is totally polarised in the same direction as the

magnetic field (positively). As we increase the energy the polarisation reduces to being

only slightly positive (as when the magnetic field was in the barrier only), then increases

to the local maximum at the barrier height energy (plotted in Figure 3.6).

As we change the well dimensions, the profiles behave the same as for when the magnetic

field was in the barrier only, apart from the behaviour at low energies which stays roughly

constant. Comparing the polarisation graphs for the magnetic field being just in the

barrier, and all over the system, we see that it is only when the energy of the electrons
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Figure 3.6: The tunnelling polarisation with a magnetic field through the whole system

as a function of magnetic field and electron energy; V0 = 0.3 ht and a = 20 Bohr. The

polarisation is scaled by 104.

are ∼ 0 that the location of the magnetic field has any effect. This is obviously due to the

magnetic field being the more dominant influence at these energies.

3.1.4 Tunnelling with a Magnetic Field in the Barrier - Two-Step Bar-

rier

In the experiment we are modelling, the electrons pass through the vacuum barrier, and

then through the molecule under study. These two environments can be represented by

two different potential values of two different widths. Here, we examine the effect this

will have on the polarisation of the electrons. We choose the barrier to consist of two

rectangular barriers placed side by side. The first barrier is of height V1 and extends from

z = 0 to z = a. The second is of height V2 and extends from z = a to z = b. We keep

V1 < V2 for now.

The approach is the same as for the singular barrier, except there are now three barriers at

which wave functions need to be matched, and correspondingly, more unknown variables.

We introduce a wave function for a < z < b as follows and add extra subscripts onto

the momentum values to clarify which barrier we are looking at; the first number of the

subscript identifies which barrier we are in, and the second represents the spin direction
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V2V1

a0
z

b

Figure 3.7: A stepped barrier consisting of two potential heights of V1 and V2, with widths

a and b respectively. The electron wave enters from the left.

(↑= 1, ↓= 2).

z < 0 Ψ0 =

(
U1

U2

)
exp (ik0z) +

(
A1

A2

)
exp (−ik0z)

0 < z < a Ψ1 =

(
B1 exp (k11z)

B2 exp (k12z)

)
+

(
C1 exp (−k11z)

C2 exp (−k12z)

)

a < z < b Ψ2 =

(
D1 exp (k21z)

D2 exp (k22z)

)
+

(
G1 exp (−k21z)

G2 exp (−k22z)

)

z > a Ψ3 =

(
H1

H2

)
exp (ik0(z − b))

(3.15)

There are twelve boundary conditions in total; at the three distances z = 0, a, b we have

to match the wavefunctions and their derivatives, for both of the spin directions. The trial

wavefunctions are the same as those in equation (3.10), but with two different potentials

now;

k0 = 1
~

√
2mE

ki1 = 1
~

√
2m(Vi − E − geµBB)

ki2 = 1
~

√
2m(Vi − E + geµBB)

(3.16)

where i = 1, 2 refers to the potential barrier.

If we first constrain ourselves to energies less than the height of the smallest barrier, we
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3. Tunnelling Through a Barrier

find exactly the same shape graph as when there was only one potential. The width of

the two barriers determine the polarisation of the wave in different ways. In Figure 3.8,

we compare different width combinations. It appears that for optimum polarisation, it is

more important for the first barrier to be thick than for the second barrier to be. A wider

total barrier will give more polarisation than a thinner barrier; for a constant total width

a + b, the highest amount of polarisation will occur when the bulk of the width is in the

first potential step.
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Figure 3.8: Varying individual barrier widths to determine the effect on the magnitude of

the overall polarisation at energies less than the first barrier height. Barrier heights are

fixed at V1,2 = 0.3, 0.5 ht, and the magnetic field is B = 1×10−7AU. Polarisation is scaled

by 104.

If we allow the maximum energy to go above the height of the second barrier, we see two

distinct regions in the polarisation graphs. Up to the energy of the first barrier, we have

a smoothly varying graph which is the same as the previous graphs, with the typical peak

in polarisation as the barrier energy is reached. After this, we get oscillatory behaviour

until we reach the energy of the second barrier, when another peak tends to occur. The

oscillations will decay if the energy gap between the barriers is wide enough. They appear

to grow for a = 10 Bohrs in Figure 3.9, but this is due to the proximity of the next barrier,
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Non-Relativistic Barrier Tunnelling

and the first barrier not being wide enough to affect the wave significantly. Above the

energy of the second barrier, only quickly-decaying oscillations are observed. Changing

the heights of the barriers has the same effect as the previous sections; the location of the

polarisation pattern is affected but the magnitude is not.
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Figure 3.9: The polarisation pattern for tunnelling through a stepped barrier varying the

width of the first barrier a. The barrier heights are fixed at V1,2 = 0.2, 0.4 ht, the width

of the second barrier is b = 20 Bohr, and the magnetic field is B = 1 × 10−7AU. The

polarisation is scaled by 104.

What would the polarisation look like if the wave moves through the area of largest

potential first? Up to the energy of the first barrier we get constant, slightly positive

polarisation until just before the second barrier height, then the characteristic peak occurs.

When we look at the dependence on barrier width however, we get the opposite result from

before. A greater polarisation occurs when the second barrier is wider than the first; this

suggests that the polarisation is optimised for the wider potential barriers, whether they

appear first or second in the barrier step, and the heights are less important in deciding

the amount of polarisation. This supports the results found in the case of a single step.

In this section we have presented non-relativistic tunnelling through a barrier. The po-

larisation as a function of the applied magnetic field has been studied, and was found to
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3. Tunnelling Through a Barrier

depend mainly on the width of the barrier being tunnelled through. Comparing a com-

posite barrier with a single step barrier, the polarisation in both cases appear to be very

similar, with neither producing significantly more polarisation than the other. The change

in polarisation with magnetic field is smooth in all cases and appears to be linear (Figures

3.10 and 3.2).

How do these results relate to the experimental findings? A tunnelling current can be

viewed as a random ensemble of spins. We would expect such a current to be unable to

coherently map the state of a single impurity spin that it passes. A spin polarisation in the

tunnelling current however, may allow the impurity to affect the current in an observable

manner. For the widths used in the experiments the polarisation in this model is only 1 in

50, 000; a similar sized result was found by Durkan in Ref. [54]. In 0.1 ms this corresponds

to only 18 more spin up electrons than spin down electrons out of the 880,000 electrons

which will pass through the junction in that time (for a 1 nA current). If we wanted to

achieve total polarisation of the electron wave, for typical barrier heights and magnetic

fields used in the Durkan experiment, a barrier width of ∼ 0.1 mm would be needed.
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Figure 3.10: Polarisation changing with magnetic field, all B values are ×10−8. V1,2 =

0.2, 0.4 ht; a, b = 20 Bohrs. The polarisation is scaled by 104.
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3.1.5 The Pauli Equation

The method used above to include the spin of the tunnelling electrons was not a completely

rigorous approach. The full equation for non-relativistic particles with spin has been

derived by Pauli. In an electromagnetic field it is given by;

i~
dΨ

dt
=

(
1

2m
(p̂ − e

c
A)2 + eφ − µB σ̃ · B

)
Ψ (3.17)

Where φ is the scalar Coulomb potential and A is the vector potential related to B =

curlA. σ̃ represents the three Pauli spin matrices given by;

σ̃x =


 0 1

1 0


 σ̃y =


 0 −i

i 0


 σ̃z =


 1 0

0 −1


 (3.18)

If we select the magnetic field to be in the z-direction as above, the vector field can be

given by A = {−1/2By, 1/2Bx, 0}, and assuming the magnetic field is weak, we can ignore

terms in A2. For this choice of A we get A · p̂ = B/2L̂z, and assuming the wavefunction

to be comprised of a two-component Spinor as before, we find the Pauli equation goes to

(
p̂2

2m
− eB

2m
(L̂z + ~σ̃z)

)
 Ψ1

Ψ2


 = E


 Ψ1

Ψ2


 (3.19)

for a magnetic field and no external potential. The addition of a potential will require an

additional term of +V0Ψ on the left hand side of the equation.

If we use this equation to study the transmission probability of up and down spins for a

magnetic field confined to the barrier region, we get the same equation for the probability

as above and inputting the values of k0, k1, k2, get the exact same result. So the approach

above, where the spin was added in ad-hoc and the orbital angular momentum was not

accounted for, was adequate for a study of the polarisation resulting from an electron wave

tunnelling through a barrier.
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3. Tunnelling Through a Barrier

3.2 Relativistic Barrier Tunnelling

3.2.1 Relativistic Tunnelling with no Magnetic Field

Another check we can perform to verify that we have taken account of the electron spins

appropriately, is to formulate the tunnelling relativistically. We can then take the non-

relativistic limit, looking at the energy range in which we are interested, but still main-

taining the spin description. For this the wavefunctions must be a solution of the Dirac

equation, which for a free particle is given by

i~
∂Ψ(r, t)

∂t
= (c α̃r · p + β̃m0c

2)Ψ(r, t) . (3.20)

This is modified inside the barrier by the inclusion of a potential term +V0Ψ(r, t). α̃r and

β̃ are 4 × 4 Dirac matrices given by

α̃r =


 0 σ̃r

σ̃r 0


 ; β̃ =


 I2 0

0 −I
2


 (3.21)

Where r = (x, y, z), and σ̃r are the Pauli 2 × 2 matrices. Each of the components of the

relativistic wavefunction must individually satisfy the Klein Gordan equation [64], and

for tunnelling or scattering below the energy range in which particle-antiparticle pairs are

created, must satisfy the probability current conservation equation, given in the relativistic

case by

Ji,r = 〈Ψi |c α̃r|Ψi〉 (3.22)

with i = (1, 2) corresponding to 1 =↑, 2 =↓.
As in the non-relativistic calculation, we would like to confine the electrons momentum to

propagate in the z-direction (r = z), so that α̃r · p → α̃z~kz. For every momentum value,

there will be two energy solutions corresponding to particles or antiparticles (holes). The

relativistic energies ER are given by the free Dirac equation;

ER = ±
√

m2
0c

4 + (~ck)2 (3.23)

We are only interested in the particles, so will only take the positive values of ER. If we

again allow waves to move in both the positive and negative direction, we find a set of
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wavefunctions that satisfy equations 3.20 and 3.22;

z < 0 Ψ1 =
1√

1 + f2
0




A1

A2

f0A1

−f0A2




exp (ik0z) +




B1

B2

−f0B1

f0B2




exp (−ik0z)

0 < z < a Ψ2 =




C1

C2

−if ′C1

if ′C2




exp (k′z) +




D1

D2

if ′D1

−if ′D2




exp (−k′z)

z > a Ψ3 =




U1

U2

f0U1

−f0U2




exp (ik0(z − a))

(3.24)

Where

f0 =
~ck

E + 2m0c2
k0 =

1

~c

√
E2 + 2Em0c2

f ′ =
~ck′

E − V0 + 2m0c2
k′ =

i

~c

√
(V0 − E)(V0 − E − 2m0c2)

(3.25)

The relativistic energy in the wavefunctions have been re-written as a sum of the rest mass

energy and the non-relativistic energy ER = E + m0c
2. We match the wavefunctions at

z = 0 and z = a, and solve for the transmission and reflection coefficients, U and B. If the

wave has no spin polarisation, we find the transmission probabilities of the up and down

spin components to be equal;

T =

(
1 +

sinh2(k′a)(f2
0 + f ′2)2

4f2
0 f ′2

)−1

(3.26)

We modify our wavefunctions to observe what happens if we look at a polarised wave. For

total spin polarisation, (say A2 = 0), we observe no reflected or transmitted component in

the opposite (down) spin channel. The two spin channels do not interfere with each other

and are transmitted completely separate of each other.
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3. Tunnelling Through a Barrier

3.2.2 Relativistic Tunnelling with a Magnetic Field

As shown by [65] the magnetic field can be introduced into the relativistic electron tun-

nelling via the following modification of the Dirac equation;

ı~
∂Ψ(r, t)

∂t
= (c α̃ · p + β̃m0c

2 + V0 − gµBB · σi)Ψ(r, t) . (3.27)

Outside the barrier, the electrons must still satisfy the free-particle Dirac equation given

in (3.20) and again, we take the direction of interest to be the z direction. The same

wavefunctions are used but we modify the equation components f ′, k′ to be:

f1 =
~ck1

E + 2m0c2 − V0 + gµBB
f2 =

~ck2

E + 2m0c2 − V0 − gµBB
(3.28)

and change k′ to k1 and k2 as follows;

k1 =
1

~c

√
(V0 − E − gµBB)(E + 2m0c2 − V0 + gµBB)

k2 =
1

~c

√
(V0 − E + gµBB)(E + 2m0c2 − V0 − gµBB)

(3.29)

Analytically, these components generate transmission probabilities similar to equation

3.26, with f ′ and k′ exchanged for f1, k1 for spin up, and f2, k2 for spin down. Because we

have taken care to write the relativistic components in terms of non-relativistic energies we

can directly compare the polarisation given by this method to the non-relativistic values

(Figure 3.11).

We see that the non-relativistic approach gives much the same results as the relativistic

approach. The greatest discrepancy is at low energies, but as the difference is only of the

order of ∼ 10−11, is considered to be negligible. Even if we consider relativistic tunnelling

through a barrier with two different heights, the difference between the relativistic and

non-relativistic case remains small. This is illustrated in Figure 3.12, where we plot the

polarisation difference between the both models for changing magnetic field strengths (the

data in Figure 3.10 minus its relativistic equivalent).

The wavefunctions consist of Large and Small components (the upper and lower two entries

respectively). If we take the non-relativistic limit in which v/c → 0, the small components

(f1, f2) go to 0, and we are left with the Large components only. The relativistic normal-

isation term 1 + f2
0 goes as 1 + (~k/mc)2 → 1 + v2/c2 → 1, and the k values all reduce to
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Figure 3.11: The polarisation difference between relativistic and non-relativistic tunnelling

through a barrier in a magnetic field. Barrier height = 0.3 ht, barrier width = 20 Bohr.

The polarisation has been scaled by 1011.

their appropriate non-relativistic values to recover the non-relativistic transmission prob-

abilities of the earlier sections. Both the algebraic and the graphical data suggest that the

non-relativistic model is an appropriate form to describe the electronic spin behaviour in

this case and for the low energies we are interested in, and moving to a relativistic format

is not needed.

3.3 Conclusions

This work has shown that tunnelling through an area with an applied magnetic field is

enough to introduce a slight polarisation of an originally unpolarised tunnelling current.

When experimental parameters are used in the model, the resulting polarisation is very

small - 1 in 50, 000. Is there any way in which the polarisation could actually be larger in

the Durkan spin-detection experiment? The two obvious ways to increase the polarisation

seem to be to increase the magnetic field strength used, and to increase the tunnelling

barrier width: The longer the free electrons are subjected to the field (i.e. the width of the

tunnelling barrier), the more polarised they become. The magnetic field strength cannot

be increased by accident in the experiment as it was supplied by a permanent magnet
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Figure 3.12: The difference between the relativistic and non-relativistic polarisation for

various magnetic field values in a stepped barrier. All B values are ×10−8. V1,2 = 0.2, 0.4

ht; a, b = 20 Bohrs. The polarisation is scaled by 1010.

situated under the sample. The tunnelling barrier is also unlikely to have increased by

large amounts unnoticed as the image quality would have degraded in the process. It

would appear then, based on the results of this model, that only a very small polarisation

of the tunnelling electrons occurs.

This model was only intended to describe the state of the tunnelling current as it passed a

magnetic field. When modeling the molecule as having a different potential to the surface

as we did in the two-step barrier, we didn’t include any interactions between the molecule

and the tunnelling current. We didn’t include the spin of the molecule which is obviously

the next step to take. Moving to a relativistic framework didn’t give any further insights

into the problem as we found that it was sufficient to include the spin in the non-relativistic

method in an ad-hoc manner.

From this we conclude that a further investigation will require a different model, one in

which we can use our result of a slight polarisation and study the effect this will have on

the molecular spin.
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Chapter 4

The Non-Relativistic Delta Shell

Model

In the experiment performed by Durkan et al. [29], the tunnelling current measured had

an a.c. component whose frequency was directly correlated to the magnetic field it passes

through. It therefore appears that the motion of the tunnelling electrons is somehow

related to their spin. The other condition which must be satisfied before this effect is seen,

is that the electrons must tunnel into a molecule with a non-zero spin component. This

suggests that the spin of the electrons are interacting with the spin of the molecule.

Because spin is a relativistic effect, to effectively model this interaction requires a move

into a relativistic framework. Although the experiment isn’t performed on relativistic

energy scales, we can frame the problem relativistically and then take a low energy limit,

retaining spin interaction terms.

The effect we are looking for has been seen in studies of organic molecules and silicon

spin centres. It has been observed with several different tips, not necessarily of the same

geometry and not all made from the same material. These details suggest that the elec-

tronic structure of the tip and the molecule will not be important when modeling the

experiment. It has been shown in [66] that two different tip models - a parabolic etched

tip and a cleaved triangular tip ending in a single atom - experience the same force as

each other (to the same order of magnitude). As the experiment is not claiming to be

imaging to atomic resolution, we may be able to use a model in which the tip isn’t known

53



4. The Non-Relativistic Delta Shell Model

or described exactly, as long as we do not assume the results to be numerically exact.

Possible extensions to the experiment include the use of spin polarised STM tips. It would

be good to include this possibility when creating a model. Both of the above points suggest

that a good choice of model would be one in which the experimental parameters were not

an integral part of the derivation, and could be varied easily to model different tips and

molecules.

In the experiments we hope to model, the electrons first interact with (leave) the tip then

cross the vacuum barrier. They then pass through the molecule, somehow interacting with

its spin, and then carry on into the surface. The geometry of the system naturally breaks

up the problem into the smaller parts shown in Figure 4.1. Rather than trying to solve the

problem as a whole, we decide to examine separately the effect of each component on the

electron wave, and then combine them to try to understand the influence each potential

has.

e−

S

Tip ImpurityBarrier

Figure 4.1: The component parts of the STM system. The tunnelling electrons interact

with the tip, pass through the barrier, then interact with the deposited molecule and its

spin (shown as S). They then continue onward into the substrate.

This is an improvement over the method used in the previous chapter as then, the tun-

nelling barrier represented the electrons leaving the tip, passing through the vacuum bar-

rier, then entering the surface all in one step. This new approach will allow individual
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tuning of parameters, and is a logical way to build up a model. To do this we choose to

move away from wave-matching at a boundary and instead treat the tip and deposited

molecule (hereafter called the impurity) as scattering centres which the incoming electron

wave can interact with. This will allow us to consider the circumstances under which an

electron will be bound (caught) by the tip or impurity, as well as being able to study what

happens to the electrons when they scatter from them.

We model the system in this separable manner over the next few chapters. We model the

potential of the tip and the impurity as spherically symmetric Delta Shell potentials. We

can introduce a spin onto one of the potentials to represent the impurity spin which can

be either static or precessing. By changing to a relativistic framework we can include the

spin of the tunnelling electrons. Once the effect of the separate parts of the system are

known, they can be combined to determine the likelihood of scattering from the entire

system.

In this chapter we start by formulating a non-relativistic model using the Delta Shell

potential to model the STM tip. We first describe some of the techniques we will be using

to look at the bound states and scattering states of our potentials. We then review other

work in the literature that uses the Delta Shell potential. The model is then formulated

and the bound states, scattering states and phase shifts are found.

4.1 Background

4.1.1 Bound States, Scattering States, Phase Shifts and Resonances

Bound states occur for attractive potentials only. A particle will become trapped by a

potential and be considered a localised bound state if its energy is lower than the potential

energy. A critical potential is the potential which will support states of zero energy.

If a particle has an energy greater than the potential energy scattering states start to

emerge.

Phase shifts (δl) represent a means to study these states. When a particle interacts with

a potential, there is a change in phase of the wavefunction (the amplitude is not affected).

A phase shift of π/2 implies strong scattering, and a phase shift of 0 or π implies weak

scattering [67]. We observe a negative phase shift when the potential is repulsive, and
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a positive phase shift for an attractive potential. The shape of the phase shift however,

doesn’t uniquely define the form of the potential [68].

When studying scattering from a nucleus, the phase shifts may be obtained by joining

up the solutions inside the nucleus to the Coulomb solutions outside, at the boundary

of the nucleus [69]. In that scenario, the phase shift can be given mathematically by

tan δl = B/A. The coefficients B and A, are the prefactors of the regular and irregular

solutions to the radial part of the differential Schrödinger equation. The phase shift can

be defined in other ways, and it is possible to express scattering and transition amplitudes

in terms of them. The outgoing wave after interaction with a potential is described by the

Scattering- or S-Matrix given by exp (2iδl), and the Transition- or T-Matrix through the

potential can be expressed as T = exp (iδl) sin δl. The phase shifts can also be found from

integral equations which prove useful when working in approximate limits [70].

An effect in which the electron becomes ‘almost bound’ can occur when a particle is

temporarily captured by a potential. This is called a resonance effect and looks like a

stationary (bound) state for a particular length of time. This occurrence of a temporary

resonance state can be detected through the phase shift. As the particle energy passes

through the resonant energy, the value of the phase shift will increase through an odd

multiple of π/2.

There are two types of resonance that can occur; a sharp resonance, which occurs when

the phase shift increases rapidly with energy through an odd multiple of π/2, and a broad

resonance which occurs when the phase shift changes more slowly, and changes negatively

with energy. In Ref. [71], Wigner states that

one will expect η [the phase shifts] to decrease slowly between resonances and

increase fast at resonances,

referring to the broad and sharp resonances respectively. The sharp resonances are re-

garded as the ‘true’ resonances. The scattered wave is retarded in space from the incident

wave due to the potential, and this length given as 2 dη/dk by Wigner, can be converted

into a time called the ‘Wigner delay time’

tDl = 2~
d δl(E)

dE
, (4.1)
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from which the width of the resonance (dE) can be found. Resonances will only occur up

to a particular energy for a given potential strength. This energy cut-off is an indication

of when the potential barrier becomes too permeable to support these ‘resonance’ states

[68]. For electron energies much higher than the potential energy, the potential will not

affect the electron in any appreciable way.

4.1.2 The Delta Shell Potential

The Delta Function potential is well-known as a simplistic mathematical tool with which

bound states, phase shifts and singularities can be studied [68]. There are many instances

in the literature of studies made on the effect of Delta functions and Delta Shell potentials

on non-relativistic and relativistic particles, in both configuration and momentum space,

with or without the addition of another potential type [72, 73]. The potential we are

interested in is a Delta Shell potential given by;

V (r) = −gδ(| r | −a) (4.2)

g is the interaction strength and a is the range of the potential (referring to the actual

size of the delta shell). This form of the potential is for a shell centered on the origin such

that the potential is only felt by a particle a radius a from the origin. It can however be

easily moved in space by introducing an off-set to the delta function; r → r − r0.

The Delta Shell model is simple but has limited flexibility. The potential strength and

the radius of the shell can be changed, but the nature of the potential is intrinsically

short-ranged. We could conclude from this that the model is rather idealistic and of little

use when describing real experiments. Other theoretical approaches to the STM problem

were discussed in Chapter 2, and turn out to be more suitable for quantitative simulation.

However the spherical symmetry of the model simplifies the analysis and encourages the use

of partial wave decompositions, all the features of the experiment can be drawn together

without too much difficulty, and this also proves to be a useful model when calculating a

first approximation to low energy nuclear reactions [68], describing hyperfine interactions

[73], or simulating strong interactions in hadronic atoms [74]. The Delta Shell potential

also proves to be one of the few potentials exactly solvable in both the Schrödinger and
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4. The Non-Relativistic Delta Shell Model

Dirac equation, (adding it to the Coulomb potential).

We start our examination of the STM tip with work carried out by Villarroel [75]. This

work is carried out in momentum space without the need to match wave functions at

the boundaries between areas of different potential. The bound state spectrum for non-

relativistic and relativistic particles has been calculated, of which we will study the non-

relativistic results below before going on to formulate a theory for describing the scattering

states and resonances caused by a Delta Shell potential.

Rescaled Units

Throughout this work, as well as working in Atomic Units, the parameters of the model

and the energy values are rescaled to dimensionless values symbolised with a tilde. The

quantity we rescale with is

E0 =
~

2

2ma2
, (4.3)

giving the energy, potential strength and momentum as

E = ξ̃E0 g = g̃E0a k =

√
ξ̃

a2
. (4.4)

As we always use Atomic Units, where ~ = m = 1; E0 = 1/2a2 (a is the radius of the

potential shell). Details of the Atomic Units are to be found in Appendix B.

4.2 Bound States in a Delta Shell Potential

The energy spectrum of non-relativistic bound states, as found in Ref. [75] are given in

terms of Modified First and Third Order Bessel Functions as

1

g̃
= Il+1/2

(√
−ξ̃

)
Kl+1/2

(√
−ξ̃

)
. (4.5)

They are plotted in Figure 4.2 for the first three angular momentum values. It is apparent

from the figure that a minimum potential must exist for a bound state to occur. For an

electron of zero energy, this potential strength is given as equal to 2l + 1, where l is the

angular momentum value.
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Figure 4.2: The occurrence of non-relativistic bound states for the first three angular

momentum states, expressed as a function of particle energy and potential strength. A

minimum potential of 2l + 1 is required for a bound state to exist.

The bound states of the Delta Shell Potential were also found by Gottfried [68] working in

coordinate space and using wave-matching techniques for inside and outside of the poten-

tial shell of radius a. He uses the partial wave solution of the integral radial Schrödinger

equation;

Al(k; r) = jl(kr) +

∫ ∞

0
Gl

k(r; r′)U(r′)Al(k; r′)r′2 dr′ (4.6)

[Gl
k(r; r′) contains a Green’s Function, and jl(kr) is the First Spherical Bessel Function

given by jl(kr) = ( π
2kr )

1

2 Jl+ 1

2

(kr)].

Substituting U(r′) for the Delta Shell potential, Gottfried shows the result

Al(k; r) = jl(kr) + ikga2Al(k; a) ×





jl(kr)hl(ka) : a > r

jl(ka)hl(kr) : r > a
(4.7)

with

Al(k; a) =
jl(ka)

1 − ikga2jl(ka)hl(ka)
. (4.8)

hl is the Spherical Hankel Function given by the sum of Spherical Bessel and Neumann
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Functions, jl+inl. By considering Al(k; r) to be a function of the complex variable k = iα,

Gottfried shows that Al(k; r) has poles on the positive imaginary k-axis at i
√

2m|E|/~2.

These positions relate to the energy eigenvalues of the bound states; by finding the poles

of the radial equation solution, we find the bound states of the potential. It transpires

that the poles are to be found from the zeros of the denominator of Al(k; r). He searches

for the least potential that can bind a state of angular momentum l and finds the same

result as Villarroel, namely that g = 2l + 1. We will often return to this comparison of

results from the coordinate space method, and the momentum space approach as a check

on our method.

4.3 Scattering from a Delta Shell Potential

4.3.1 The Transition Matrix

In this section we consider the amplitude for the transition of the electrons from a mo-

mentum state of k to one of k′ via an interaction with the Delta Shell potential. This can

represent the scattering of the incoming electrons from the tip, which is shown pictorially

in Figure 4.3.

The transition matrix, or t-matrix is given by the Lippman-Schwinger equation [70], which

is written in the integral form

t(k′,k;E) = Vk′,k +

∫
d3k′′Vk′,k′′GR

0 (k′′;E)t(k′′,k;E) , (4.9)

where GR
0 (k′′;E) is the Retarded Green’s Function. In coordinate space the Green’s

Function describes the propagation of electrons from a point source at r′ to r, and is

a solution to the operator equation for the Hamiltonian H; G = (E − H)−1. A good

description can be found in Ref. [70]. In momentum space GR
0 (k′′;E) is given by

(
~

2
κ

2

2m
− ~

2k′′2

2m
+ iδ

)−1

, (4.10)

where κ is the free parameter representing the momentum of the electrons.

The transition we are calculating in (4.9) is shown in Figure 4.4. The whole scatter is

modeled as a direct scatter from the potential between the initial and the final state, plus
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Figure 4.3: The model of the STM tip in the Delta Shell Model. The potential is given by

V (r) = −gδ(| r | −a), where a is the radius of the potential shell, and g is the strength of

the interaction.

a perturbation to the scatter, represented as an intermediate scatter through the state k′′.

The potential in momentum space is given by the Fourier Transform of equation (4.2)

Vk′,k = 〈k′ | V | k〉 =
1

(2π)3

∫
V (r) exp (i(k′ − k) · r) d3r . (4.11)

The incoming and outgoing plane waves are expanded into spherical waves using the

Spherical Harmonic identity

exp (ik · r) = 4π
∑

L

iljl(kr)Y ∗L (k̂)YL(r̂) , (4.12)

where L ≡ l,m, the orbital and azimuthal angular momentum quantum numbers, and

jl(kr) is the Spherical Bessel Function defined previously.

The orthonormality of the Spherical Harmonics introduces a Delta Function in r̂, and

integrating over this we find

Vk′,k =
−2ga2

π

∑

L

Y ∗L (k̂)YL(k̂′)jl(ka)jl(k
′a) . (4.13)

To calculate the t-matrix we expand it in terms of the angular momentum numbers l and

m to get

61



4. The Non-Relativistic Delta Shell Model
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Figure 4.4: The scattering model represented by the Lippman-Schwinger equation for the

transition matrix; Scattering from a momentum k to k′ via an intermediate momentum,

k′′

〈k′ | t(E) | k〉 =
∑

L,L′

YL′(k̂′)Y ∗L (k̂)〈k′L′ | t(E) | kL〉 . (4.14)

If we put this, and equation (4.13) into (4.9), we find that an algebraic solution only

exists if 〈k′L′ | t(E) | kL〉 can be further split up into separate energy and momentum

components;

〈k′L′ | t(E) | kL〉 = jl(ka)jl(k
′a)t(E) δLL′ (4.15)

There are now a matching pair of Spherical Harmonics and Bessel Functions in each term

of the t-matrix equation, so the equation can be simplified to give

tL′L(E) = Vl δL′L + Vl gl(Ek′′) tL′L(E)

=
Vl

1 − Vl gl(E)
δL′L . (4.16)

Vl represents the remaining constant from the potential term −2ga2/π, and gl(Ek′′) is

given by

gl(Ek′′) =

∞∫

0

k′′2j2
l (k′′a)

~
2
κ

2

2m
− ~

2k′′2

2m
+ iδ

dk′′ (4.17)
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4.3.2 Solving gl(Ek′′)

gl(Ek′′) can be split into two terms, factorising the constants and changing the integration

term to be over the product k′′a rather than k′′. We also take out a minus sign from the

denominator to make a form that will be more useful to us further on.

−2m

2~2κa2





∞∫

0

(k′′a)2j2
l (k′′a)

(k′′a) − (κa) − iη
d(k′′a) −

∞∫

0

(k′′a)2j2
l (k′′a)

(k′′a) + (κa) + iη
d(k′′a)



 (4.18)

The limits of integration can be expanded to −∞ and each integral is split into a ‘Principal’

part P, and a remainder part using the following relationships:

∞∫
−∞

A(x)
x − ω + iδ

dx = P
∞∫
−∞

A(x)
x − ω dx − iπA(ω)

∞∫
−∞

A(x)
x + ω − iδ

dx = P
∞∫
−∞

A(x)
x + ω dx + iπA(−ω)

(4.19)

As (k′′a)2j2
l (k′′a) is even, A(−ω) = A(ω) so the two remainder terms add, and the principal

parts can be recombined. This gives the following expression for gl(Ek′′)

−2m

~2a

∞∫

0

(k′′a)2j2
l (k′′a)

(k′′a)2 − (κa)2
d(k′′a) − imπκ

~2
j2
l (κa) (4.20)

The integral is exactly solvable and is given in a paper by J Dörr for Bessel Functions of

the First Kind [76];

∫ ∞

0

tJ2
m(t)

t2 − s2
dt = −π

2
Jm(s)Nm(s) (4.21)

where Nm(s) is a Neumann Function of the First Kind. This is transformed into Spherical

Bessel Functions and gives the result

gl(Eκ) =
mπκ

~2
jl(κa)nl(κa) − imπκ

~2
j2
l (κa) (4.22)

So finally the energy component of the t-matrix is

tl(Eκ) =
−2ga2

~
2/π

~2 + 2ga2mκjl(κa)nl(κa) − 2iga2mκj2
l (κa)

(4.23)
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The same solution for the t-matrix is calculated by Gottfried in [68] using a partial wave

expansion method and obtained by matching radial wavefunctions at large r as was men-

tioned in the previous section.

4.3.3 The Scattering Matrix and Phase Shifts

The scattering matrix (s-matrix) is related to the t-matrix by the following relation [77],

〈k′ | S | k〉 = δ(3)(k′ − k) − 2πiδ(Ek′ − Ek)t(k
′,k;E) (4.24)

The delta functions ensure momentum and energy conservation in the scattering process;

we operate ‘on the energy-shell’ looking at elastic collisions only.

We can expand the s-matrix, the t-matrix, and the delta function in momentum out in

terms of spherical harmonics, as we did in equation (4.14), to remove the vector depen-

dence. They are then all removed to leave

S(k′, k) =
δ(1)(k′ − k)

k2
− 2πiδ(Ek′ − Ek)t(k

′, k;E) (4.25)

The first term on the right can be rewritten as a delta function in energy multiplied by

~
2/mk, and as our s-matrix is only defined on the energy shell, when k′2 = k2 = κ

2, we

can write S(k′, k) = δ(Ek′ − Ek)S(κ). This leaves us with

S(κ) =
~

2

mκ
− 2πit(κ)t(Eκ) (4.26)

We can rescale to get an s-matrix dependant on the angular momentum quantum number

only; Sl = S(κ)mκ/~
2. This gives

Sl = 1 − 2πimκ

~2
t(κ)t(Eκ) (4.27)

In the previous section, t(κ) was found from the condition necessary to form an algebraic

equation for the t-matrix. For the momentum value κ, this is simply given by the square

of the Spherical Bessel Function jl(κa). This gives the following scattering matrix;

Sl =
~

2 + 2ga2mκjl(κa)nl(κa) + 2iga2mκj2
l (κa)

~2 + 2ga2mκjl(κa)nl(κa) − 2iga2mκj2
l (κa)

(4.28)
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It was mentioned previously that the s-matrix can be expressed in terms of the phase shifts.

This arises from the need to conserve the number of particles involved in a scattering event.

To achieve this the s-matrix must be hermitian and unitary, so can be written as

S∗l Sl = 1 → Sl = e2iδl (4.29)

If we write e2iδl = n
d , we can find the tangent of the phase shifts using the simple relation

tan(δl) =
id − in

d + n
(4.30)

Giving the tangent of the phase shifts as

tan(δl) =
2gma2

κj2
l (κa)

~2 + 2gma2κjl(κa)nl(κa)
(4.31)

This is the same answer as was found by Gottfried in Ref. [68].

4.4 Results

The phase shifts given by this model are plotted in figures 4.5, 4.6(a) and 4.6(b) for

the first three angular momentum quantum numbers. They are plotted in the rescaled

dimensionless units mentioned in section 4.1.2, and show low energy behaviour.

As the potential strength g̃ is increased, the phase shift increases to form peaks. The

peaks at lower energies form first, then as the potential is increased further, all the peaks

take on a saw-tooth shape, starting at (ξ̃, δl) = (0, π). This saw-tooth pattern can be seen

in Figure 4.7. The width of the pattern (the distance between adjacent zeros) increases

for successive peaks, and also for increasing l. The maximum peak value is always equal

to π.

We compare the graphs for the three angular momenta. At low energies, the l = 0 phase

shift gives the greater result, with the higher angular momentum phase shifts becoming

greater as the energy is raised. For a fixed energy value and increasing the potential

strength, the largest contribution first comes from the l = 0 phase shift, then the higher

phase shifts as the potential is increased further. It was found that once the phase shift

equation was rescaled, there was no dependence on the radius of the Delta shell.

Looking only at the zero energy behaviour, the l = 0 graph behaves differently from the

higher angular momenta graphs. As g̃ is increased the peak creeps up very close to the
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Figure 4.5: Non-relativistic phase shifts for l = 0 as the potential strength g̃ is increased.

The phase shift at zero energy jumps abruptly from π/2 to π as g̃ passes 1.

phase shift axis, the line always starting at (ξ̃, δ0) = (0, 0) until it switches to being a slope

of completely negative gradient at (0, π/2) when g̃ = 1. When g̃ is increased above 1, the

curve jumps to start at δ0 = π, avoiding any values of δ0 in between π/2 and π. Conversely,

in the graphs of higher angular momenta, the peak continues to rise (two-sided) until a

potential of g̃ = 2l + 1 is reached when it turns into a one-sided slope starting at (0, π).

In order to examine resonances in the scattering behaviour from the Delta Shell potential,

a horizontal line is drawn through δl = π/2 in Figure 4.7 for the l = 0 phase shifts. This

line intersects the saw-tooth pattern twice in each peak, each intersection representing a

type of resonance. The first intersection cuts through an almost instantaneous jump of π

in the phase shift, and following Gottfried we call this rise passing through π/2 a sharp

resonance. The second π/2 intersection on each saw-tooth is called the broad resonance.

At zero energy, there are obviously resonance differences between the l = 0 and the higher

momentum graphs. A resonance is defined as a positive rise in the phase shift through an

odd multiple of π/2. This does not occur at low energies in the s-wave scattering profile,

therefore we can say that no resonances occur in the s-wave phase shifts at zero energy.

The phase shift jumps immediately from a value of π/2 when g̃ = 2l+1 to a phase shift of

π, with no positive rise through π/2. Following Ref. [78], in which resonances in spherical
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(a) Non-relativistic phase shifts for l = 1 as the

potential strength is increased. The phase shift

jumps to π when g̃ reaches 3.
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(b) Phase shifts for l = 2. Potential strength, g̃

is increased and the graph displays similar be-

haviour to the l = 1 case, but the phase shift

jumps when g̃ = 5.

Figure 4.6: Non-relativistic phase shifts for l = 1 and l = 2.

wells are studied, we call the state when δl = π/2, a ‘half bound state’. The authors of

Ref. [78] find, as we do, that it is only the s-wave phase shifts that have these states. The

higher angular momentum phase shifts do rise through π/2 at low energies and therefore

have resonances.

Figure 4.8 shows the location in energy of these resonances (the intersections with π/2)

as they occur with changing potential value. The l = 0 curve increases immediately in g̃

as the energy is increased in Figure 4.8. This verifies that no resonance, broad or sharp,

for any energy value can appear for g̃ ≤ 1. The parabolic nature of the l = 1, 2 curves

highlight different behaviour. The minimum point on the curves is not at zero energy as

it was for l = 0. The curve to the left of the minimum shows the development of the sharp

resonance, which can occur for potentials less than the value given by g̃ = 2l + 1. The

curve to the right of the minimum shows the range of the broad resonances.

We can see from Figure 4.7 however, that at higher energies, the s-wave phase shifts do

rise through π/2, therefore qualify as having resonance behaviour. If we were to plot the

second set of resonances (from the second peaks), we would expect the l = 0 curves to take

the same form as the other angular momentum curves, being parabolic with increasing

energy.
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Figure 4.7: Non-relativistic phase shifts for l = 0 cutting through the π/2 line for potential

values of 1, 10 and 50. The sharp resonances do not change location in energy as g is varied,

a fact borne out by studying the phase shift analytically.

4.5 Discussion

The sharp resonances are the true resonances here. The occurrence of a resonance is

always accompanied by a fast increase in the phase shift through the point π/2. They

are usually characterised by an elongated s-shape curve which can be seen in Figure 4.6.

As the interaction strength g̃ is increased, the phase shifts sharpen. As the phase shift

gradient is an indication of the time for which the electrons are ‘bound’ by the potentials

[71], this corresponds to the incoming electrons being bound for increasingly longer times.

In fact, when the phase shift jump becomes instantaneous, the electron will become bound

indefinitely and we see the occurrence of a bound state rather than a resonance state.

We saw the potentials required to form a bound state in Figure 4.2 in section 4.2. The

vertical changes in phase shift by π also show these states. At zero energy, a scattering

state changes into a bound state at the potential given by g̃ = 2l+1 for l > 0, and at g̃ > 1

for l = 0. Levinson’s theorem (see for example Refs. [68, 79]), states that for a spherically

symmetric potential, the phase shift at zero momentum is related to the number of bound
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Figure 4.8: The occurrence of resonances in energy as a function of interaction strength,

g̃. The l = 1, 2 cases show both broad and sharp resonances for one value of g̃, which

doesn’t occur for the l = 0 case. A minimum g̃ value is needed before resonances at zero

energy can occur.

states in that angular momentum channel (nl) by the relations

δl(0) = (nl + 1/2)π l = 0

δl(0) = nlπ l > 0 (4.32)

Our model then gives 1 bound state in the higher angular momentum channels, and none

in the l = 0 channel.

It is difficult to tell from inspection what the minimum potential strength needed is to

form the second set of resonances, or at what potential strength another bound state is

formed from these resonances. Figure 4.7 shows a jump of π for when g̃ = 50, but because

these and the higher resonances form gradually, there is no obvious value defining the

jump or where the resonances appear, as there was at zero energy.

Analytically however, both the energy at which the bound states occur, and the energies

of the resonances (where the phase is equal to π/2), can be derived. We take the l = 0

case as an example. The phase shift is given by the following expression [with the rescaled

notation (˜) dropped]
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tan(δ0) =
g sin(

√
ξ)2√

ξ − g cos(
√

ξ) sin(
√

ξ)
. (4.33)

A bound state is accompanied by a phase shift of π in this model, so the location of the

phase shifts will be given when the right hand side of the equation evaluates to 0 (when

δl = π, tan δl = 0). This can be achieved by simply calculating the appropriate values

of energy that puts the numerator to 0. As g̃ is simply multiplied, this implies that the

location of the zeros are not dependent on the potential value. This is as we found in the

figures. The first two bound states occur at ξ̃ = π2 and 4π2, according to the expression

above, which can be verified by inspection of Figure 4.7. Applying the same criteria to the

general phase shift equation, we find that the nth resonance for the lth angular momentum

can be roughly given by the relation ξ̃n
l ≈ (n2 + ln)π2, and can be exactly found at the

roots of

j2
l

(√
ξ
)

= 0 . (4.34)

In Ref. [68], Gottfried studies the energies of the resonances, and for the l = 0 phase

shifts he found the nth resonance to be situated at ξn ≈ nπ2 (1 + 1/g). This was found by

considering the scattering cross section of the l = 0 wave, sin2 δ0(ξ). We take the general

phase shift equation and force it to evaluate to ∞ (when δl = π/2, tan δl = ∞). This is

achieved by putting the denominator equal to 0, which results in the resonances occurring

at the energies given by

jl

(√
ξ
)

nl

(√
ξ
)

= − 1

g
√

ξ
. (4.35)

This equation gives both the locations of the broad and the sharp resonances, so it is

important to only take every other solution, starting with the second solution as ξ̃ is

increased.

There is no upper limit on the gradient of the phase shift with energy, but a lower limit

does exist. This is given in Wigner’s paper [71] as

dδl

dk
> −a (4.36)

a is the radius of the scattering centre, and dropped out of the model when we moved to

dimensionless units. When we transform this relation to find the dependence on ξ rather
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than k, the fraction dδl/dξ becomes inversely proportional to the velocity of the incoming

electron wave. If we assume the velocity stays the same when crossing the potential, we

get the relation

t < −~
dδl

dξ
(4.37)

This inequality gives a limit to the size of the negative-going gradient in the graphs of

the phase shifts. Physically, t represents the time it takes the electrons with energy ξ to

cross the area of the potential, assuming no interactions take place to slow them down. So

the gradient must therefore be greater than this transit time, effectively disallowing the

resonance state to exist for shorter than the length of time needed to cross the potential.

This minimum time is increased when the potential range is increased, and is decreased

when the electron has a higher energy (implying a greater velocity). Two observations we

have made from this model are that the minimum time for the gradient decreases with

increased angular momentum number; and as the energy is increased, the time decreases

in discrete steps. This is due to the sudden jumps in the phase shifts being interspersed

with lines of continuous gradient. For energies up to 50 dimensionless units, and for a

potential range a, of a few Bohr radii, the transit times in this model are on the order of

10−17 s.

Table 4.1 gives some typical potential strengths and energy values of resonances for a few

different radius values. The potential strengths gB , are the values required to obtain the

zero energy bound state for each angular momentum, and come from the dimensionless

condition g̃ = 2l + 1. The next two columns for each angular momentum give an example

value of a potential required to have a resonance at ξ̃ > 0, and the energy that this

resonance will occur at. The subscript to each value of g is the dimensionless value of

g̃ that the potential strength refers to. These are different for each angular momentum

to try to reflect the same condition; namely a potential that only just causes resonances

at energies greater than zero. The values in the table are found from the dimensionless

graphs using g[eV m] = g̃/2a×27.21×0.529×10−10 and ξ[eV ] = ξ̃/2a2×27.21. All lengths

are imputed as Bohrs, and are chosen to reflect the size of the tip atom which we take to

be ∼ 2 − 4 Åwide.
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l = 0 l = 1 l = 2
a /Bohr(Å)

gB /eV Å g9 /eV Å E /eV gB g12 E gB g14 E

1 (0.529) 7.2 64.8 176.9 21.6 86.4 336.7 36.0 100.7 539.8

2 (1.058) 3.6 32.4 44.25 10.8 43.2 84.2 18.0 50.4 135.0

5 (2.645) 1.4 12.9 7.1 4.3 17.3 13.5 7.2 20.2 21.6

Table 4.1: Experimental values of resonances resulting from scattering from a Delta Shell

potential of varying radii. The interaction strength gB is the minimum value needed to

create a zero energy bound state. The interaction strength gv represents a potential v,

required to just cause a resonance at higher energies, which are given in the third columns.

Each successive set of results have the same units as the set for l = 0.

It appears that a larger radius of the Delta Shell results in resonant states existing for

smaller values of interaction strength and electron energy. Table 4.1 and Figure 4.7 also

show that higher values of both parameters are needed to create resonant states of a

higher angular momentum. In the experiments, the tip bias was in the range of 0.5−8 eV.

Assuming that the applied bias is equal to the energy of the electrons, this energy is large

enough to only create an s-wave bound state in our model.

4.6 Conclusions

We have introduced a Delta Shell potential as a model for an STM tip. The bound states of

this potential were shown by Villarroel in Ref. [75], and a minimum value of the potential

equal to 2l + 1, where l is the orbital angular momentum, was found to be required for a

bound state. The scattering states were formulated in momentum space using the t-matrix

from the Lippmann-Schwinger equation. The energy-dependent part of the t-matrix was

found using an integral result from J. Dörr in Ref. [76], and then manipulated to give the

phase shifts using the unitarity condition of the scattering matrix.

The phase shifts showed that electrons could form resonance states at potentials less than

2l + 1, when l > 0, and that this potential strength was the value at which a scattering

state became a bound state. Resonance states were forbidden for s-wave electrons, and an

increasing potential only served to change a half bound state to a bound state when g̃ > 1.
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At higher energies however, resonance states occurred for all angular momenta examined,

and were found to occur at energies given by the second solutions to jl

(√
ξ
)
nl

(√
ξ
)

=

−1/g
√

ξ. The bound states at ξ̃ > 0 occurred at energies given by the solutions to

j2
l

(√
ξ
)

= 0, which were independent of the potential.

The negative gradient of the phase shift plots gives the least time the electrons can be

partially bound by a potential to be on the order of ∼ 10−17 s, governed by the minimum

time it takes to cross the potential shell.

The Delta Shell potential was found to accurately reproduce the scattering and bound

states achieved from a spherical well potential in Ref. [78], although the critical potentials

values differed. The same phase shift was achieved by Gottfried in Ref. [68], although the

two approaches differed. Gottfried matched the wavefunctions approaching the potential

to the wavefunctions inside the shell at the boundary of the shell. This approach treated

the electrons in momentum space, removing the need to match wavefunctions.
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Chapter 5

The Relativistic Delta Shell Model

In this chapter the Delta Shell Model is formulated in a relativistic framework. This

allows the inclusion of the spins of the tunnelling electrons. We first discuss the way

the Delta Shell potential has been used relativistically previously in the literature, then

discuss the bound states found from the approach used by Villarroel [75]. We start from

this to formulate the relativistic approach, introducing some theoretical concepts before

calculating the phase shifts of the model. We then consider the low-energy, semi-relativistic

limit, which we take in order to move back to non-relativistic energies whilst retaining the

spin characteristics of the electrons.

5.1 The Relativistic Delta Potential

The treatment of the Delta Shell potential in relativistic quantum mechanics is prob-

lematic. Whilst the Schrödinger approach caused singularities in the derivative of the

wavefunction, the relativistic approach with this potential presents singularities in the

wavefunction itself. The centre of the delta potential is not well defined in this form, so

the question of how this singularity should be treated must be asked.

Two approaches have been used in the literature: Either the potential is regarded as the

limit of a sharply peaked potential around the location of the eventual Delta potential

[80, 81], or the Dirac equation is solved with the Delta potential inserted explicitly [75,

82, 74]. The differences between both approaches in configuration space has been studied

by McKellar et al. [83], in which the authors decide that the second approach introduces
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5. The Relativistic Delta Shell Model

unphysical singularities. They argue that it is only for a weak value of the delta potential

that the two methods agree.

A method which employs the second approach but appears to neatly avoid the problem of

defining the wavefunction at the singularity is used in [84, 85]. As with any potential in

the Dirac equation, the radial components, F (r) and G(r) form two coupled differential

equations. Benguria et al. [84] treat the singularity problem in configuration space by

manipulating the coupled equations to eliminate the occurrence of the potential. They

integrate the resulting expression just over the singularity (from a − ǫ to a + ǫ) and take

the limit of the integration (ǫ) to zero;

F (a + ǫ)2 + G(a + ǫ)2 = F (a − ǫ)2 + G(a − ǫ)2 (5.1)

The absolute value of this is constant when crossing the singularity. Another manipulation

of the coupled equations can be combined with the above to get an expression relating the

coupling constant g to the wavenumber k;

tan g/~c =
ρ2(1 + ǫ)

√
1 − ǫ2(1 + Λρ

√
1 − ǫ2)

ρ2(1 + ǫ)2 − (ρ
√

1 − ǫ2 + 1)(ρ
√

1 − ǫ2)(1 − Λ)
, (5.2)

Where ρ = a/~/mc and Λ = tanh ka/ka. They study whether, for a fixed value of the

Delta Shell radius a, a ground state exists in the limit of −mc2 < E < mc2. As the electron

energy tends toward a free state (E → mc2), the coupling constant g/~c goes to zero and

they find that bound states disappear for a vanishing potential. As the energy approaches

the Dirac Sea, (E → −mc2), a critical value of the coupling constant arises for which the

ground state energy sinks into the Dirac Sea. This is given by tan(gcrit/~c) = −3/2ρ.

The same boundary condition for crossing the singularity is found in [85], where the

relativistic case is studied in (2 + 1) configuration space. The authors declare that the

physically admissible solutions are finite, continuous, vanishing at the origin, and square

integrable. Bound states must also satisfy the criteria that as r → ∞, F (r), G(r) → 0.

In [86] one of the authors from [84] goes on to use the boundary conditions there to examine

the phase shifts caused by the scattering of relativistic particles near the low-energy limit.

They use a Relativistic Partial Wave Expansion method, getting a differential cross section

composed of the scattering amplitudes from the asymptotic form of the wavefunction.
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Their phase shifts comprise of a simple fraction of sums of the First and Second Bessel

Functions and display similar behaviour to the results presented later in this chapter.

A more formal construction of the Dirac operators consistent with a spherically symmetric

potential is to be found in [82] and [74]. The authors construct self-adjoint extensions of

the Dirac operator, and only consider those extensions that are rotationally invariant and

reflection-symmetric. The boundary conditions require that the Delta Shell interaction

can be written as

∫ a+ǫ

a−ǫ
δ(r − a)Ψ(r) dr = 1/2

[
Ψ(a+) + Ψ(a−)

]
. (5.3)

In [87] and [80], Dominguez regards first the one-dimensional delta function, then the delta

shell as the limit of an electrostatic-like sharply peaked potential with physically realistic

boundary conditions given by


 F (a + ǫ)

G(a + ǫ)


 = cosh(s)


 1 − tanh(s)

tanh(s) 1




 F (a − ǫ)

G(a − ǫ)


 (5.4)

for a purely scalar potential s. In [83], McKellar et al. support this approach, commenting

that the boundary conditions of the previous approach depends upon a formal manipula-

tion of the Delta function potential that requires an ambiguous definition of the product

of the width and the height of the Delta function. In the appendix of [74], Dittrich et al.

try to reconcile the two approaches showing how their vector and scalar potentials match

the potentials used in [80]. For the case of a scalar potential only, Dittrich’s gs can be

written in terms of Dominguez’s s as gs = 2 sinh s/1 + cosh s. There is equivalence up to

the set gs ∈ (−2, 2) which is covered by s ∈ (−∞,∞). However a scalar potential of gs

outside this range isn’t covered by Dominguez’s approach, which validates the statement

in [83] that the two approaches are only equivalent for low potential values.

The only work on momentum space in the literature so far for this potential seems to be

from Villarroel [75]. The author uses the method of directly solving the Dirac equation for

the Delta shell potential, again integrating over the location of the singularity. Dominguez

pointed out in [87] that this approach was different to his, but as this is the only work

that operates in momentum space, the differences between the two approaches have not

been fully examined.
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5.2 Bound States in a Relativistic Model

We present the results of the relativistic bound state spectra from Villarroel’s paper [75].

There are two graphs; one for j = l + 1/2, a positive coupling of the orbital and intrinsic

angular momentum, and one for j = l − 1/2. These are given by

4c

g̃
+

g̃

16c
=

(W̃ + µ̃c2)

4c
Il+ 1

2

(λ)Kl+ 1

2

(λ) +
(W̃ − µ̃c2)

4c
Il+ 3

2

(λ)Kl+ 3

2

(λ)

4c

g̃
+

g̃

16c
=

(W̃ + µ̃c2)

4c
Il+ 1

2

(λ)Kl+ 1

2

(λ) +
(W̃ − µ̃c2)

4c
Il− 1

2

(λ)Kl− 1

2

(λ) (5.5)

where

λ =

√
(µ̃c2)2 − W̃ 2 , (5.6)

and I(λ), K(λ) are the Modified First and Third Order Bessel Functions respectively. The

relativistic energy W̃ is related to the non-relativistic energy and the rest-mass energy

through the relation W̃ = ξ̃ + µ̃c2. When comparing the two scenarios or when looking

at graphs in this work, the relativistic energy is always converted into the non-relativistic

energy form first.

5.4275 5.4277 5.4278
g�

-4.9998

-4.9996

-4.9994

-4.9992

-4.999
Ξ
�

P3�2

P1�2

j

Figure 5.1: The two relativistic p-wave bound state spectra. The states for j = l + 1/2

and j = l − 1/2 differ causing a split of the order of ∼ 0.0001.
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The difference in the two spectra lies in the order of the Bessel Functions in the last term.

The full spectra are plotted for p-shell bound states in Figure 5.1. There is an energy

splitting of ∼ 0.0001 between the two spectra, which is slightly increased to ∼ 0.00015 in

the case of the d-shell bound states (not shown).

To make the bound state spectra for the relativistic case match the non-relativistic, we had

to input a value for the range of the Delta Shell - a. This parameter dropped out of the

non-relativistic description naturally when the parameters were rescaled into dimensionless

units. In the relativistic model however, the length remains as part of the rescaled mass

term µ̃c2. This can be written as 2a2/λ2
c where λc = ~/mc is the Compton wavelength.

This relation arises from the Heisenberg Uncertainty Principle and represents the minimum

length in which a relativistic particle can be confined in and still be considered a free

particle. Once a particle is confined to less than this length, particle/antiparticle pairs

can be produced. Written in this form, the relativistic equation depends on the area

covered by the Delta Shell potential in units of the Compton wavelength squared (the

Compton area). In order to make the bound states match those from the non-relativistic

model (such that g̃ = 2l + 1), we had to put a equal to 2.

To verify that the splitting of the relativistic spectra is a relativistic spin-orbit effect we

take the two relativistic curves and for a fixed value of g̃, we take the non-relativistic

limit, taking 1/c2 → 0. This is shown in Figure 5.2. It can clearly be seen that the two

curves converge as we move toward the non-relativistic case, showing that this is indeed a

relativistic phenomenon.

5.3 Relativistic Scattering with the Delta Shell Model

In this section we examine the scattering states arising from using a Delta Shell potential in

a relativistic framework. We start by introducing the necessary relativistic notation, then

discuss the t-matrix and phase shifts arising from the model. The results are described,

and compared to the non-relativistic results.
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Figure 5.2: The non-relativistic limit is taken with the two relativistic spectra for the

p-shell bound states. The convergence toward one curve when c2 → 0 shows that the

splitting is due to relativistic effects.

5.3.1 Theoretical Background

Spin-angular functions

Spin-Angular Functions are the two dimensional, relativistic spinor equivalents of the

Spherical Harmonics. They are given by

〈k | χµ
κ〉 =

∑

s

C(l 1
2j;µ − s, s)〈k | Y µ−s

l 〉χs . (5.7)

They include a sum over Clebsch-Gordan coefficients, Spherical Harmonics, and the 2× 1

spin vectors;

| χ↑〉 =


 1

0


 | χ↓〉 =


 0

1


 (5.8)

Whereas Spherical Harmonics are the angular solutions to the radial Schrödinger equation

and are defined by the quantum numbers l and m, the orbital angular momentum value,

and its z-component respectively, spin-angular functions are the angular solutions to the
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radial Pauli equation. They are defined by two new quantum numbers - κ and the z

component of the total angular momentum µ. κ represents the total angular momentum

number j which sums the orbital (l), and the intrinsic (S) angular momentum. For an

electron, the angular momentum can be coupled either positively or negatively: j = l+1/2

or j = l − 1/2. The relations between κ, j, l, and l, a quantity associated with negative

values of κ, are summarised by Strange [67].

j = l + 1/2 ; κ = −l + 1 = −(j + 1/2) ; l = l + 1 = −κ

j = l − 1/2 ; κ = l = (j + 1/2) ; l = l − 1 = κ − 1
(5.9)

Spin-angular Functions are related to Spherical Harmonics in the following way,

I2

∑

l,m

Y m∗
l (r̂)Y m

l (r̂′) =
∑

κ,µ

χµ
κ(r̂)χµ†

κ (r̂′) (5.10)

and obey the orthonormality condition;

∫
χµ′†

κ′ (r̂)χµ
κ(r̂)dr̂ = δκκ′δµµ′ (5.11)

Another useful number to define in relativistic quantum mechanics is Sκ = κ/ | κ |, such

that

Sκ = −1 for j = l + 1/2

Sκ = +1 for j = l − 1/2
(5.12)

Table 5.1 summarises the values of the new quantum numbers κ and l for the three angular

momentum values we present results for. Using κ rather than l removes the degeneracy

caused by the spin-orbit coupling., such that there is a unique value of κ for each value of

j = l ± 1/2.

The Relativistic Green’s Function

The relativistic Green’s Function in configuration space is given by Strange as

G0(r, r′,W ) = − 1

~2c2
(cα̃ · p̂ + β̃mc2 + W )

eipR/~

4πR
. (5.13)
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l l S j = l + S κ

0 1 +1/2 1/2 -1

1 0 -1/2 1/2 +1

1 2 +1/2 3/2 -2

2 1 -1/2 3/2 +2

2 3 +1/2 5/2 -3

3 2 -1/2 5/2 +3

3 4 +1/2 7/2 -4

Table 5.1: Values of κ and l for the first three angular momentum numbers.

W is the relativistic energy, and α̃z and β̃ are the 4 by 4 matrices;

α̃i =


 0 σ̃i

σ̃i 0


 ; β̃ =


 I2 0

0 −I
2


 (5.14)

The σ̃i terms are the 2 by 2 Pauli matrices, I2 is the 2 by 2 identity matrix, and R =

|R| = r,R = r − r′.

The Green’s function in momentum space can be found by taking the Fourier Transform

of this,

− 1

~2c2

∫
d3r (cα̃ · p̂ + β̃mc2 + W )

eipr/~

4πr
e−ik·r . (5.15)

The p̂ operation is carried out, assuming that we orientate our system such that the

momentum is directed toward the z-axis only. Integration over φ gives a factor of 2π and

integration over cos θ leaves

−i

2~2c2k
(−~cα̃zk + β̃mc2 + W )

∫ ∞

0
dr ei(p/~−k)r − ei(p/~+k)r . (5.16)

The integrand evaluates to
2ik

p2/~2 − k2
, (5.17)

giving the relativistic Green’s function in momentum space as

G0(k,W ) =
(−~cα̃zk + β̃mc2 + W )

(pc)2 − (~ck)2
. (5.18)
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This Green’s Function has poles when the denominator is equal to zero. To avoid this

problem, a small imaginary energy is added to the denominator, and the Green’s Function

is evaluated in the limit of this energy going to zero. We already mentioned in the non-

relativistic section that the Retarded form of the Green’s Function, GR has a small positive

energy added to the denominator. This represents the physical scenario in which events

propagate forward in time, and the cause precedes the effect. The Advanced form of the

Green’s Function, GA is for the opposite scenario. We will always be using the Retarded

Green’s Functions.

5.3.2 The Relativistic T-Matrix

The relativistic t-matrix should have a 4 x 4 structure to accommodate the possibility of

spin-up and spin-down components for particles of both negative and positive mass. The

t-matrix should have the same form as the potential, which can again be written as the

Fourier Transform of the potential in coordinate space.

For a 4 x 1 Spinor, Us, multiplied by an exponential, Strange gives the relativistic expansion

as

Us exp (ipr/~) = 4π

(
W + mc2

2W

)1/2∑

κµ

C(l 1
2j;µ − s, s)ilY µ−s∗

l (k̂)

×




jl(kr)χµ
κ(r̂)

i~ckSκ

W + mc2
jl(kr)χµ

−κ(r̂)


 (5.19)

We insert this and its complex conjugate into the Fourier Transform of the potential,

simplifying the expression by calling −2ga2(W+mc2/2Wπ) = VW and ~ckSκ/(W+mc2) =

D;

V (k′;k) = VW

∑

s

∑

κµ

∑

κ′µ′

∫
dΩrY

∗µ′−s
l′ (k̂′)Y µ−s

l (k̂)C(l 1
2j;µ − s, s)C(l′ 12j′;µ′ − s, s)

×il
′−l


 jl′(k

′a)χµ′

κ′(r̂)

iD′j
l
′(k′a)χµ′

−κ′(r̂)



(

jl(ka)χ†µκ (r̂) −iDjl(ka)χ†µ−κ(r̂)
)

(5.20)
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The full t-matrix equation is as before, only this time the potential, t-matrix and Green’s

functions are all 4 × 4 matrices, and the full relativistic energy, W, is used:

t(k′,k;W ) = V (k′,k) +

∫
d3k′′ V (k′,k′′)GR

rel(k
′′;W )t(k′′,k;W ) (5.21)

We assume the t-matrix takes the same form as the potential, replacing the constant VW

with the energy term t(W ), yet to be determined. Putting the appropriate expressions

into (5.21) and simplifying, we derive an expression for t(W ).

t(W ) = VW

[
1 − VW

∑

sκµ

∫
dΩr

∫ ∞

0
dk

k2C(l 1
2j;µ − s, s)2

(pc)2 − (~ck)2 + iǫ

×
(

jl(ka)χ†µκ (r̂) −iDjl(ka)χ†µ−κ(r̂)
)

×




W + mc2 0 −~ck 0

0 W + mc2 0 ~ck

−~ck 0 W − mc2 0

0 ~ck 0 Wmc2





 jl(ka)χµ

κ (̂r)

iDjl(ka)χµ
−κ (̂r)







−1

(5.22)

Multiplying out the matrix and vectors, and writing the Spin Angular functions out in

full, the integral over the r angles is carried out. This results in delta functions in l, l

and l, l. Obviously each value of l has a unique, different value of l associated with it so

the terms featuring the delta functions in l and l disappear and we are left with only the

‘diagonal’ components (δll) from the matrix multiplication.

t(W ) = VW


1 − VW

∫ ∞

0
dk

k2
(
j2
l (ka)(W + mc2) + D2j2

l
(ka)(W − mc2)

)

p2c2 − (~ck)2 + iǫ



−1

(5.23)

The integral is split into two terms. The first consists of j2
l (ka)k2 and is calculated the

same way as the non-relativistic t-matrix integral. The second term is given by

∫ ∞

0

(W − mc2)D2j2
l
(ka)k2

p2c2 − (~ck)2 + iǫ
dk (5.24)
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The integral is changed from an integral over dk to one over d(ka), and split into Principal

and remainder parts in the same manner as the previous term. As the constant D features

k, the numerator has k4 in it. Using the same method as was used to calculate

∫ ∞

0

j2
l (s)s2

s2 − t2
ds = −π

2
tjl(t)nl(t) (5.25)

by Dörr [76], it is straight forward to show that

∫ ∞

0

j2
l (s)s4

s2 − t2
ds = −π

2
t3jl(t)nl(t) (5.26)

Combining the results from both terms, we finally find t(W ) to be

t(W ) =

−2ga2

π

W + mc2

2W

1 +
ga2

2

(W + mc2)2

W~2c2

p

~
(jlnl − ij2

l ) +
ga2

2

W − mc2

W (W + mc2)

p3

~3
(jlnl − ij2

l
)

(5.27)

The argument of all of the Bessel Functions is (pa/~).

The scattering matrix element is found as usual by S = 1 − iCt(W )t(pa/~). Ct(pa/~)

was given by 2πmκj2
l (κa)/~

2 for the non-relativistic case, and was found from the terms

necessary to make an algebraic equation out of the t-matrix.

For the relativistic case, from the form of the potential it would appear that an appropriate

expression for t(pa/~) would be



∑

s j2
l (pa

~
)C(l 1

2j;µ − s, s)2 0

0
∑

s D2j2
l
(pa

~
)C(l 1

2j;µ − s, s)2


 (5.28)

Where each entry can be expanded into a 2 x 2 matrix. We use the scattering matrix

definition to find the constant C which gives the relativistic phase shifts

tan δκ =

1

~2c2

ga2

2W (W + mc2)

p

~

(
j2
l (W + mc2)3 + j2

l
(W − mc2)p2c2

)

1 +
1

~2c2

ga2

2W (W + mc2)

p

~

(
jlnl(W + mc2)3 + jlnl(W − mc2)p2c2

) . (5.29)

Each phase shift is now labeled with the appropriate value of κ rather than l.
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5.4 Results

The curves described by the relativistic phase shifts have the same general shape as the

non-relativistic curves. The curve for l = 0, shown in Figure 5.3 displays the same zero

energy behaviour, and the points at which the curves touch the energy axis for all three

angular momenta (the location of the bases of the sharp resonances) are also the same.

The potentials at which the resonances start to appear are not affected by the move to

relativistic scattering.

All three of the lowest angular momentum curves have been plotted in Figure 5.4 to show

the overall similarity of the general features to the non-relativistic curves. The potential

strength is chosen to be equal to 3, such that the l = 0 bound state is well-established,

the l = 1 one has just formed, and the l = 2 profile shows resonance behaviour, and the

profile is still double-sided.
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Figure 5.3: The relativistic phase shift curves for the l = 0 angular momentum as potential

strength g̃ is increased.

Following Ref. [78], it was expected that an s-wave resonance would be discovered at low

potentials and energies when we moved to a relativistic formulation. By inspecting the

phase shifts at very low energies and at potentials just lower than that required for a bound

state, we find this to be the case. However the values that were found for a resonance
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Figure 5.4: The first three angular momentum curves for the relativistic phase shifts under

a Delta potential of strength g = 3. The shapes are similar to the non-relativistic curves.

were given by g̃ = 1 − 2 × 10−16 and ξ̃ = 4 × 10−20, making the resonance unobservable

on the energy scales we are interested in.

The location of the resonances can again be calculated for a fixed potential value simply

by putting the denominator of the phase shift equation equal to zero. This time, for

relativistic scattering, the resonances occur at the solutions to the equation

√
ξ λ

λ(ξ + µc2)

(
λ ξ2jl nl + λ3jl nl

)
= −1

g
, (5.30)

where the arguments of the Bessel Functions are given by
√

λ ξ/4c2, λ = ξ +2µc2, and all

the parameters are understood to be dimensionless (usually presented with a tilde).

The reason for moving to relativistic scattering was to include the spin-orbit behaviour in

the phase shifts for the l = 1 and l = 2 momentum values. We concentrate on a p-shell

electron; namely we are interested in the quantum numbers κ = +1,−2. Figure 5.5 shows

the phase shift for the l = 1 state for a potential strength of g̃ = 5. Figure 5.5(b) shows an

area of the main phase shift in greater detail as the splitting due to the spin isn’t visible

on the energy scale of the resonances. The phase shifts are split by ∼ 2 × 10−7 energy

units, which is a lot smaller than the splitting in the p-shell bound states, (of the order of
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10−4).

However, the energy difference between the two split states depends upon the part of the

phase shift being studied. Comparison with Figure 5.5(a) shows that the detailed graph

was looking midway between the top and bottom of a slope defining the start and end of a

resonance. To see splitting in the scattering states of a comparable size to the bound state

splitting, we should instead look at the points where the phase shift first turns upwards to

form a resonance, or at the top of a resonance slope, when the phase shift turns downwards.

Figure 5.6(a) shows the point where the resonance slope finishes, and it quite clearly shows

a maximum splitting in the phase shifts. It can be seen in Figure 5.6(b) that this is due

to one of the spin-split phase shifts changing sign before the other. This cross-over of the

curves causes the wide difference in the energy.
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Ξ
�
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1.5
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∆1

(a) The l = 1 phase shift for a potential strength

of g̃ = 5.
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(b) A section of the Figure 5.5(a) in greater de-

tail, showing the spin-split phase shifts.

Figure 5.5: The splitting of the phase shifts due to spin-orbit coupling. The width of the

split is ∼ 2 × 10−7 energy units at this point.

As the potential is increased, the splitting actually decreases. This is due to the resonances

sharpening, which means that the top and bottom of the resonance lines move closer

together in energy. This in turn means that the phase shift graphs turn more sharply,

reducing the energy differences at the crossover points. As there are spin-splitting maxima

at the top and bottom of the resonance lines, this also has the effect of moving the maxima

closer together in energy. When the potential is strong enough to turn the resonance into

a bound state, there will be no spin-splitting seen in the phase shifts.

Because the bound state and scattering state graphs were rescaled to dimensionless energy

units, we can easily compare them to the energy spectrum of the Hydrogen atom. When
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(a) The energy difference between the two spin-

split levels in the l = 1 case, plotted as a function

of energy for a potential strength of g̃ = 5.
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(b) The beginning of a resonance curve for the P1/2

(green) and P3/2 (blue) phase shifts. The energy

splitting is greatest shortly before the curves cross

over.

Figure 5.6: The energy difference between the spin-split l = 1 phase shifts.

the bound states were first plotted, the radius of the delta shell was chosen in the relativistic

model to be equal to 2. This ensured that the position of the relativistic bound states

matched those of the non-relativistic. This turns out to conveniently put the difference

in energy between the s- and p-shell levels to be ∼ 10, (the difference in location of the

resonances along the energy axis, seen for example in Figure 5.4). In electron-volts this

matches the energy difference between both levels in the Hydrogen atom (see Figure (5.7)).

In Figure 5.6(a) the maximum spin-split energy difference of ∼ 4× 10−5 between the P1/2

and P3/2 states corresponds nicely to the splitting observed in the Hydrogen atom of

4.5 × 10−5 eV .

5.5 The Semi-Relativistic Limit

In order to describe the experiment accurately we need to look at the scale of non-

relativistic energies, but still retain the spin-orbit coupling achieved by using the rela-

tivistic representation. To this end we aim to take a semi-relativistic limit of the phase

shifts, retaining terms up to the order of 1/c2. Rewriting the expression for the phase

shifts such that 1/c2 = X, we find the Bessel Functions in equation (5.29) are multiplied

by the following;
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Figure 5.7: The energy levels in the Hydrogen spectrum that correspond to the scattering

states observed with the Delta Shell potential. The difference between the S and P levels,

and the P1/2 and P3/2 levels correspond to those achieved with the model.
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l

(pa

~

) 4m2 + 4EX

2E2mX + 4Em2
; j2

l

(pa

~

) EX2

2E2X2 + 6EmX + 4m2
(5.31)

Taking c → ∞ (X → 0) and leaving terms of order X and lower will, however, remove

the dependence on the Bessel Functions jl, and therefore all the spin-orbit coupling. It is

only through the l term that the states of the same orbital momentum, but of different

total angular momentum are described. To keep this term it is necessary to keep terms up

to X2 (1/c4), and take the leading order terms. This then gives a semi-relativistic phase

shift of

tan(δl) =

gka2

(
j2
l (ka)

2m

~2
+ j2

l
(ka)

~
2k4

8m3c4

)

1 + gka2

(
jl(ka)nl(ka)

2m

~2
+ jl(ka)nl(ka)

~
2k4

8m3c4

) (5.32)

This is the fully non-relativistic phase shift with jl terms added to the usual jl terms.

Interestingly, when this is put into dimensionless units, these extra terms turn out to be

multiplied by the prefactor ξ2/(2m̃c2)2, where m̃c2 is the scaled rest mass energy mc2 in

dimensionless units.
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tan(δl) =

g̃
√

ξ

(
j2
l (
√

ξ) +
ξ2

(2m̃c2)2
j2
l
(
√

ξ)

)

1 + g̃
√

ξ

(
jl(
√

ξ)nl(
√

ξ) +
ξ2

(2m̃c2)2
jl(
√

ξ)nl(
√

ξ)

) (5.33)

We can relate this prefactor to the Compton Wavelength. We recall that when a rela-

tivistic particle is confined to a length less than ~/mc2, there is a possibility that par-

ticle/antiparticle pairs can be created. The size of the spin-orbit coupling term in the

semi-relativistic limit is determined by the ratio of the particles energy to the energy

necessary to create two such particles.

In the low energy limit, the energy of the particle is much less than its rest mass, and

the spin-orbit splitting of the spectra is not expected to be visible on the scale of the

resonances. As the energy approaches the rest mass energy, equal weighting is given to

both the l and the l terms in the phase shift, with the l term becoming more important

as the energy is increased further.

One of the reasons to use the semi-relativistic limit is that we want a curve that is close

in energy to the non-relativistic case. We find that the difference between the relativis-

tic and the semi-relativistic curve is practically the same as the difference between the

relativistic and non-relativistic, showing that the semi-relativistic is similar to the non-

relativistic. The other, more important feature we want from the semi-relativistic limit is

the retaining of the spin-split energy states. Plotting the spin-split differences given by

the semi-relativistic limit shows the exact same curve as the relativistic, showing that this

is indeed an accurate limit to consider.

The more general features of this limit are the same as the non-relativistic curves given

in the previous chapter.

5.6 Conclusions

The Delta Shell potential was used in a relativistic scattering model to include the spin-

orbit effect of the incoming electrons. By moving to a relativistic model, the nature of the

s-wave phase shift profile changed such that a resonance at low energies now occurred at

a potential just lower than that required for a half bound state. However the difference
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5. The Relativistic Delta Shell Model

between the potential of the resonance and the potential of the bound state was so small

as to be practically unobservable, as was the energy at which the resonance occurred;

ξ̃ = 4 × 10−20 → ξ = 1.4 × 10−19 eV. We therefore decide to treat this resonance of the

s-wave state as being unattainable practically.

As the scattering occurs at low (non-relativistic) energies, a semi-relativistic limit was

sought that retained the spin-orbit splitting of the scattering states. When put into

dimensionless units, the semi-relativistic limit demonstrated the energy dependence of the

phase shifts. The energy of resonances was given by the expression

− 1

g̃
√

ξ
= jl(

√
ξ)nl(

√
ξ) +

ξ2

(2m̃c2)2
jl(
√

ξ)nl(
√

ξ) (5.34)

for a fixed potential value. The second term on the right is the semi-relativistic correction,

and for energies less than the rest mass energy, is found to be negligible for the bulk

behaviour. The size of the spin-orbit splitting however, is determined by this ratio of

the electron energy to the energy required to create a particle/antiparticle pair. It was

found that the maximum energy split between the two spin-split states decreased as the

potential strength g̃ was increased, and the maximum splitting observed for the p-states

with a potential strength of g̃ = 5, (1.8 × 10−9 eV m), was calculated to be 1.4 × 10−4 eV .

We also show that by choosing the Delta Shell radius to be equal to 2, we can correctly

reproduce the energy level splitting scales seen in the Hydrogen energy spectrum.
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Chapter 6

Spin Dependant Delta Shell

Scattering

In the previous two chapters we have considered the bare Delta Shell, which we chose

to represent the tip of the STM. Now we add a spin onto the shell to model the BDPA

molecule. This spin represents the unpaired electron on the molecule, which the tunnelling

electrons only interact with when they are on the potential shell. We start by showing how

the transition matrix for a Delta Shell potential is changed by the addition of an external

spin. We show in detail the non-relativistic approach, then move to the semi-relativistic

limit which we will use to include the spin-orbit interaction of the tunnelling electrons.

6.1 The t-matrix for a Delta Shell potential with an external

spin.

To include the presence of the electron on the molecule, the Delta Shell potential is mod-

ified by the addition of an interaction between the molecule electron spin and the spin of

the tunnelling electrons, of strength J .

V (r) = −(g + JS · σ)δ(|r| − a) (6.1)

S is the spin of the electron on the molecule, and σ is the vector spin operator of the

tunnelling electrons. The spin of the free electron on the molecule (which is s-wave), is
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e− S

a

Impurity

Figure 6.1: The BDPA molecule is represented by a Delta Shell potential. A spin sits on

the shell representing the single unpaired electron magnetic moment.

treated as sitting on the delta shell.

The eigenvectors of the spin operators are given by, as usual,

σ2 | ks ms〉 = s(s + 1) | ks ms〉

σz | ks ms〉 = ms | ks ms〉

S2 | kSM〉 = S(S + 1) | kSM〉

Sz | kSM〉 = M | kSM〉 .

We need to calculate the interaction

〈k′m′sM ′ | V | k ms M〉 , (6.2)

where we have simplified the notation by only writing down the z-component of the spins.

We change the representation from real space to momentum space as we did previously,

assuming that the spin is not affected by this change

Vk′M ′m′
s;kMms

= 〈k′M ′m′s | V | kMms〉

=
−1

(2π)3

∫
〈M ′m′s | (g + JS · σ)δ(r − a) | Mms〉 exp (i(k′ − k) · r)d3r
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The t-matrix for a Delta Shell potential with an external spin.

(6.3)

We expand the exponentials into Spherical Harmonics, simplify using the orthogonality of

the Spherical Harmonics and perform the radial integral over the delta function:

Vk′M ′m′
s;kMms

=
−2a2

π

∑

L

Y ∗L (k̂)YL(k̂′)jl(k
′a)jl(ka)〈M ′m′s | (g + JS ·σ) | Mms〉 . (6.4)

Again, L is used to represent the quantum numbers l, and ml. Our t-matrix can be

written as an operator on (k, l,M,ms; k
′, l′,M ′,m′s), and is put into the same basis set as

the potential to give

〈k′M ′m′s | t(E) | kMms〉 =
∑

L,L′

YL′(k̂′)Y ∗L (k̂)〈k′ l′M ′m′s | t(E) | k l M ms〉 . (6.5)

We assume that the transition matrix is of a similar form to the potential, with a separable

momentum and spin dependence. The momentum subspace will be the same as for the

potential, consisting of two Spherical Bessel functions and a Kronecker delta function in

angular momentum, and we won’t specify the form of the spin subspace yet.

〈k′M ′m′s | t(E) | kMms〉 =
∑

L,L′

YL′(k̂′)Y ∗L (k̂)jl(k
′a)jl(ka)〈M ′m′s | t(E) | Mms〉δLL′

(6.6)

We substitute the potential and the t-matrix into the Lippmann-Schwinger equation.

Again using the orthonormality of the Spherical Harmonics, and cancelling out the Spher-

ical Bessel functions, we find

∑

L

〈M ′m′s | t(E) | Mms〉 =
−2a2

π

∑

L

〈M ′m′s | (g + JS · σ) | Mms〉

−2a2

π

∫
dk′′ k′′2





∑

L m′′
s M ′′

j2
l (k′′a)GR

0 (k′′;E)×

〈M ′m′s | (g + JS · σ) | M ′′m′′s〉〈M ′′m′′s | t(E) | Mms〉
}

. (6.7)
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If we call −2a2/π = Vl and use gl(Ek′′), which was calculated in chapter 4, to represent

the Green’s Function and the result of the remaining k integrals, we get a equation that

reduces to a form similar to the non-spin t-matrix;

ts(E) = Vl(g + JS · σ) + Vlgl(Ek′′)ts(E)(g + JS · σ) (6.8)

= Vl(1 − Vlgl(Ek′′)(g + JS · σ))−1(g + JS · σ)

The spin-spin interaction JS ·σ, is a 4×4 matrix for two electron spins of S = 1/2. There

are only six non-zero matrix elements and Table 6.1 gives these elements and the physical

scenarios they represent.

Spin before Scatter Spin after Scatter
Element Entry

Impurity Electron Impurity Electron

{1, 1} J up up up up Same spin, no spin flip

{4, 4} J down down down down Same spin, no spin flip

{2, 2} -J up down up down Opp. spins, no spin flip

{3, 3} -J down up down up Opp. spins, no spin flip

{2, 3} J/2 down up up down Opp. spins, spin flip

{3, 2} J/2 up down down up Opp. spins, spin flip

Table 6.1: Matrix elements of the spin-spin interaction between two electrons given by

JS · σ.

The entries in the table are found by expanding out the spin operators using the raising

and lowering operator notation;

Ŝ+ = Ŝx + iŜy ; Ŝ− = Ŝx − iŜy (6.9)

which gives

(g + JS · σ) = g + JSzσz + J
S+σ−

2
+ J

S−σ+

2
. (6.10)

The spin-spin interaction is limited by the restriction that scattering permutations where

M and ms change independently of each other are forbidden. The simplest interactions
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would be when neither the tunnelling electron nor the impurity electron spin changes

value. This can happen if the spins are alike (elements {1, 1} and {4, 4}), or if they are

opposite to one another (elements {2, 2} and {3, 3}). The remaining possible scenario is

for the spins to start opposite to one another, and to both flip during the scatter, resulting

in them still being opposite to one another (elements {2, 3} and {3, 2}).

The scattering matrix is defined as before, but now in matrix form and with an unknown

constant:

S = 1 − iCt(Eκ) (6.11)

As S is unitary, we can use it with its transpose to find C:

C = i[t(Eκ)]−1 · [t(Eκ) − t†(Eκ)] · [t†(Eκ)]−1 =
2mπκ

~2
j2
l (κa) (6.12)

for the non-relativistic case.

6.2 The relativistic and semi-relativistic t-matrix for a Delta

Shell potential with an external spin.

The non-relativistic t-matrix for an external spin resulted in an expression which was very

similar to the t-matrix for the bare Delta Shell potential. We find that this is the same

for the relativistic case. The spin interaction matrix doesn’t affect the manipulation of

the t-matrix, and we start with a potential defined as

Vk′M ′m′
s;kMms

= VW ′

∑

s

∑

κµ

∑

κ′µ

∫
dΩr Y ∗µ

′−s
l′ (k̂′)Y µ−s

l (k̂)C(l 1
2j;µ − s, s)

× C(l′ 12j′;µ′ − s, s) (g + JS · σ) il
′−l


 jl′(k

′a)χµ′

κ′(r̂)

iD′j
l
′(k′a)χµ′

−κ′(r̂)




×
(

jl(ka)χ†µκ (r̂) −iDjl(ka)χ†µ−κ(r̂)
)

(6.13)

VW ′ is given by VW /g = −2a2(W + mc2)/(2πW ), and D = ~ckSκ/W + mc2 as before.
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The energy term of the t-matrix is given by

tM ′m′
s;Mms(W ) = VW ′

[
1 − VW ′ (g + JS · σ)

∑

sκµ

∫
dΩr

∫ ∞

0
dk

k2C(l 1
2j;µ − s, s)2

(pc)2 − (~ck)2 + iǫ

×
(

jl(ka)χ†µκ (r̂) −iDjl(ka)χ†µ−κ(r̂)
)

×




W + mc2 0 −~ck 0

0 W + mc2 0 ~ck

−~ck 0 W − mc2 0

0 ~ck 0 W − mc2




×


 jl(ka)χµ

κ(r̂)

iDjl(ka)χµ
−κ(r̂)





−1

(g + JS · σ) . (6.14)

Once the integrals are performed, this evaluates to

tM ′m′
s;Mms(W ) =

[
1 − VW ′ (g + JS · σ)

(
W + mc2

2~2c2

πp

~
(jlnl − ij2

l )

+
W − mc2

(W + mc2)2
π

2

(p

~

)3
(jlnl − ij2

l
)

)]−1

VW ′ (g + JS · σ) .

(6.15)

The arguments of the Bessel functions above are pa/~.

6.3 Phase Shift Results

The scattering matrix has non-zero elements in the same places as there were in the spin-

spin interaction matrix. Each of these terms are rewritten in terms of phase shifts, and

three different entries are found. For the non-relativistic, the semi-relativistic and the full

relativistic approach, the entries all have the same form, which we denote by their position

in the spin-spin matrix;
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tan δ{1,1} =
DHa(g + J)

DHa(g + J) + 1

tan δ{2,2} =
DHb[−4Dg2(Ha + iHb) + 4g(1 + 2DJ(Ha + iHb)) − J(4 + 3DJ(Ha + iHb))]

4 − 4D(2Ha + iHb)(g − J) + D2Ha(Ha + iHb)(4g2 − 8gJ + 3J2)

tan δ{2,3} =
i[4 − 8D(Ha + iHb)(g − J) − 4iDJHb + D2(Ha + iHb)

2(4g2 − 8gJ + 3J2)]

4 − 4D(2Ha + iHb)(g − J) + D2Ha(Ha + iHb)(4g2 − 8gJ + 3J2)

The variables D, Ha and Hb are given in Table 6.2 for the three different approaches.

Case D/

(−2a2

π

)
Ha Hb

NR 1
mπk

~2
jl(ka)nl(ka) −mπk

~2
j2
l (ka)

Rel W + mc2

2W

W + mc2

2~2c2

πp

~
jl

(pa

~

)
nl

(pa

~

)
+

W − mc2

(W + mc2)2
πp3

2~3
jl

(pa

~

)
nl

(pa

~

)

−W + mc2

2~2c2

πp

~
j2
l

(pa

~

)

− W − mc2

(W + mc2)2
πp3

2~3
j2
l

(pa

~

)

SR 1

mπk

~2
jl(ka)nl(ka)

+
~

2k5π

16m3c4
jl(ka)nl(ka)

−mπk

~2
j2
l (ka)

− ~
2k5π

16m3c4
j2
l
(ka)

Table 6.2: The components for the phase shifts when scattering from a Delta Shell potential

with an external spin. The non-rel., semi-rel. and rel. approach all obey the same phase

shift equations, but with different components.

We now go on to describe the behaviour of the phase shifts for the three possible scattering

scenarios. The behaviour of the three entries are different from one another, but general

patterns are followed for all the graphs of angular momentum 0, 1 and 2 separately. We

will only look at the semi-relativistic results now, for reasons detailed in the previous

chapter.
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6.3.1 Scattering between two similar spins with no spin flip

Here, both the tunnelling electrons and the impurity electron have spins pointing in the

same direction. The actual direction of the spins (up or down), has no effect on the results.

We first study what happens for a constant value of the spin-spin interaction variable J̃ ,

(J̃ = 0.2). As the potential is increased, the graphs behave as they did when there was no

external spin. The l = 0 curve moves to a phase shift of π at zero energy via an abrupt

jump from π/2. However the potential strength at which this jump occurs is not g̃ = 1, as

in the previous case, but rather g̃ = 0.8. This is because the occurrence of a resonance at

zero energy is now determined by the sum of the shell potential strength and the spin-spin

interaction strength. The phase shift begins at π/2 when g̃ + J̃ = 1. This relationship

holds as J̃ is increased. The location of the bound states (ξ̃ = π2, 4π2 etc) match those

for no external spin coupling; introducing J̃ has no effect on the location.

For the l = 1, 2 cases, the graphs show the same behaviour again as their spinless coun-

terparts except for when the zero-energy phase shift jumps to π. This now occurs when

g̃ + J̃ = 2l + 1, and again, the higher bound states occur at the same location in energies

as previously. For these curves and all following ones, there is no effect if the radius of the

Delta shell potential is changed.

We now consider the spin-orbit splitting of the p- and d-wave phase shifts. This can be

quantified by either finding the difference in energy for a given phase shift, as described

in the previous chapter, or by finding the difference in the phase shift for a given energy.

This is what we choose to study here. Both give a measure of the size of the splitting,

but the second technique is easier to obtain graphically. We find that the phase shift

difference follows a continuous line intersected by peaks that increase in height as the

energy is increased (see Figure 6.2).

The peaks occur just after the bound state energies, and reflect the differences seen in the

phase shifts when resonances occur. As the potential strength increases the peaks become

more localised in energy as a consequence of the resonances becoming sharper. The ampli-

tude of the peaks also increase due to the resonances becoming thinner. As they become

more ‘upright’, the vertical distance between the spin-split graphs increase. Because of the

symmetric relation between the potential strength and the spin-spin coupling, the same

100



Phase Shift Results

20 40 60 80 100
Ξ
�

-2

2

4

6

8

10
D∆1 x 10-8

16

10

g

Figure 6.2: The difference in phase shift for the P1/2 and P3/2 states. This is for similar

spins scattering with no spin flip for J̃ = 2 and g̃ = 10 and 16. As either g̃ or J̃ are

increased the peaks get taller and thinner due to the resonance states becoming more

localisd in energy.

behaviour is shown when we increase the value of J̃ .

6.3.2 Scattering between two dissimilar spins with no spin flip

The general shape of the phase shift profile for dissimilar spins is the same as that of the

same spins. However the phase shift ‘lags’ when either the shell, or the spin interaction

potential is changed (see Figure 6.3(a)).

As the spin interaction between opposite spins was given by −J̃ , we postulate that as the

total potential for same spins was g̃ + J̃ , the potential for opposite spins is given by g̃− J̃ .

This would explain the slower rise in phase shift when compared to the same spin profile.

The phase shifts depend on the potentials together, so an opposite spin scatter is viewed

as if it is a same spin scatter but with a smaller total potential.

When the spin interaction strength is large however, rather than just seeing a delayed phase

increase, we see the addition of small secondary peaks occurring around the resonances.

After the resonance jumps, we also see small dips in the phase shift profile that grow
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(a) Phase shifts for the similar and dissimilar

spins with no spin flip. The phase shift for dis-

similar spins is smaller than the phase shift for

similar spins, and spikes have started to appear

in the profile.
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(b) The difference in phase between the spin-

split P1/2 and P3/2 states.

Figure 6.3: Comparison of the phase shifts for scattering between similar (blue) and

dissimilar (green) spins with no spin flip. g̃ = 23 and J̃ = 10.

with increasing J̃ and disappear as we take J̃ to zero. These spikes can be seen in Figure

6.3(a). For very large values of J̃ , the baseline of the phase shifts is raised such that it

never reaches zero at the bound state energies.

Figure 6.4 shows a scatter dominated by such a value of J̃ . Excluding the peaks, the

overall variance in the phase shifts have decreased from π, but the minimum value of the

phase shift has been raised up to δl = π/2. This can be explained by the relation between

g̃ and J̃ . When J̃ > g̃, g̃−J̃ is negative, which changes the potential from being attractive

to repulsive. A repulsive potential cannot bind an electron, so the signature of a bound

state (δl = 0 here), is removed. The phase shift of π/2 suggests only strong scattering is

occurring. A phase shift of zero or π signifies weak scattering or bound states.

This effect can also be be seen when g̃ is less than 2l + 1. When g̃ < J̃ in this range,

the phase shift is approximately equal to π across the whole energy spectrum. Closer

observation shows a slight oscillation such that the phase shift is a maximum at energies

corresponding to the bound states. This appears to be some kind of reflection in the

phase shifts, but the scenario is not physically interesting to us so we do not investigate

it further.

If we look at the phase shift behaviour when varying g̃ or J̃ on a 3D plot (Figure 6.5),
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Figure 6.4: A large value of the spin interaction strength J̃ combined with a small shell

potential (g̃ = 0.2), results in a repulsive potential which cannot support a bound state.

Instead the electrons are strongly scattered. This is a d-wave scattering profile.

we can see more clearly the effect that J̃ has on the phase shifts, and view the secondary

peaks mentioned above. For a fixed value of J̃ , we see ellipses in the (g̃, ξ̃) plane running

mainly along the direction of the energy axis. These ellipses are split along the long axis

with a π jump in the phase shift defining the split, and thin peaks defining the borders

of the ellipses. At zero energy the jump appears to occur at 2l + 1 = g̃ − J̃ , running into

smaller potential values when the energy is increased. This appears to be the occurrence

of a bound state at zero energy. The width of the ellipses, (the distance between the

peaks), is equal to J̃ . This gives us a quantitative description of how much broader the

resonance becomes in the case of opposite-spin scattering.

The length of the ellipse depends on the angular momentum value. For l = 0 the ellipse

cuts into the zero-energy axis, appearing as a semi-circle before it ends. For l = 1 and 2

the ellipse is longer in energy. Figure 6.5 shows the l = 1 ellipse.

We know from Wigner [71] that the width of the resonance is directly related to the time

the particle is captured by the potential for (tDl = ~dδl/dE). The reduced phase shifts

(when J̃ is small) result in a broadened resonance which indicates that the presence of the
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Figure 6.5: The potential strength and energy distribution of the phase shifts for l = 1

for dissimilar spins scattering with no spin flip. The jump in π signifying a bound state,

occurs at a value of g̃ − J̃ = 2l + 1 and the width of the entire feature is equal to J̃ (= 0.4

here).

opposite spin interaction has reduced the time the electrons are captured for. For larger

J̃ , where the secondary peaks seen in Figure 6.5 appear, the peaks can also be seen as

broadening the resonance, again reducing the time the electrons are bound for.

If we plot the difference in phase between the spin-split l = 1 graphs, we find a very similar

structure to the graph describing the scattering of same spins with no spin flip. However

the location of the peaks are shifted to reflect the total reduced potential (Figure 6.3(b)),

and the extra spikes due to J̃ result in larger, more confined differences.

6.3.3 Scattering between two dissimilar spins with a spin flip

Now we look at the scattering of two opposite spins which flip their spins during the scatter.

The phase shift profiles for this scattering scenario are very different to the previous two.
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This scattering scenario has features at the same locations as the resonances seen in the

other scenarios. However, rather than seeing a rapid rise through π at the resonance and

bound states, then a slow decrease back to zero, the phase shifts instead look like sharp

peaks, with an almost symmetric rise and fall. Figure 6.6 shows this and another difference

between this scattering scenario and the previous two. The phase shifts have previously

all been constrained to a maximum value of π. When scattering with a spin flip, they

start at 2π and higher, and in one cycle (defined as moving from one peak to the next) the

phase shift changes by more than π. The phase shift appears enlarged as well as displaced

in δ.
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(a) J̃ = 0.2
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Figure 6.6: A comparison of the phase shifts for scattering with a spin interaction: Same

spin scatter with no spin flip ({1, 1}), dissimilar spins with no spin flip ({3, 3}), and

dissimilar spins with a spin flip ({2, 3}). The effect of an increased J̃ is shown in the

second graph. g̃ = 16

We examine the features at zero energy by studying the change in the phase shift with the

interaction strength g̃ (Figure 6.7). When the spin-spin interaction strength J̃ is increased,

a dip appears in the phase shifts. The two sides of the dip occur at values of g̃ and J̃ that

satisfy the relations

g̃ − J̃

2
= 2l + 1 g̃ − 3J̃

2
= 2l + 1 (6.16)

The width of the dip is equal to J̃ , which is the same as was found in the scattering

between dissimilar spins with no spin flip. However, here there is no jump of π splitting

the trough in half.
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Figure 6.7: S-wave scattering for dissimilar spins scattering with a spin flip. The spin-spin

interaction strength J̃ is varied, and troughs of width J̃ appear. The graphs are plotted

at zero energy.

It was expected that the total potential should change as g̃ + J̃/2 = 2l + 1, in the same

manner in which the potential was related to the spin-spin interaction matrix for the

previous scatterings. However this doesn’t appear to be case. A plot of energy versus

phase shifts instead shows a step that runs from (ξ̃, δ) ≈ (0, π) that only appears after

the threshold condition of g̃ − 3J̃/2 = 2l + 1 is reached.

If we study a 3D plot of the phase shifts as a function of energy and potential strength

(Figure 6.8), instead of the ellipses that characterised no spin flip scattering between

dissimilar spins, we see thin parabolic steps that run along the g̃ axis for a short distance

just after a peak occurs.

As we look to higher instances of this feature, higher values of potential strength are

needed before they occur, and the background level of the phase shifts increases such

that the steps get shallower. These features could almost be resonance behaviour as they

require a minimum potential to occur, and appear just after the usual bound state energies.

However the numerical values of the phase shifts suggest that this isn’t the case.

In Figure 6.6 we show the change in phase shift profile when J̃ is large. The background
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Figure 6.8: The potential and energy dependence of the phase shift for s-wave scattering

between two dissimilar spins with a spin flip. Thin steps running along g̃ can be seen

just after the peak feature. The second occurrence of a step can be seen starting at

(ξ̃, g̃) ≈ (45, 30).

level of the phase shift has dropped as J̃ is increased, and the troughs occurring immedi-

ately after the peaks are not as resolved.

If we increase J̃ above g̃, we see troughs appear in the phase shift profile just before the

bound state energies. Figure 6.9 shows δ1 for three different values of J̃ . These troughs

appear to be artefacts of the plotting technique in which a phase shift greater than π is

translated to start at δl = 0. This does not signify resonance behaviour, but it may still

be instructive to show how this behaviour changes for large J̃ .

The troughs occur over a width which grows rapidly with J̃ , but with a depth that has

a slow response to increasing J̃ . For very large J̃ values, the trough still remains, and
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Figure 6.9: The p-wave scattering for dissimilar spins scattering with a spin flip. Increasing

J̃ above g̃ (14 here), introduces steps of π in the phase shifts, which only represent a

translation of the phase shifts greater than π. The step widths lengthen with J̃ .

doesn’t appear to affect the development of the peak at the bound state energy.

The difference between this scattering scenario and the others is clearly seen when the

size of the phase shift difference between the spin-split p-wave states are considered. The

phase shift difference is much larger for spin-flip scattering, and the maximum occurs at

lower energies than the others. Whilst the other scenarios showed ∆δ getting greater and

more localised in energy as the potential was increased, here the phase shift difference gets

wider in energy, and more features appear after the main peak. Increasing J̃ has more

effect on the phase difference for scattering scenarios without a spin flip than it does on

the one with a spin flip. The phase shift differences for all three scattering scenarios are

shown in Figure 6.10.

6.4 Conclusions

For moderate values of the spin interaction strength, the effect of an additional potential

on the phase shifts for scattering without a spin flip is to change the energies of the
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Figure 6.10: The p-wave phase shift differences for all three scattering scenarios; Green

represents {1, 1}, Blue, {3, 3}, and Purple, {2, 3}. g̃ = 10.

resonances. The bound state at zero energy appears when 2l + 1 = g̃ + J̃ for same spins,

and at g̃ − J̃ for opposite spins. The phase shift profiles appear to depend on the sum of

the potentials only.

When J̃ increases however, for spins orientated opposite to one another, the general phase

shift pattern does acquire additional features. The jumps in π determining a resonance

at non-zero energies are flanked by peaks that occur at ±J̃/2 of the resonance location.

This has the effect of broadening the resonances which reduces the time that the electrons

are captured by the shell. We saw that for J̃ > g̃, the potential switched from being an

attractive to a repulsive one, which resulted in no bound states being possible. This general

broadening as J̃ was increased can be viewed as a development towards that scenario.

Transitions that involved a spin flip displayed complicated phase shift behaviour, and no

obvious dependence on g̃ + J̃/2 was seen, although it was expected from the behaviour of

the previous scattering scenarios.

There was no usual resonance or bound state behaviour, although large peaks did appear at

the resonance energies. The range of the phase shifts were greater than π, and was mostly

not retractable back to the range of 0 to π. It is unclear what these phase shifts represent.
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Resonance-like behaviour was observed when the potential strength was increased, but the

phase shifts didn’t pass through π, or go to zero. This could indicate that the potential

was unable to support a bound state, but because of the increased range of the potential,

and the lack of transitions through π, it isn’t clear how to interpret the figures.

The non-zero value of δl could indicate a general background level of scattering, and the

peaks could signify enhanced scattering or no scattering at all. As we are comparing three

different scattering scenarios it may be good enough at the moment to just view the phase

shift as being different from the patterns produced for the simple scattering, and therefore

completely identifiable.

The reason for studying this model in the semi-relativistic limit, was to include the electron

spin-orbit interaction. When looking at the difference in phase shifts between the two

different profiles arising from the interaction, the maximum difference between spin-split

states was found for when the scatter involved a spin flip. As the interaction strength

was increased, the energy range for which the splitting is large increased for this case.

The other two scattering scenarios showed a greater difference when the potentials were

increased, but over a smaller range.

However the differences are very small. The differences in the phase shifts noted here are ∼
10−8, and the energy differences calculated in Chapter 5 were ∼ 10−5 in our dimensionless

units. This corresponds to energies on the scale of 10−5 eV. The magnitude of the spin

signal measured by Durkan [54] was around 200 nV. It therefore seems unfeasible that

an energy difference such as we have found for the spin-orbit coupling could be measured

experimentally here.

6.5 Summary

This information describes the transition of an electron wave through a potential shell with

a spin, which we have taken to model a free-radical molecule in an STM experiment. The

three different scattering possibilities give very different phase shift signatures. The effect

of an increasing spin interaction separates the behaviour of similar spins and dissimilar

spins, and the phase shift differences between the spin-split p- and d-wave scattering states

easily identifies which scatters are accompanied by a spin flip. The spin flip scattering
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doesn’t display typical resonance behaviour, but does have enlarged phase shift signatures

at the usual resonance energies. The size of the spin-split phase shift differences have been

found to be too small to be observed experimentally. These results will be taken forward

and will be combined with the transition results through a bare Delta Shell to calculate

the conductance through an entire STM system.
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Chapter 7

Delta Shell Scattering with a

Precessing Spin

The previous chapter described the phase shifts due to an interaction between two static

spins. Here, we introduce a precessing spin as the molecule spin such that the applied

magnetic field that features in the experiments can be included in the model. Rather than

only examining the phase shifts generated by the potential, in this chapter the scattering

amplitudes, the total scattering cross section, and the generalised phase shifts are also

studied. This chapter deals with the molecule only, and its effect on an incoming electron

wave.

7.1 Motivation

In the Durkan experiment, the sample was sitting on a permanent magnet with its axis

in the direction of the STM tip. What effect, if any, does this magnetic field have on the

phase shifts due to the shell potential and the spin interaction?

Let us assume that under the influence of the external magnetic field the molecule spin

precesses with a relaxation time large enough to ensure that no decoherence of the spin

occurs in the observational time frame. By having this restriction, we assume that either

the observational time is short, or that there is an unknown mechanism perturbing the

electron away from its equilibrium position often enough such that it is always precessing.
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It is important to emphasize here that we are not claiming anything about the nature of,

or cause of the precessing spin. This is not an ESR experiment with an oscillating field so

we cannot look to that as a source of perturbation.

Electrons in an applied magnetic field will have their energy modified by Zeeman coupling.

Depending on whether they are aligned with or against the direction of the field, this

energy difference is given by ±geµBB, with the positive value taken when aligned against

the field. The authors in [47] maintain that this Zeeman coupling of the electrons to the

external magnetic field is very small when compared to the exchange coupling to the local

spin. For the magnetic fields used in the experiments we are studying, (0.019 − 0.03 T),

the size of the splitting is ∼ 2.2 − 3.4 × 10−5 eV. We therefore choose to neglect this

interaction, concentrating on the spin interaction instead.

In Chapter 2, we calculated that ∼ 10 electrons will pass by the molecule during one

precessional period. Knowing this, we can treat the system adiabatically and assume that

the impurity spin is static for a single electron tunnelling event. This approach is used

in [47] and we use formalism from that work in our Delta Shell model to investigate the

phase shifts that will arise from such a system.

It is worth noting that in this adiabatic situation, the local spin is treated as precessing,

and the conduction electron spins are static. Because of the symmetric way they are

treated, the same result would be achieved if we chose the local spin to be static and the

conduction electrons to be precessing.

7.2 A Precessing Spin

The precessing spin is described by the following components;

Sx = S sin θ cos φ

Sy = S sin θ sinφ

Sz = S cos θ ,

where θ and φ are the azimuthal and in-plane rotational angles respectively, and S is the

magnitude of the spin vector S. The equation of motion for the spin is given by
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dµ

dt
= µ × γB , (7.1)

where the magnetic field is in the z-direction only, B = (0, 0, Bz), and the magnetic

moment µ is the gyromagnetic ratio γ multiplied by the spin vector S.

Coupling this spin to the free electron spin σ, (described by the three Pauli matrices) in

an exchange interaction characterised by σ · S, gives a coupling matrix of;

σ · S =


 cos θ sin θ exp[−iωLt]

sin θ exp[iωLt] − cos θ


 (7.2)

We have rewritten the angle of rotation φ as ωLt, the frequency of precession (the Larmor

frequency) multiplied by the time. We assume the position of the spin vector at time t0

is in the x-z plane i.e. the y component is zero. This interaction enters the potential term

in the non-relativistic spin t-matrix equation from the previous chapter;

ts(E) = Vl[1 − Vlgl(E)(g + JS · σ)]−1(g + JS · σ) (7.3)

The scattering matrix is found using the same method as for the static spins. This results

in a 2 by 2 non-diagonal scattering matrix.

In the previous chapter, we analysed the phase shifts from the entries of the s-matrix

individually, without diagonalising the s-matrix first. We will use this method to study the

scattering states due to a precessing spin, but we will also look directly at the amplitudes

given by each term in the s-matrix.

We also choose to move the spin of the tunnelling electron into the frame of the precessing

spin. This shows the interaction from a static viewpoint, such that for an instantaneous

time, the tunnelling electron is either parallel or antiparallel to the precessing local spin.

However, by diagonalising the s-matrix, we lose sight of the good quantum numbers that

define each matrix entry, and can only specify the angular momentum number l, of each

entry. Strange [67] says that by diagonalising we end up with a generalised phase shift

only, which we will briefly study below.

As well as looking in detail at the effect the potential has on each scattering channel,

it is instructive to examine the effect on all of the channels together. This may give a
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better insight into any experimentally observable effect, as the differentiation between the

different scattering channels is only possible with further manipulation of the experimen-

tal parameters (e.g. a spin-polarised current could be used to differentiate between the

scattering elements describing different spin orientations). To do this, the total scattering

cross section is determined from the t-matrix. A description of this is set out in the next

section.

7.3 The Total Scattering Amplitude

A simple scattering experiment can be modeled with a plane wave of intensity I0 inci-

dent on a target. The plane wave is then scattered, resulting in an angular distribution

of scattered wave components I(θ, φ), around the target. The scattered wave packet is

described as a retarded, radially decaying version of the incident wave packet, modulated

by an angular amplitude fk(r), known as the scattering amplitude [88].

Sampling the scattered wave at a particular angle results in the determination of the

differential scattering cross section, which is shown in Ref. [88] and elsewhere to be given

by

dσ

dΩ
=

I(θ, φ)

I0
=| fk(r) |2 . (7.4)

The total cross section is found by integrating the differential cross section over all angles

dΩ. The total cross section can have a few different meanings, and here it is taken to

mean the sum of all possible processes integrated over all possible scattering angles.

The t-matrix is related to the scattering amplitudes by a simple relation, resulting in a

total cross section of

σ =
m2L6

4π2~4

∫
| t(k′,k : ξ̃) |2 dΩ . (7.5)

The length L represents the dimension of the scatterer (a), and the t-matrix has units of

energy, giving the cross section units of area. Similar to the other parameters used here,

the cross section is re-written in dimensionless units by dividing through by the area of

the scatterer;
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σ̃ =
σ

4πa2
(7.6)

The t-matrix is used in the semi-relativistic limit and is given by the product

t(k′,k : ξ̃) = t(ξ̃)t(k′,k)

t(k′,k; ξ̃) =
∑

s

∑

κµ

∑

κ′µ′

∫
dΩr(−)

a

π


 jl′(k

′a)χµ′

κ′(r̂)

iD′j
l
′(k′a)χµ′

−κ′(r̂)




×
(

jl(ka)χ†µκ (r̂) −iDjl(ka)χ†µ−κ(r̂)
)

Y µ′−s
l′ (k̂′)Y ∗µ−s

l (k̂)

×
[
1 +

√
ξ̃
(
g̃ + βJ̃S · σ

)(
(jlnl − ij2

l ) +
ξ̃2

(2m̃c2)2
(jlnl − ij2

l
)

)]−1

×
(
g̃ + βJ̃S · σ

)

The Bessel Functions in the third line have the argument

√
ξ̃, and D = ~kSκ/mc. The

vectors in the first two lines are expanded out, and the integral over Ωr is carried out

over the Spherical Harmonics in the Spin Angular Functions. The sums over κ′ and µ′ are

carried out, and new Spin Angular Functions in k and k′ are formed;

t(k′,k; ξ̃) =
∑

s

∑

κµ

(−)
2a

π

×


 jl(ka)jl(k

′a)χµ
κ(k̂′)χ†µκ (k̂) −ıDjl(ka)jl(k

′a)χµ
κ(k̂′)χ†µ−κ(k̂)

ıD′jl(ka)jl(k
′a)χµ

−κ(k̂′)χ†µκ (k̂) 0


 t(ξ̃)

The final two lines of the previous equation is written as t(ξ̃) above, and the fourth

quadrant of the matrix goes to zero in the semi-relativistic limit. The κ sum runs from

-3 to +2 (excluding κ = 0), covering the first three angular momentum values, and both

the positive and negative coupling of the spin angular momentum to the orbital angular

momentum.

117



7. Delta Shell Scattering with a Precessing Spin

7.4 Results

7.4.1 Amplitudes of the s-matrix entries

The phase shifts are calculated from the transition matrix, via the scattering or s-matrix.

Aside from the phase change caused by the scattering potential, the amplitude of each

s-matrix entry can be studied by plotting the real part of the amplitude against the

imaginary part in a parametric plot. The magnetic field present in the experiment is

incorporated into this model as the spin-interaction strength J̃ . Figure 7.1 shows the

effect that an increasing J̃ , mimicking an increasing magnetic field, has on the off-diagonal

s-matrix amplitudes.
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Figure 7.1: The s-wave off-diagonal s-matrix amplitudes plotted as a function of energy,

and for increasing J̃ values. The green plot has a value of J̃ = 0.1, and each successive plot

has a J̃ value increased by 0.1. The energy dependence increases anti-clockwise around

the plot. The potential strength is g̃ = 3, and the azimuthal angle, θ = π/16. φ = 0.

Each plot starts at the origin when ξ̃ = 0, and moves in the anti-clockwise direction.

When J̃ is increased the plot increases in amplitude, but the phase changes, (the angular

change ∆), remain the same - all plots start at the same point and follow similar, although

enlarged paths. This plot is for energies up to ξ̃ = 9. When the energy is increased further,
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the amplitude continues to zero when ξ̃ = π2, then the plot moves clockwise, forming a

small loop that again moves back to zero amplitude at the origin. The formation of this

loop and the consecutive one is shown in two stages in Figure 7.2 for one particular value

of J̃ . The energies at which the amplitude drops to zero corresponds to the energies at

which the bound states occurred in the s-wave non-magnetic and static spin models.

When g̃ is increased in these plots, the pattern of loops stays the same, but the amplitudes

and phases are changed. A high g̃ decreases the radius of the primary anti-clockwise circle.

It also increases the phase changes in the loops, in such a way that the clockwise part of the

loop becomes larger, the loop spreading over the top of the primary circle before looping

back to become zero again at the bound state energy.

When increasing the azimuthal angle θ, we find that the amplitude of the s-matrix entries

are increased (the radius increases) but there is no obvious change in the phase. Changing

the in-plane angle, φ, however, visibly changes the phase, rotating it such that the lines

do not emerge from the imaginary axis anymore. This can be seen in Figure 7.2 where

φ = π/6. The other off-diagonal entry in the s-matrix shows the same behaviour when

most of the parameters are changed, except for when φ is increased, when the plots rotate

in the opposite direction.
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(a) Energies up to ξ̃ = 25.
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(b) Energies up to ξ̃ = 65.

Figure 7.2: The formation of loops in the s-wave off-diagonal s-matrix amplitude as ξ̃ is

increased. The amplitude drops to zero at energies where bound states conventionally

occur in the phase shifts. J̃ = 0.3, g̃ = 3, θ = π/6.

When studying the diagonal s-matrix entries, we find that for intermediate values of g̃,

the absolute values of the amplitudes are very close to unity, and deviate from it by only a
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small amount (Figure 7.3). As ξ̃ is increased, the plot moves rapidly through the positive

imaginary region in an anti-clockwise direction, reaching (1, 0) when ξ̃ = π2 (for the s-

wave scattering). As the energy is increased further, the plot returns clockwise along the

original path. It then returns to (1, 0) for ξ̃ = 4π2. This is similar behaviour to the

off-diagonal s-matrix elements: The phase and amplitude return to the same values at

the bound state energies, and between the second and third bound state (and consecutive

pairs), a loop is traced out. The differences between the two matrix elements are in the

change in absolute amplitude (the off-diagonal plots are not unitary circles), and the phase

at zero energy, ∆l(0). In the diagonal entries, increasing the value of J̃ changes ∆l(0),

moving the entry clockwise for {1, 1}, and anticlockwise for {2, 2}. The behaviour at the

bound state energies however, are not affected.
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Figure 7.3: The s-wave diagonal s-matrix amplitude plotted as a function of energy. The

energy dependence increases anti-clockwise around the plot, and its starting value depends

on J̃ . Here, g̃ = 3, J̃ = 0.3, and the azimuthal angle, θ = π/6.

At low potentials the diagonal entries show unusual behaviour. For g̃ < 2l + 1, the phase

increases with energy in a clockwise direction, with ∆l(0) always in the (+ve,−ve) section

of the graph and moving clockwise as g̃ is increased. The direction switches to anti-

clockwise when g̃ passes 2l+1. For zero values of J̃ , and as ξ̃ tends to zero, the plot starts
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at (−1, 0) for g̃ = 2l + 1, and jumps to start at (1, 0) when g̃ > 2l + 1. This jump is the

jump in phase shift we have seen before for s-wave scattering in the non-magnetic case.

Because the s-matrix and the phase shifts are related by S = exp(2iδl), a change in the

s-matrix phase ∆ plotted here, by an amount θ, corresponds to a change in phase by θ/2

in δ given by the usual phase shift plots. So this jump in ∆ of π corresponds to the π/2

jump seen at zero energy in the s-wave phase shifts.

We can use the same comparison when considering the change a large g̃ has on the am-

plitude profile. When we considered the plots of phase shift versus energy in previous

chapters, an increased potential increased the maximum phase shift that occurred be-

tween bound states. The δl = π/2 line is the imaginary axis here, so if a loop crosses that

line, it symbolises that a resonance has been reached. Figure 7.2 is for a small value of g̃

which isn’t large enough to cause a resonance state, but an increased g̃ will increase the

second loop, extending it further clockwise before it returns.

There appears to be no dependence on θ, and φ doesn’t explicitly enter into the expression

for the diagonal s-matrix entries.

7.4.2 Total Scattering Cross Section

The incoming electron is confined to the z-axis so that Ωk = 0, and momentum is conserved

such that k = k′. The first three angular momentum values are summed over, and the

angular distribution of the outgoing electrons is integrated over. The total cross section

represents a sum over the amplitudes of all the different possible spin interactions between

the precessing spin and the incoming electrons.

The scattering cross section is found to have the form seen in Figure 7.4. As the spin angle

tips away from the z axis, there is no change in the total cross section. Four components

contribute to the cross section, and considering the form of the spin interaction matrix

they can be seen to represent the four different spin permutations such that

σtotal = σ↑↑ + σ↑↓ + σ↓↑ + σ↓↓ . (7.7)

Examining these individual components, we find that σ↑↑ decreases with an increasing θ,

and σ↓↓ increases with θ by the same amount. These two components are plotted in Figure
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Figure 7.4: The total semi-relativistic cross section for scattering through a precessing

spin. There is no change with azimuthal angle θ. Here, g̃ = 3, J̃ = 0.3, θ and φ = 0.

7.5(a) for increasing values of θ. As the angle is increased, the two plots converge towards

one another, and at θ = π/2 the cross sections for both components are the same.

The two remaining components σ↑↓, σ↓↑ have values of ∼ 10−6, which combined with the

previous two components results in a practically constant value for σtotal with increasing

θ. There is no change in the cross section (or in any of the separate components) when

the in-plane angle φ is changed.

The cross section for scattering appears to drop off in plateaus with increasing energy, and

there is very little cross section after ξ̃ ≈ 35. There is a peak in the cross section at ξ̃ ≈ 8

which increases with increasing potential strength, as does the whole cross section (shown

in Figure 7.5(b)).

7.4.3 Non-diagonalised Phase Shifts

The spin coupling matrix for the precessing spin contained the precessional nature of

the impurity spin in the off-diagonal components, and a simple interaction with the z

component of the precessing spin in the diagonal components. The scattering amplitude

matrix elements are manipulated to enable the phase shifts to be plotted. We study
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(a) Components σ↑↑ (A), and σ↓↓ (B) are shown to

converge for increasing θ. g̃ = 3, J̃ = 0.3 and φ = 0.
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(b) The effect on the cross section when the shell

potential g̃ is increased. J̃ = 0.3, θ = π/6 and

φ = π/4.

Figure 7.5: The variation in cross section components with θ, and the variation in total

cross section with increasing g̃.

whether the nature of the precessional spin is indicated in these phase shifts.

Diagonal matrix elements

At low energies, the two diagonal elements appear to behave like the diagonal elements of

the static spin phase shifts. The first element {1, 1}, behaves like the scattering between

two similar spins, and the {2, 2} element behaves like the scattering between two dissimilar

spins. This is indicated by the conditions for a resonance at zero energy; 2l + 1 = g̃ + J̃

for {1, 1}, and 2l + 1 = g̃ − J̃ for {2, 2}. As we chose the precessing spin to be precessing

around the positive z-axis, this suggests that element {1, 1} represents spins pointing in

the +ve z direction (‘up’ spins), and element {2, 2} represents ‘down’ spins. The higher

energy behaviour for both of the diagonal components appears to be the same as in the

static case.

When we consider the phase shifts arising from a large J̃ value however, the behaviour of

the two diagonal entries differ widely from each other. We first concentrate on element

{1, 1}. When J̃ = g̃, every part of the phase shift plot above δl = π/2 is reflected downward

along the π/2 line. This has the immediate effect of removing the bound state at zero

energy. The plot now starts at (ξ̃, δl) = (0, 0). As soon as the spin interaction strength

passes the value of the shell potential, a complete rotation around the δl = π/2 line occurs.
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7. Delta Shell Scattering with a Precessing Spin

If J̃ is further increased, the plot grows the same way as the non-magnetic plot did when

increasing g̃, but now upside down. This behaviour is shown in Figure 7.6.
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(a) J̃ less than and equal to g̃ = 13. A π/2 line

is plotted to aid the eye.
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(b) Three J̃ values for g̃ = 3.

Figure 7.6: The effect of large J̃ on element {1, 1}. The phase shift first reflects in the

π/2 axis when J̃ = g̃, then completely rotates when J̃ > g̃.

By contrast, the phase shifts for element {2, 2} change slowly with J̃ , and the change is

not so dramatic. As J̃ approaches g̃ from below, the whole of the phase shift spectrum

reduces in amplitude, until it is practically zero (< 0.01 for g = 3). As the spin interaction

is then increased above g̃, the phase shifts increase in amplitude again (Figure 7.7).
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(a) J̃ values close to the potential strength of

g̃ = 1.
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(b) Full energy spectrum showing J̃ values close

to g̃ = 3.

Figure 7.7: The effect of large J̃ on element {2, 2}. When J̃ is the dominant potential,

the phase shifts are suppressed near the value of g̃ = J̃ .
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Changing the angle of precession - θ, changes the phase shifts in a small way. When θ

is reduced, such that the precession is decreased, the phase shifts for the {1, 1} element

(Figure 7.8(a)), are slightly raised, and the phase shifts for the {2, 2} element are slightly

lowered. This was too small an effect to be seen in the scattering amplitudes plots. The

phase shifts at zero energy and at the higher bound state locations are not changed by θ.
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(a) Phase shifts increasing with θ for J̃ = 0.2.
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(b) The θ = π/2 phase shifts. As J̃ is increased

from 0.2 to 0.6, the peak moves away from the

zero energy axis.

Figure 7.8: The effect of θ on the {1, 1} phase shift of the precessing spin interaction.

S-wave scattering with g̃ = 1.

When θ = π/2, the precessing spin is completely ‘tipped over’ into the x − y plane, and

has no z-component. This changes the low energy behaviour of the phase shifts. Instead

of the highest phase shift being at zero energy, a peak occurs instead just above ξ̃ = 0.

This can be seen in Figure 7.8(b), and is the same for both of the diagonal components.

Off-diagonal matrix elements

The phase shifts for the off-diagonal elements all have features at the usual bound state

locations appropriate for each angular momentum value. However the features are not

the usual jump of π, but instead are nearly-symmetrical peaks with a background value

of δl = 2 − 3 in between. This is similar to the phase shifts seen in the previous chapter

when the electrons scattered from the local spin and a spin flip occurred. For moderate

potential parameters, the phase shifts between the peaks are found to slightly increase

with g̃ (Figure 7.9), and slightly decrease with J̃ .

The phase shifts also decrease when θ is increased, again, a difference that could not
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Figure 7.9: Off-diagonal phase shifts with changing g̃. S-wave scattering with J̃ = 0.2.

be seen when the scattering amplitudes were plotted. When φ is increased, as was seen

earlier, one of the off-diagonal phase shifts increases, and the other decreases by an equal

amount.

When we move to large values of g̃ and J̃ the phase shifts gain features either side of

the resonance peaks at the bound state energies. Large g̃ values introduce troughs after

the main peak, with a width of about 0.4 in energy, which doesn’t appear to depend on

either of the potential values. For potentials when J̃ > g̃, steps before the peaks start

to form. The widths do seem to depend on J̃ now, increasing with J̃ . These features

are again similar to those that appeared in the static spin scattering of two spins with

a spin flip, however the troughs were steps previously, and vice versa. As we did then,

here we understand the troughs to be translated phase shifts of greater than π. When

the potentials take on these large values, the phase shifts all move up in δ and become

greater than π, although if we don’t include the peaks, the total change in phase between

resonances is still within the π range. This was also a feature found when describing

scattering with a spin flip in the previous chapter.

We have already mentioned that the spin angle φ can be replaced by ωLt, and one rotation

of 2π represents one precession of the impurity spin. As there is a φ dependence in the
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off-diagonal components, we can study these phase shifts as a function of the rotation of

the spin. The first things to note are that there is a 2π repetition in all graphs studied,

and the phase shifts mainly take on a saw-tooth shape of height π. Element {2, 1} has

steps and troughs that disrupt this π range, but again, these are artefacts of the plotting

method, and any jumps of 2π seen can be translated back to the range of the rest of the

plot. The saw tooth pattern of {1, 2} rises instantaneously through π, then drops through

π over φ = 2π. Element {2, 1} does the opposite - the drop through π is instantaneous,

and the climb is through 2π in φ. When g̃ is increased, both phase shifts move back in φ,

the move decreasing as high values of g̃ are reached. The plot itself is not changed - the

width and height of the pattern remains the same.

The change in J̃ is very explicit, and depends largely on the energy. Again, no change in

height or width is seen, but J̃ shifts the plot a small amount to either higher or lower values

of φ. At zero, or higher resonance energies, J̃ has no effect on the change of phase shift

with angle. For energies at which the usual energy spectrum plot has a negative-gradient,

an increased J̃ shifts the phase shifts to a higher angle, the shift decreasing as an energy

at which the phase shifts have zero gradient is approached. When we look at an energy

which is in a positive-gradient section of the graph, the phase shift is shifted backwards

in φ for increased J̃ , again moving back to having no effect when an energy signifying a

zero gradient is reached. This behaviour occurs for all three angular momentum graphs

studied.

As the changing potential values are not affecting the width or height of the general phase

shift plot with φ, it would seem that the precession frequency is not affected by a changing

g̃ or J̃ , but instead, the changes in phase that occur because of the scattering are just

shifted to different points on the impurity’s cycle.

The remaining parameter which can change - θ, has no obvious bearing on the φ depen-

dence of the phase shift, signifying that a change in precession angle does not change the

rate of precession, nor has any influence on the scattering at different x-y positions.

If we want to study the total off-diagonal scattering effects, we must look at the two

plots together. The phase shift behaviour displayed for one entry was opposite to the

other, such that their sum would show no oscillation with the precessing angle. Each

element represents one orientation of spin. It will be only for a wave that is at least partly
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7. Delta Shell Scattering with a Precessing Spin

spin-polarised that this oscillation will remain.

7.4.4 Diagonalised Phase Shifts

We can move into the frame of the precessing spin, such that the electron spin will either

be parallel or anti-parallel to the impurity spin. This is done by diagonalising the s-matrix,

with the two new phase shifts given by the following combination of matrix entries;

δ =
1

2

(
{1, 1} + {2, 2} ±

√
{1, 1}2 + {2, 2}2 − 2{1, 1}{2, 2} + 4{1, 2}{2, 1}

)
(7.8)

We designate the first phase shift to be the one with the square root subtracted, and the

second phase shift will be the one with the square root added. The generalised phase

shift from this matrix is hard to interpret. Although the behaviour when the parameters

are changed are describable, there are few obvious physical interpretations of what the

different features in the graphs of energy versus phase shift represent.

We first look at the zero energy behaviour of the phase shifts. Typically, this is where

the first resonance would occur in the conventional phase shifts, and a relation between

g̃ and J̃ values would be determined. We look at the variance of the phase shifts with

potential strength, and introduce low values of the spin-interaction strength. Figure 7.10

shows the first and second phase shift for s-wave scattering. Both graphs show a vertical

line representing a jump in π/2 occurring when g̃ = 1, and J̃ = 0. (For all angular

momenta, when J̃ = 0, there is no difference between the two diagonalised entries.) When

J̃ is increased, a trough appears of width 2J̃ , and depth π/2 centered around the g̃ = 1

location. The first phase shift has ‘streamers’ at the trough edges going down to δ0 = 0,

and the second has peaks heading up to δ0 = π. The higher angular momentum graphs

show slightly different behaviour. There is no vertical line for the J̃ = 0 case, and the

troughs that appear with an increasing J̃ are square-bottomed, and the same for both

phase shifts i.e. there are no peaks or streamers coming from the trough edges.

When we move to the energy spectrum of the phase shifts, we see that for all three angular

momenta there is one main feature at low values of g̃, (Figure 7.11). A background phase

shift value of δl ≈ 2.35 leads to spikes which define the boundary of a trough, the base of

which is at δl ≈ 0.8. The difference in height between the trough base and the background
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Figure 7.10: S-wave scattering for the diagonalised s-matrix at zero energy. Green - J̃ = 0;

blue - J̃ = 0.5; purple - J̃ = 1.

‘tails’ is equal to π for no spin interaction strength. In the l = 0 case, the trough cuts into

the energy axis such that we only see half of the trough, which explains the vertical jump

feature seen only in the (g̃, δ0) graph.
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Figure 7.11: The energy features for the diagonalised s-matrix entries for all three angular

momenta. J̃ = 0, and g̃ = 2l + 1 for each different angular momentum value.

For an increasing potential strength g̃, keeping J̃ = 0 for now, the width of the trough

increases. Also as g̃ increases, we see the trough repeated at higher energies. For low g̃

and J̃ values, there is nothing to emphasise the energies of the bound states, which occur
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7. Delta Shell Scattering with a Precessing Spin

here in the flat tails between consecutive troughs.

When we introduce a finite J̃ , the two terms start to differ. A low J̃ acts to reduce the

overall change in δl in the first phase shift, raising the base of the trough upwards, and

reducing the peaks either side of the troughs. It acts in the opposite way on the second

phase shift, also raising the edges of the flat background. For both phase shifts, however,

as J̃ → g̃, the effect starts to reverse, and the phase shifts begins to increase back to its

initial values for the first phase shift, and decrease for the second. When J̃ gets this large,

the energies of the bound states now become emphasised (Figure 7.12). The phase shift

can be seen forming a ‘cup’ shape around the point (π2, 2.35), and it also does at the next

bound state energy, (4π2, 2.35). These are the bound state energies for s-wave scattering.

The first entry shows this cup upside down, and very shallow. The second entry shows

it the right way up, with edges that reach π. We can also see in this plot how J̃ acts to

decrease the phase shift in the first phase shift, to the extent that the cup is almost not

visible, and acts to increase it in the second phase shift.
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(b) The second phase shift.

Figure 7.12: The effect of large J̃ on the diagonalised s-matrix. The plot evolves such

that the remaining feature on the line δl = 2.35 is centered on the conventional resonance

energies. l = 0, and g̃ = 6 in both cases.

7.5 Discussion

The phase shift energy spectrum of the diagonal components display usual resonance and

bound state behaviour, with low energy behaviour exactly like that of the spin scattering

seen in Chapter 6. The off-diagonal components show peaks at the resonance energies and
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a nearly-constant, non-zero value of δl in between. When the spin interaction strength is

taken to zero, the phase shifts in this chapter are equal to their equivalent matrix element

in the previous chapter.

The precessing spin is defined by the parameters J̃ and θ. When J̃ is increased, the

amplitude of the s-matrix off-diagonal elements increases by a relatively large amount.

An increased precessing angle also has the same effect. As the precessing nature of the

spin was contained in the off-diagonal components of the spin-coupling matrix, this is as

we would expect. As either the angle of precession or the precession strength increases,

the scattering amplitude through that channel increases.

Because the diagonal components of the s-matrix were already very large with no J̃ inter-

action, the reduction in the amplitude caused by J̃ or θ is hardly visible. The reduction

in amplitude occurs with the increase in the non-diagonal amplitudes due to the unitarity

property of the s-matrix being maintained.

The effect of J̃ and θ on the phases are different to the effects on the amplitudes. The

off-diagonal components have a reduced phase when J̃ or θ is increased, and the two

diagonal components behave differently to one another for large J̃ . When observing the

effect of a static spin pointing in the opposite direction to the electron spin, a large value

of J̃ changed the nature of the potential from attractive to repulsive such that no bound

state could be supported. We postulated that the total potential was given by g̃ − J̃ . It

appears here however, that the potential seen by element {2, 2} never turns repulsive, and

the total potential instead appears to be given by | g̃ − J̃ |. The resonances reduce in size

as J̃ approaches g̃, and increases again after J̃ grows larger than g̃.

Matrix element {1, 1} displays conventional phase shift behaviour until J̃ > g̃. Then the

phase shift profile rotates around π/2 such that it appears upside down. It is unclear

why this happens, but the rotation still results in the phase shift passing through π/2,

and for high potentials results in jumps in π signifying a bound state. It just all happens

upside down. The phase shift profile is recognizable, so we conclude it is still a valid

representation of where the resonances and bound states occur in energy.

On top of this behaviour, the {1, 1} phase is reduced slightly with increasing θ, and the

{2, 2} elements are increased slightly. This change due to θ is much smaller than the effect

due to J̃ . If we remember that the phase shifts represent how much the incoming wave
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has been changed by the potential, this result suggests that the precessing spin must act

to reduce the scatter of the up spins, and increase the scattering of the down spins. As a

precessing spin results in the spin axis not pointing directly in the ‘up’ direction, this is

to be expected.

We saw that for a particular energy, an increased potential strength reduced the off-

diagonal scattering amplitude (in the first anti-clockwise loop). We must assume that

even though it isn’t visible, this is accompanied by a small increase in the scattering

amplitude of the diagonal entries. The phase shift however, of both types of entries

increase with an increased g̃, as could be seen in the phase shift plots. The secondary

loops in the scattering amplitude plots showed the behaviour between resonance energies.

The scattering amplitudes would move clockwise, then anti-clockwise before returning to

the resonance point, signifying a change in phase first in one direction, then in the other.

For the diagonal plots, this explains why the primary loop moved in a clockwise direction

with energy for values of g̃ < 2l + 1. Conventionally, before that value of potential was

reached, the phase shift plot would start at (ξ̃, δ) = (0, 0), resulting in a small area of

positive gradient before the large negative gradient is observed starting at (π, 0).

The real and imaginary parts of the diagonal scattering amplitudes appear to be out of

phase with each other by π. This results in a circular parametric plot around the origin.

The off-diagonal imaginary part appears to lag by π/2, but is also stretched asymmetri-

cally, which we see as a shape almost representing a kidney bean. This extra imaginary

component appears due to the precessing spin in the off-diagonal spin interaction ma-

trix. The entries in this matrix also explain the different starting points of the parametric

plots. The diagonal terms are described by cos θ, which is purely real, and for low θ re-

sult in the parametric plot starting close to (1, 0). The off-diagonal terms are given by

sin θ exp(±iφ) = sin θ cos θ ± sin2 θ. The parametric plot will start near (0, 0) for low θ.

The off-diagonal phase shifts did not display typical resonance and bound state behaviour.

The same problem arises that occurred with the static spin scattering behaviour. It is

unclear how to interpret the large peaks seen at the bound state energies, and the non-

zero background phase shift. It is for this case that we can see the importance of the

parametric scattering amplitude plots. It is there that we can see the resonance behaviour

of the electrons, and the effect of the potentials on this entry.
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In this model, symmetry is only broken in the z direction. This means that there is no

reason why one direction in the x−y plane should be preferred over another. This is borne

out in the scattering cross section graphs where there is no dependance on the precessional

angle φ. The apparent constancy with changing θ is explained by examining the separate

contributions to the total cross section. As mentioned above, the precessing spin appears

to reduce the scatter of the ‘up’ spins, and increase the scatter of the ‘down’ spins. These

changes are equal, resulting in no overall change in the cross section with θ. This is the

case for an equal amount of up spins and down spins.

It was found in Chapter 3 that just by passing through a magnetic field, there will be a

polarisation equal to 1 in 50,000 spins (for the magnetic field sizes used in the Durkan

experiment). To investigate this, a polarisation was entered such that there was a small

surplus of up spins over down spins. However this polarisation was too small to notice

any change in the cross section with azimuthal angle. The largest change in cross section

was ∼ 1 × 10−9, which is negligible when compared to the size of the actual cross section

signal (∼ 0.01).

To determine the size of the spin-orbit coupling effect on the scattering cross section,

the fully non-relativistic limit can be taken and compared to the semi-relativistic limit

presented above. This limit is taken by taking c → ∞, meaning that all entries multiplied

by D in the semi-relativistic t-matrix go to 0 leaving no terms with l in. This gives a

t-matrix of

tNR(k′,k; ξ̃) =
∑

s

∑

lml

(−)
a

π
jl(k

′a)jl(ka)Y ml
l (k̂′)Y ∗ml

l (k̂)

×
[
1 − a

π

√
ξ̃
(
g̃ + J̃S · σ

)
(jl(ka)nl(ka) − ij2

l (ka))

]−1

×
(
g̃ + J̃S · σ

)

The resulting cross section for an azimuthal angle of π/6, a precessional angle of 0, a shell

potential strength of 3 and a spin interaction strength of 0.3 can be seen along with the

equivalent semi-relativistic one in Figure 7.13.

The non-relativistic limit gives a slightly smaller cross section than the semi-relativistic
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(a) The non-relativistic cross section.
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Figure 7.13: A comparison of the non-relativistic and the semi-relativistic cross sections

for scattering from a precessing spin.

limit showing that the spin-orbit coupling acts to increase the overall scattering cross

section, and it is therefore important to include this effect.

The cross section is a sum over the first three angular momentum values which may explain

the energy distribution seen. The two plateaus seen in the graphs reflect the location of

the resonance states seen in the phase shift plots of the individual angular momentum

values. Their location changes with g̃, and they become more defined and last for a wider

energy range as g̃ is increased. For a very large potential strength, when the resonance

states are quite large, the cross section is a smooth curve, interspersed with peaks at the

energies of the resonant (and bound) states (Figure 7.14). This signifies an increase in

scattering due to the presence of resonance states, which is seen for many other systems,

for example in the nucleon cross section [89]. It is also expected that the cross section

will decrease with increasing electron energy as the higher the energy, the less effect the

potential will have on the incoming electrons. This effect is shown clearly in all of the

graphs shown here.

The diagonalised phase shifts practically lose the typical resonance behaviour that was

seen in the diagonal s-matrix entries. The larger features on the diagonalised entries

appear at energies just higher than the resonance energies, and seem to have their origin

in the troughs that appear in the off-diagonal entries for large g̃ values. As an indicator

of the scattering that occurs as a result of a precessing spin, the diagonalised phase shifts

seem to confuse rather than clarify.
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Figure 7.14: The cross section for scattering from a precessing spin with a strong potential

(g̃ = 50)

7.6 Conclusions

The elements of the s-matrix for a precessing spin interaction display three different types

of behaviour:

Matrix element {1, 1}

For moderate values of energy and potential strengths, this element behaved as though

is was a static ‘up’ spin interacting with the z component of the precessing spin. As

the spin interaction strength was increased, the scattering amplitude through this, and

the other diagonal channel decreased. This element shows increased phase shifts with J̃ ,

the electrons being scattered by a greater amount. However as the angle of precession

increased, the scattering effect was reduced.

Matrix element {2, 2}

This element behaved like a ‘down’ spin, its low energy behaviour mimicking that of the

scattering between two opposite spins in Chapter 6. The scattering amplitude decreased

with increased J̃ , as did the phase, the phase shift becoming negligible when J̃ = g̃. It was

found that increasing the angle of precession caused higher phase shifts in this case, the

scattering effect being enhanced for spins in the opposite direction to the axis of precession.
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7. Delta Shell Scattering with a Precessing Spin

Off-Diagonal matrix elements

As was expected, the scattering amplitude for both of the off-diagonal elements increased

as the spin interaction and the angle of precession was increased. There appears to be

no conventional resonances in this scattering profile, the scattering amplitude going to

zero when the other scattering channel had a maximum effect. The potential and spin

interaction strengths appear to have no effect on the time dependence of the phase shifts,

but appear to affect the point in the impurity cycle at which phase shift jumps occur.

When both the off-diagonal elements are taken together, the time dependency cancels out

leaving no dependency on the precessional angle for an unpolarised wave.

The Total Cross Section

This quantity was calculated to mimic the experimental observable, in that all of the

different spin components were observed as one total value. In the semi-relativistic limit

there was no dependance on the precessional angle of the spin, and although separate

components showed a change with the azimuthal angle θ, the total cross section was

constant with this change. The addition of a polarisation expected to arise from the

electrons passing through a magnetic field showed only a negligible effect on the cross

section when changing θ.

The energy dependance of the cross section arose from the angular momenta that had

been summed over, and local increases in cross section were attributed to the presence of

resonant states of the target potential.

A comparison with the non-relativistic limit showed that the spin-orbit coupling arising in

the semi-relativistic limit does have a significant contribution to the overall cross section,

so it is important to include this effect in further cross section calculations.
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Chapter 8

Two Potential Scattering

The previous chapters have looked at electrons scattering from either the tip potential

alone, or the atom potential alone. Here, we consider the combined effect of the two

potentials on incoming electrons. This approach is a closer representation of the Durkan

experiment in which the current is affected by both potentials. As discussed in Chapter

7, the total cross section for scattering is a better indicator of experimentally observable

quantities than the phase shifts of the individual scattering channels, so this is calcu-

lated here using the first order approximation (the Born approximation), to the transition

matrix.

8.1 The Two Potential Construction

The combined potential of the tip and the molecule atom on the surface is given by

V (r) = −gt δ(| r | −a) − (ga + JS · σ) δ(| r − ta | −a) , (8.1)

and is shown schematically in Figure 8.1.

The molecule atom is shifted in space from the tip atom by an amount ta = (0, 0, ta),

such that ta represents the width of the gap between the STM tip and the surface, and

the condition ta > a holds as it does experimentally.

The potential is moved into the momentum space representation by taking the Fourier

Transform over the spatial coordinate r. To incorporate the spin-orbit coupling of the
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8. Two Potential Scattering

Figure 8.1: The combined potential shells. The potential representing the deposited

molecule is ta away from the center of the tip potential. The radius of both potentials is

given by a. The blue lines show a typical electron route.

incoming electrons the equation is formulated relativistically and the semi-relativistic limit

is taken. The molecule potential is written in terms of | r − ta | rather than r however,

so must be converted by first writing R =| r − ta |, extracting the part constant with R,

then replacing R with r to obtain the same basis as that of the tip potential;

V (k′;k)molecule ∝
∫

δ(| r − ta | −a) exp [i(k′ − k) · r] d3r

∝
∫

δ(R − a) exp [i(k′ − k) · (R + ta)] d3R

∝ exp [i(k′ − k) · ta]

∫
δ(R − a) exp [i(k′ − k) · R] d3R

∝ exp [i(k′ − k) · ta]

∫
δ(r − a) exp [i(k′ − k) · r] d3r . (8.2)

The complete potential can then be written as

V (k′;k) =
1

(2π)3
(−gt − (ga + JS · σ) exp [i(k′ − k) · ta])

∫
δ(r − a) exp [i(k′ − k) · r] d3r

(8.3)

The relativistic expansion of a plane wave (first reproduced in Chapter 5) is applied to
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both exponential functions in the potential. The molecule potential is consequentially

multiplied by

(−)
2

π

W + mc2

2W

∑

s′′

∑

κµ

∑

κ′µ′

Y ∗µ
′−s′′

l′ (k̂′)Y µ−s′′

l (k̂)C(l 1
2j;µ − s′′, s′′)C(l′ 12j′;µ′ − s′′, s′′)

× il
′−l


 jl′(k

′ta)χ
µ′

κ′(t̂a)

iD′jl′(k
′ta)χ

µ′

−κ′(t̂a)



(

jl(kta)χ
†µ
κ (t̂a) −iDjl(kta)χ

†µ
−κ(t̂a)

)
.(8.4)

This expansion has separate κ, µ and s dependence from the expansion inside the d3r

integral. The Spin Angular functions are expanded out over s and s′, and the argument

of the Spin Angular functions t̂a equates to (θ, φ) = (0, 0) from our choice of direction for

ta. This results in the whole expression going to 0 except when µ − s or µ′ − s′ = 0. In

the semi-relativistic limit (W + mc2)/2W → 1 and DD′ → 0 simplifying the expression

further.

Within the integral the d3r integral is carried out and in the semi-relativistic limit gives

∑

s

∑

κµ

(4πa)2


 jl(ka)jl(k

′a)χµ
κ(k̂′)χ†µκ (k̂) −iDjl(ka)jl(k

′a)χµ
κ(k̂′)χ†µ−κ(k̂)

iD′jl(ka)jl(k
′a)χµ

−κ(k̂′)χ†µκ (k̂) 0


 .

(8.5)

These two expressions are combined with the shell and spin potentials, and the first three

angular momentum values are summed over. The scattering cross section is found as in

Chapter 7, only here, the t-matrix is calculated to the Born approximation (t(k′;k) =

V (k′;k)) only. The cross section is then given by

σ =
m2L6

4π2~4

∫
| V (k′,k) |2 dΩ . (8.6)

This approach was taken as the potential is more complex than in previous chapters.

8.2 Results

The cross section for scattering through a bare shell and a shell with a spin behaves

similarly to that of the cross section through a single shell with a spin. There is no change

in the total cross section when the azimuthal angle of the precessing spin is changed, but
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8. Two Potential Scattering

as before, if the cross section is decomposed into its separate entries it is seen that this is

because one entry increases with increasing angle, and the other entry decreases by the

same amount.
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(a) The atom potential g̃a is increased for a con-

stant g̃t = 3 and J̃ = 0.3.
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creased. ta/a is the ratio of the potential sep-

aration to the shell radius.

Figure 8.2: Changes in the total scattering cross section as the parameters governing the

location and the strength of the two potentials are changed.

The cross section appears constant with precessing angle φ, and here neither decomposed

entry changes with increasing angle. Increasing g̃t or J̃ increased the cross section slightly

in the same manner as when considering the spin alone, however oscillations are observed

(see Figure 8.2(a)) when g̃a is increased. These oscillations arise from interference between

the two potentials, and decrease as the distance between the potential (given by the ratio

ta/a) increases (Figure 8.2(b)).

The general shape of the cross section for both shells is compared to that of one shell

only in Figure 8.3. The overall size of the cross sections differ which will be due to two

potentials being present to scatter from. A difference is also expected due to the two-shell

cross section being calculated to first order only; the Born approximation tends to over

estimate the cross section [90].

Figure 8.3 shows the lack of variance with the azimuthal angle for both cases, and both

graphs reduce to negligible cross section just before ξ̃ = 30. The plateaus seen in the

previous chapters can be discerned at approximately ξ̃ = 15 in both graphs, and the one

seen near ξ̃ = 6 on the single-shell cross section is at the same location as an interference

plateau on the two-shell cross section.
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(a) The full t-matrix calculation of the molecule

potential alone.
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(b) The Born approximation of the molecule and

the tip potential.

Figure 8.3: A comparison of the cross section for the molecule alone, and the molecule

with the tip. There is seen to be no dependence on θ for both cases.

8.3 Discussion and Conclusions

As seen by the much larger two-shell cross section, the precessing spin affects the overall

cross section in a much smaller way than the bare shell representing the tip potential. It

is however, unclear how much of this difference is due to the two-shell cross section being

calculated to first order only. For that reason, it is wise to only draw conclusions about

the change in shape caused by the inclusion of the second potential.

Concentrating on the shape of the energy spectrum, we have found that an extra scattering

centre and the location of this impurity affects the energy signature by increasing the

cross section at particular energies in a typical interference pattern. This is in contrast

to findings by Granot in Ref. [28]. There, the transmission through a 2D wire was found

to not be affected by an impurity inside that wire, and for weak scattering, the scattering

pattern near the threshold energy was not even dependant on the location of the impurity.

The oscillations in the cross section (due to cross terms from having two potentials), are

increased by bringing the potentials closer together, or by increasing the strength of the

potentials. It is suggested therefore, that to estimate the effect of the second potential

and to also allow for the Born approximation used in this chapter, that it is sufficient to

compare the graphs obtained above to the graph obtained when g̃a is set to 0.

An example of this is seen in Figure 8.2(a), where it is clear that the cross terms contribute

significantly to the energy spectrum and that their effect decreases at higher energies.
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8. Two Potential Scattering

When trying to observe this effect, it must be noted that at particular energies no changes

occur with the introduction of a second potential, and observing at more than one energy

is recommended.

This model then appears to show that for the simple potentials used here, the presence of

the second potential is probably more important than the nature of the second potential.

It is important to consider if this calculation of the cross section for scattering through

both potentials offers an explanation of why the current or conductance through both

potentials was found to oscillate in the Durkan experiment. When a voltage is applied

across a system, the cross section at the Fermi energy is directly proportional to the

conductance through that system. It can be assumed then, that any variation in the

conductance will be seen in the cross section, and for this model, the cross section is

sufficient to describe movement of electrons under the influence of the two potentials.

It has already been described above that there is no variation in the cross section with the

parameters of the precessing spin. This, combined with the fact that we have presented

only a very basic model of a tip potential, suggests that no variation will be seen in the

conductance either. We can conclude from this that this model has been insufficient to

describe the outcome of the Durkan experiment.
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Chapter 9

Conclusions

This thesis was motivated by the detection of the precessional nature of a local electron

spin in a steady magnetic field inside a tunnel junction.

There were two questions posed in Chapter 2 which we set out to address:

1. If the local spin is precessing, under what mechanism is it doing so (knowing that it

is expected to be pointing in the equilibrium magnetisation direction)?

2. Assuming the local spin is precessing, how does this motion project itself into the

tunnelling current spectrum?

In Chapter 3 we examined whether electrons travelling through a tunnel junction could

be affected by the presence of the local magnetic field. Specifically, could they become

polarised in the time it took to cross the tunnel junction? This was shown to be the case

using a technique of matching waves at the edges of the tunnel junction, assuming the

electrons approached the junction as a plain wave. The resulting polarisation when using

the parameters used in the Durkan experiment [29], was a spin polarisation of 1 in 50,000.

However, this polarisation is steady in time so doesn’t offer an explanation for why the

local spin should be precessing. This model also doesn’t include the local spin inside the

tunnel junction.

In Ref. [40], Drakova says

A major problem of the perturbation approaches to STM is the neglect of tip-

sample interaction and scattering of the injected electron by the localized tip
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9. Conclusions

potential and the potential in the sample or in the tip, depending upon the

polarity chosen for electron injection.

In Chapters 4-7 we attempt to address this problem with the study of a Delta Shell

potential in a scattering framework. By operating in momentum space, with such a

simple potential, there is no need to match wavefunctions at potential boundaries, and

the problem proves to be exactly solvable.

We follow on from work by Villarroel in Ref. [75], and extend the study from bound

states to scattering states. We achieve the same phase shifts as Gottfried in Ref. [68], who

used wave-matching techniques in coordinate space. We also obtain analytic expressions

determining the energies of resonance and bound states for an electron of a general angular

momentum value.

In Chapter 5 we used the Delta Shell potential in a semi-relativistic framework to include

the spin of the incoming electrons. A semi-relativistic limit was considered sufficient as

the energies we were interested in were low, but the spin-orbit coupling is retained in this

regime. The phase shifts were macroscopically the same as the non-relativistic ones, and

a splitting in the energy between spin-orbit split states was found of ∼ 10× 10−4 eV. This

size, along with the size difference between the s- and p-wave bound states, reproduces

the spin levels observed in the Hydrogen atom.

In Chapters 6 and 7 the Delta Shell potential was modified by the addition of a local spin

interaction to model the interaction between the electron spin and the local spin on the

molecule deposited in the tunnel junction.

We found that there were three scattering scenarios. The electron spin could be in the

same direction as the local spin, the electron spin could point in the opposite direction

to the local spin, or the electron spin could be opposite to the local spin and a spin flip

could occur during the scattering process. The first two scenarios changed the phase

shift profiles such that the total potential was found to be dependent on either the sum

(for same spins) or the difference (for opposite spins) of the shell potential, and the spin

interaction strength J̃ .

The spin-flip scattering was found to completely change the phase shift behaviour, in

such a way that they could no longer be interpreted in terms of resonances, scattering
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and bound states. This area of interest invites further study, as we were unable to fully

characterise the behaviour as a function of energy.

So far, no time-dependent artefacts have arisen from our examination of the scattering

states so we conclude that we have been unable to show why the local spin is precessng.

Chapter 7 introduces a time-dependent spin such that we can address the second question

posed; that of how a precessing spin manifests itself in a tunnelling current passing through

that spin. The precessing spin dependance was located in the off-diagonal elements of the s-

matrix such that when they were considered together (constituting an unpolarised electron

wave), no spin dependance was noticed. A completely spin-polarised electron wave did

show a repetition in the phase shifts at a frequency equal to the Larmor frequency of the

precessing spin, however this situation was not expected of the experiment we were trying

to model.

It was decided to calculate the total cross section for scattering through all of the available

spin channels (same spins or opposite, with or without a spin flip). This was postulated to

be a more accurate representation of what could be detected experimentally. The first three

angular momentum states were summed over, and the scattering cross section was found

to be constant with both the precessional angle, and the azimuthal angle. It was expected

that the precessional angle should not affect the total cross section, as the model was set

up to be symmetric around the direction of precession (as is the case experimentally). The

lack of dependence on the azimuthal angle was found to occur because for one orientation

of spin, an increased angle increased the cross section, and for the other orientation it

decreased the cross section. These two effects canceled out, leaving no dependence on the

angle.

If the current was slightly spin polarised, to the size found in Chapter 3, there was found

to be no discernable change in the cross section, a difference of only 1× 10−9 being found

when increasing the azimuthal angle.

It was also found in this chapter that the cross section was affected significantly by the

inclusion of spin-orbit coupling, and that it was therefore necessary to include this effect

when studying the scattering cross section.

In Chapter 8 the potentials of the STM tip and the local electron spin were summed

together, and the cross section for scattering through both potentials was found using a
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first order approximation to the t-matrix. This was done to determine the effect of the

second potential on the cross section, and it was found that the main effect was due to the

cross terms which arose from between the two potentials. These resulted in local increases

in cross section across the energy spectrum, and emphasised the importance of including

all potentials in the calculation.

To take this calculation further it would be necessary to calculate the full t-matrix for the

two combined potentials. However the lack of appreciable spin dependance in both the

azimuthal and the precessional spin angle when the spin is treated on its own, suggests

that this is unlikely to result in any further clarification of the problem. Interference

between the two potentials does affect the likelihood of scattering, but as there is very

little angular dependance, this would be fixed in time, again leading to no dynamic change

in the measured quantities.

We can therefore conclude that for an unpolarised current, this model, which includes spin

orbit coupling, is insufficient to describe the Durkan experiment. If a polarised current

was present, this model hints at why an oscillating current may be seen after tunnelling

into a precessing spin, but further exploration is required to examine the parameters that

determine the size of this effect.

Although this approach has not answered the question of why a single precessing spin

should affect the temporal characteristics of an electron current passing through it, it has

explored the bound states and scattering states of a Delta Shell model. It has examined to

some degree the effect of a static and precessing local spin on these states, and has started

an analytic investigation into the importance of interference between multiple potentials.
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Appendix A

Quantum Mechanical Resonance

To describe what happens in the resonant condition, we switch to a quantum mechanical

description of a precessing spin. The spinor notation for a spin S = 1/2 is given by

Sz | α〉 = +1/2 | α〉 S2 | α〉 = 1/2(1/2 + 1) | α〉

Sz | β〉 = −1/2 | β〉 S2 | β〉 = 1/2(1/2 + 1) | β〉

where | α〉 describes the spin up state and | β〉 describes the spin down state. The x and

y spin operators act on the eigenfunctions of Sz as below

Sx | α〉 = +1/2 | β〉 Sx | β〉 = +1/2 | α〉

Sy | α〉 = +i/2 | β〉 Sy | β〉 = −i/2 | α〉 .

When an oscillating field B1 is applied perpendicular to a steady magnetic field B0, the

spins in the system experience a magnetic field given by the vector sum of the two fields.

B = B1

[
î cos(ω1t) + ĵ sin(ω1t)

]
+ B0 k̂ (A.1)

The time-dependent Schrödinger equation is given by

i~
δ Ψ(t)

δt
= HΨ(t) , (A.2)
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Appendix A. Quantum Mechanical Resonance

where H, the energy, is given by

H = geµBS · B (A.3)

for an electron in a magnetic field.

An electron with ge = 2 will therefore be described by

H = 2µBB1 [Sx cos(ω1t) + Sy sin(ω1t)] + 2µBB0Sz . (A.4)

For a steady magnetic field only, we know there are two energy levels of the system;

Eα = µBB0 and Eβ = −µBB0. The addition of B1 means that transitions can take place

between them and we can write the solution to Equation A.2 with our particular H, as a

sum of the two eigenfunctions associated with these levels;

Ψ = C ′α | α 〉 + C ′β | β 〉 (A.5)

The wavefunctions must be separable into time and space components, and the final

solution is proposed to be a linear combination of the two wavefunctions

Ψ = CαΨα + CβΨβ (A.6)

with

Ψα =| α 〉 exp (−i/~Eαt) and Ψβ =| β 〉 exp (−i/~Eβt)

Differentiating Equation A.2 with these entries gives

H(CαΨα + CβΨβ) =
i

~

(
Cα

d

dt
Ψα + Cβ

d

dt
Ψβ +

d

dt
(Cα)Ψα +

d

dt
(Cβ)Ψβ

)

= H0(CαΨα + CβΨβ) + H′(CαΨα + CβΨβ) . (A.7)

The steady state solution of H0 = 2µBB0Sz is already known. We can manipulate the

second term on the right hand side (the pertubed term), to get two coupled differential

equations:

dCα

dt
=

Cβ

i~
µBB1 exp (−iω1t) exp (−i/~(Eβ − Eα)t)

dCβ

dt
=

Cα

i~
µBB1 exp (iω1t) exp (−i/~(Eα − Eβ)t) (A.8)
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Appendix A. Quantum Mechanical Resonance

B1 is defined to be much smaller than B0, so we can use perturbation theory to solve these

equations. At t = 0, the system is in the lowest energy state and is described by Ψβ (spin

down), so Cβ = 1. We integrate (A.8) over t, using the fact that Eβ − Eα = −2µBB0.

Cα =
µBB1

i~

exp

(
i

(
2µBB0

~
− ω1

)
t

)
− 1

(
2iµBB0

~
− iω1

) (A.9)

The probability of finding the system in the state α (spin up) at time t is given by C∗αCα;

C∗αCα =
4µ2

BB2
1

~2

sin2

(
1

2
(2µBB0t/~ − ω1t)

)

(2µBB0t/~ − ω1t)
2 (A.10)
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Appendix B

Atomic Units

When evaluating the polarisation of an electron wave as it moves through a magnetic field,

we moved into Atomic Units. We use Hartree Atomic Units which are very closely linked

to Atomic Rydberg Units. In Atomic Hartree Units, constants are redefined such that

e2

4πǫ0
= ~ = m = 1 (B.1)

The speed of light is calculated from the fine structure constant, which retains its value

of 1/137.

α =
e2

4πǫ0~c
≈ 1

137
→ c ≈ 137 (B.2)

The Hartree energy unit is twice that of the Rydberg unit

Eht =
~

2

mea2
0

, (B.3)

with a0 being the Bohr Radius given by

h2

4π2me2
. (B.4)

The Bohr radius and the Hartree have the numerical values

1Bohr = 0.529 Å ; 1ht = 27.21eV (B.5)
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[74] Dittrich, J., Exner, P., and Šeba, P. J. Maths. Phys. 33(6), 2207 (1992).

[75] Villarroel, D. Eur. J. Phys. 19, 85 (1998).
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