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Abstract

Optical vortices form three-dimensional lines of darkness in scalar light. They
are places where the phase becomes undefined and hence singular in value. We
study the ability of optical vortices to form knots and links of darkness in scalar
optical fields.

We describe a construction to create complex scalar fields that contain a fi-
bred knot or link as its zero set. This procedure starts by constructing braids
with strands that follow a lemniscate trajectory as they increase in height. These
braids are closed using Milnor maps to form a function with a knotted or linked
zero set. This braid contains a minimal amount of information rather than the
minimum number of crossings, taking advantage of symmetries in the construc-
tion. The knots and links we construct exhibit patterns in their Alexander and
Jones polynomial coefficients, as well as in their Conway notation as parameters
in the construction are varied. We use these patterns to propose a tabulation of
the knots and links we can construct.

The knots and links we can construct are examined as solutions of the parax-
ial equation using polynomial solutions. We show that a wide range of vortex
topologies are possible and report an experimental implementation of the tech-
nique. We also consider the Helmholtz and Schrödinger equations and attempt
to construct solutions to these equations with knotted phase singularities.

We conclude with a geometric approach to optical vortex control. This is
used to study the initial value problem of paraxial propagation and attempts to
construct a function that describes the optical vortex paths on propagation.
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Introduction 1
Light is all around us, but so is the darkness. Threads of darkness run through
light arising from destructive interference. These lines are the optical vortices. A
remarkable feature of these dark lines is their ability to form complex topologies,
linking together and becoming knotted. This thesis is the study of this dark
topology.

1.1 Phase Singularities

What is the time at the North Pole? Here, all the lines of longitude converge
to a point1 and the usual notion of the twenty-four time zones does not hold.
Local time defined this way is not uniquely defined here and we show this in
figure 1.1. Practically the problem is : what day is it when travelling east to
west? Local noon is when the Sun reaches its highest angle in the sky, but at
the poles, the Sun’s angle does not change during the day, hence this angle is
undefinable. Elsewhere on the Earth (except the South Pole) this angle varies,
cyclically around the pole. This cyclic variable, time modulo one day, has a
singularity at the Earth’s poles.

Generically, phase singularities arise when any cyclic variable cannot be de-
fined at a point (two dimensions) or along a line (three dimensions). Simple
functions exhibit this singular behaviour : the argument of (x + iy) is undefined
at the origin. In a general complex scalar field, which we shall use to describe
optical fields, phase singularities occur as zeroes (nodes) of the absolute value.
The derivation of this representation for light is covered in section 1.5.

Physical systems containing phase singularities have been studied since the
1800s. Here we give a brief overview of the historical context, however a full

1We assume an ‘ideal’ spherical Earth and neglect the political factors in defining the time
zones.

1



2 INTRODUCTION

Figure 1.1: The lines of longitude radiating from the north pole. Here, the time
of the day is undefined.

account can be found in the review by Dennis et al [DOP09]. The first such sys-
tem discovered appears to be the existence of amphidromic points in the North
Sea [Ber00]. The height of the tide has a cyclic variable : the periodic arrival time
of the high tide. Whewell [Whe36] collated observations of the high tide time
from many points on the coast, on both the British and continental coasts, as well
as data from many other places around the world. Opposite coasts of the North
Sea have the high tide arrive at very different times. These phenomena are in
fact observed all around the world. Upon joining co-tidal lines (lines where the
high tide arrive at the same time) they meet at two points in the North Sea. These
are called amphidromies and there is no tidal movement at these points.

Paul Dirac in the 1930s as part of his formulation of quantum mechanics has
phase singularities in the scalar quantum wavefunction of the electron [Dir31].
This work considered open ended, finite lines, the ends of which terminated
by magnetic monopoles, a situation not possible in optics and not necessarily
possible in quantum mechanics. The nodal lines in an optical field do not finitely
end, ensuring continuity of the field.

In the field of optical physics, Wolter in 1949 [Wol50] (with English transla-
tion [Wol09]) was seemingly the first to emphasise that phase singularities occur
in light. Optical vortices were found to occur in the Goos-Hänchen shift of light.
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This is an effect of reflection of a finite width light beam from a dielectric mate-
rial. An example of this is total internal reflection in glass at an interface with
air. The centre of the reflected beam is spatially shifted from the centre of the
incident beam. This example is well illustrated in [DOP09, fig. 3].

Continuing with optics, the 1950s saw Braunbek and Laukien [BL52] giving
an illustration of phase singularities occurring in the diffraction of a plane wave
from an infinite half-plane. Phase singularities arise on the illuminated side
of the diffracting plane. This is again illustrated well in [DOP09, fig. 4] and
in [BW59, fig. 11.14].

The work of Nye and Berry in 1974 [NB74] is the first work to realise the
generality of phase singularities in three-dimensional wave fields. They were
studying ultrasound pulse reflections in the lab to understand radio echos from
the ice sheets in Antarctica. They compare the phase singularity lines observed
to the dislocations found in crystals [Rea53], which we now explain.

Consider the parallel layers of atoms/molecules in a crystal. In between two
layers, an additional layer can be introduced displacing the layers either side
of this. This is an edge dislocation. A screw dislocation arises from a deforma-
tion of a layer (wavefront) around a point. For a crystal atomic layer, as you
traverse round this point, after making a complete circuit you arrive on a dif-
ferent layer up or down. This displaces the layers either side and hence causes
them to break and have a step in them, manifesting itself as helical wavefronts
in waves. The type of dislocation can be associated with a Burgers vector. This
is a vector showing the direction that is additionally needed to complete a three-
dimensional circuit around the dislocation. With no dislocation present, there is
a path within the layer (wavefront) that can be completed. With a dislocation
present, the path cannot be closed and remain in the same layer so an additional
direction and length is required to describe this circuit [Rea53]. This direction is
the Burgers vector. The Burgers vector is perpendicular to the dislocation line
when the dislocation is an edge dislocation. A screw dislocation has a Burgers
vector in a parallel direction to the dislocation line. Example of functions with
an edge and a screw type wave dislocation [NB74], are

ψedge = (x + iy)eiy, ψscrew = (x + iy)eiz, (1.1)

respectively, where (x, y, z) ∈ R3, which are illustrated in figure 1.2. In general,
optical phase singularities are of mixed edge-screw type. The Burgers vector of
such a dislocation lies in between the two cases of screw and edge. An optical
Burgers vector that can be defined on the singularity is found by Dennis [Den09].

Despite several observations of optical phase singularities, the term optical
vortex appears not to have been used until 1989. Coullet et al [CGR89] use the
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(a)

(b)

Figure 1.2: The (a) screw dislocation and (b) edge dislocation given in equa-
tion (1.1). The coloured discs are in the (x, y)-plane and the black cylinders rep-
resent the zero (vortex) line. The silver and gold surfaces represent the Re ψ =
and Im ψ = 0 surfaces respectively. The coloured disks represent the phase,
arg ψ, in their respective planes and are coloured using our stand key defined in
figure 1.3.
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term optical vortex to explain their observations in certain laser experiments.
Optical vortices now find themselves used in a variety of applications. The

imaging technique of Westphal and Hell [WH05] uses a laser beam containing
an optical vortex to super-resolve an object that has been dyed with a fluorescent
dye. This technique allows for the object to be imaged with a resolution beyond
the classical diffraction limit. Contrasting to microscopy, optical vortices have
been applied to telescopy. A coronagraph with a vortex inducing lens instead of
a conventional light stop has been developed by Foo et al [FPS05] and has been
implemented [SFAM+08].

1.2 Optical Vortex Taxonomy

We represent light by a complex scalar field, ψ. These ψ will be required to
satisfy certain partial differential equations which we introduce later, but the
features we now describe are general. Let ψ be a smooth function R3, R2 → C

with domain depending on the physical situation. We are interested in the loci
of the zeroes of such a function

{r ∈ R2, R3 : ψ(r) = 0}. (1.2)

These occur when the real and imaginary parts are simultaneously zero and we
can write

ψ(r) = ξ(r) + iη(r) = ρ(r)eiχ(r), (1.3)

where ψ can also be expressed in terms of a polar co-ordinate function with
modulus ρ and argument χ. χ is single-valued modulo 2π and becomes unde-
finable when ψ = 0. With χ representing the phase of a wave (we will freely
interchange the terms phase and argument), its singularities, occurring at nodes
of the magnitude, are where we are interested in the function ψ. This can be
observed when the intensity, I = ρ2, is zero.

In general we are interested in nodal lines in three dimensions; the codi-
mension two objects. These arise along the intersection of the ξ = 0 and η = 0
surfaces. On such lines, the argument χ is undefined, making them phase singu-
larities, like at the origin of ψ = x + iy. When ψ is a two-dimensional function,
the zeroes occur as points at the intersection of the lines corresponding to ξ = 0
and η = 0. These points/lines where ψ = 0 are the features we are interested in
this thesis.

For ψ, a three-dimensional function, there is another type of phase singu-
larity that occurs naturally in optics, a surface where the argument is unde-
fined. Motivated from optics, these arise in the simple superposition of two
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Figure 1.3: The argument of a function containing two phase singularities in the
plane. The left point is negatively charged and the right positively. Both are of
unit topological charge, s = ±1. At the singularities, the colour of the plot is
undefined. We use the same key for all argument / phase plots in this thesis.

plane waves, waves whose wavefronts are infinite planes parallel to each other
and perpendicular to k,

ψ= exp(ik1 · r) + exp(ik2 · r), (1.4)

where k1 6= k2. The phase of the function differs by π either side of such a
surface. Such a singularity has been described incorrectly as an edge disloca-
tion [SV01] which has led to some confusion in the literature. Such features also
occur in Hermite-gaussian laser modes, section 1.6; however, we concentrate on
the codimension two structures, the lines.

We now compare the two- and three-dimensional interpretations of optical
vortex lines. In two dimensions, we can assign a topological charge to a phase
singularity. This is an integer computed as the line integral

s =
1

2π

∮
C

dχ, (1.5)

where C is a closed non-selfintersecting loop enclosing one nodal point in a
right-handed sense. The integer s is positive if the phase increases in an anti-
clockwise sense around C and negative otherwise. We call s the strength (or
topological charge) of the singularity and it is the number of times the phase
changes by 2π around C.
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An example of positive and negative singularities is shown in figure 1.3; in
this figure we introduce our colour scheme for plots of the phase of a function.
We use the continuous colour wheel, where magenta smoothly returns to red,
to represent the phase values modulo 2π. At a phase singularity, all the colours
come together to manifest in a point of undefined colour. This allows their loca-
tion and local properties of the phase to be easily seen [Win87].

Optical vortices form lines in three dimensions, space curves. These lines are
vortices of the optical current, defined as [Jac62], notation as in [DOP09],

j = Im ψ∗∇ψ = ξ∇η − η∇ξ = I∇χ. (1.6)

The current vector points in the direction ∇χ, the direction of phase change,
hence the vortex is located where this cannot be defined.

This current defines a vorticity,Ω, around the vortex line,

Ω|ψ=0 =
1
2
∇× j =

1
2
∇ψ∗ × ψ = ∇ξ ×∇η. (1.7)

The vorticity vector points in the direction of the vortex lines by giving the di-
rection the current circulates in a right hand sense [BD00]. Hence this gives the
tangent direction to the optical vortex line as

t =
Ω

Ω
. (1.8)

The vortex line tangent does not have to have a component parallel to a
given propagation direction. This means the vortex line can have regions with
the vorticity in opposite directions. A hairpin shape is formed whereΩ changes
sign, illustrated in figure 1.4.

At a turning point, like a hairpin, the two-dimensional view shows this as
an elongated zero. This can be described in terms of the local phase structure
around a vortex. Around a vortex line in three dimensions, a Taylor expansion
of the wave function shows that current circulates around the vortex in a circu-
lar path [BD00]. The intensity and phase of the wavefunction is in general more
complicated. Local to an optical vortex, the two-dimensional contours of con-
stant intensity are elliptical [SS96, MTWT01, BD00]. The way the phase changes
around these ellipses is such that for equal sector areas swept out there is equal
phase change [Den01]. When the intensity contours are circular, the vortex is
called isotropic (canonical) [MTWT01], with their elliptical counterparts being
anisotropic (noncanonical). The eccentricity of these ellipses is a measure of the
anisotropy of the vortex, called the anisotropy ellipses. Examples of both types of
vortex are shown in figure 1.5

When the anisotropy ellipse is completely linear, the minor axis has zero
length, the tangent of the three-dimensional line lies in the plane being observed.
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Figure 1.4: A plane containing two oppositely charged vortices. The red curve
shows the propagation of the vortices in three dimensions. If this vortex pair
were to be viewed in a sequence of two-dimensional planes, they would annihi-
late each other at the top of the curve in three dimensions.

An example of such an event is in the transverse plane containing the end of
a hairpin. An isotropic vortex has local form ψ(r) ≈ (x ± iy), depending on
the sign of the topological charge it possesses. An anisotropic vortex locally is
ψ(r) ≈ a(x + iy) + b(x− iy) where a, b ∈ R, [DOP09].

To conclude this section, we return to the vortex hairpin and consider its in-
terpretation in three dimensions comparing it to the two-dimensional picture. In
two dimensions, as z varies as a parameter, two vortices of opposite topological
charge come together and annihilate each other. Further increasing z shows that
there are no zeroes a small distance after this annihilation point. This manifests
as a single highly anisotropic vortex at this point. What is happening is that the
vortex line has its three-dimensional tangent direction lying in the (x, y)-plane.
The vortex line has changed direction, preserving its topological current.

1.3 A Short Introduction to Knots

Knots arise in many areas of modern physics and science in general. The study
of knots in physics goes back to at least the “vortex atom” hypothesis of Lord
Kelvin [Tho67]. Section 1.7 reviews the history of knotted optical vortices and
other knotted optical fields. We briefly review in this section the terminology
and concepts of knot theory. Chapter 2 introduces knot theory formally and
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(a) (b)

(c) (d)

Figure 1.5: Phase (a), and intensity (c) of an isotropic vortex with contours of
constant intensity shown to be circular; (b), (d) The corresponding images for
an anisotropic vortex showing an elliptical contour of constant intensity and the
long elongated dark section in the intensity plot. The intensity plots have scale
as in the key and the phase plots use our common phase scale.
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provides a more in depth review.
A knot is a closed non-selfintersecting curve in three dimensions which is

homeomorphic to the circle S1 [Rol76]. To distinguish different knot types, we
must consider space minus the knotted curve K, R3 \ K. This definition is for-
mally introduced in section 2.1 and some of the later definitions will require
space to be the 3-sphere, S3.

The fact that all knots are topologically equivalent to the circle means that
techniques to distinguish knots often require the whole space to be considered
in the calculation. Two curves are topologically the same knot if there exists
an ambient isotopy between them. An ambient isotopy is a deformation of the
whole space and preserves the topological properties of the knot. It is the actual
curves we aim to create in optical fields as the optical vortex structure in R3.

The simplest method to distinguish between different knot-types is to create
a two-dimensional projection. In this projection, information from the three-
dimensional curve is kept at the projection’s self-intersections to show which
part of the curve is higher in the projection direction. This defines an over-
arc and an under-arc of the curve at these points and gives crossing points in
the projection. When the knot curve is given an orientation, this information
defines the topological sign of the crossing (see figure 2.4). The self-intersections
are such that only two points of the curve cross at a point. If more than two
sections intersect at a crossing, the curve can be deformed by ambient isotopy
(see section 2.1) to simplify.

The number of crossings in a given projection is a measure of the complex-
ity of the knot. After performing allowed deformations, Reidemeister moves
(shown later in figure 2.2), a minimum number of crossings can be calculated
without destroying the topology of the knot. This number has been used histor-
ically to tabulate knots ; a history of which is in section 2.1 and this forms the
basis of the standard Rolfsen table [Rol76]. We propose an alternative tabulation
of a certain subset of knots as part of our knot construction in chapter 4.

The minimum crossing number turns out not to be a good way to distinguish
knots. Although for knots with low minimum crossing numbers, there are only
a few distinct knots with the same minimum crossing number, as this number
increases the number of knot types increases (table 2.1). There are more complex
knot invariants available, notably knot polynomials. A knot polynomial does
not describe the curve, but encodes information about the whole space which
the curve is embedded within. The Alexander polynomial [Ale28] was the first
such polynomial to be discovered historically and is our polynomial of choice
due to its simplicity to calculate and its connection to physics. Its simplicity does
mean that it does not differentiate between all knots; different knots can have the



1.4 EXPERIMENTALLY CREATING OPTICAL VORTICES 11

same Alexander polynomial. The Jones polynomial [Jon85] distinguishes more
knots, yet it is not perfect, and we make use of this invariant in chapter 4. A
goal of knot theory is to provide invariants that can completely determine a
knot, for example the HOMFLY-PT polynomial, [FYH+85, PT87] and Vassilev
invariants [Vas90] attempt to address this problem but are still not perfect.

Associated to a knot are a set of two-dimensional manifolds called the Seifert
surfaces. These are oriented non-selfintersecting 2-manifolds that have the knot
as their boundary. Many different orientated 2-manifolds are potentially Seifert
surfaces for a given knot. It is the surfaces of minimal possible genus that are
those considered to be the Seifert surfaces (section 2.5). These surfaces are im-
portant to our optical vortex knot work because they define what class of knot
we can construct in an isolated fashion. An optical vortex has surfaces of con-
stant phase corresponding to all values of phase intersecting on the vortex curve
and these surfaces do not intersect at any other point in the field. Fibred knots
(section 2.5) have Seifert surfaces that do not intersect away from the knotted
curve [Rol76]. The class of fibered knots have this property with their Seifert
surfaces - not intersecting other surfaces in the equivalence class except at their
common boundary, the knot. The Alexander polynomial of a fibered knot is
monic, i.e. the first and last coefficients are equal to one. The ability to detect
fibred knots is an important aspect of our work.

We conclude this section by briefly introducing braids which we formally
introduced in section 2.3. Braids can be considered as a set of open curves con-
necting opposite points on two parallel planes. Closing a braid, by associating
the start and end planes, forms a knot (or link, a set of knotted curves) [Ale23].
A braid is like a panorama picture of a knot. Chapter 4 details a construction of
complex scalar functions with braided nodal lines. We use such functions in our
construction of functions with knotted and linked nodal sets. It is these func-
tions with knotted nodal sets we use to construct functions that satisfy physical
differential equations such as the paraxial equation, chapters 3 and 5, and the
Helmholtz and Schrödinger equation, chapter 5.

1.4 Experimentally Creating Optical Vortices

Optical vortices can be readily induced into a light beam using holography.
Their positions are where the intensity of the beam is zero. We briefly cover
here the scheme to create a desired optical vortex structure in a beam, experi-
mentally, by holographic techniques. This is the method used in [DKJ+10] to
give the results reported in chapter 3. Further details of such an experimental
approach can be found in Leach et al [LDCP05] and O’Holleran [O’H08].
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A hologram does not have the prescribed optical vortex structure in the
diffracted beam propagating from its surface. The hologram contains the ini-
tial conditions for a beam to propagate. The work of Leach et al [LDCP05] and
O’Holleran [O’H08] show the experimental schemes used to create and view
optical vortex knots. The beam can be scanned through with a camera to lo-
cate the vortices in the beam [OFDP09]. This gives a series of two-dimensional
planes containing optical vortex points which can be used to reconstruct the full
three-dimensional curves.

In chapter 3 we construct simple mathematical expressions with knotted
nodal sets. These have non-trivial phase information to imprint in the beam.
These functions underwent an optimisation algorithm, [DKJ+10], to create the
hologram pattern that increases the contrast between the vortices in the beam.
By their nature, the optical vortices are contained in the dark regions of the beam
and this can provide difficulties when trying to precisely locate them. If some
brighter regions can be introduced, without effecting the overall topology of the
vortices, then the location of the vortices can be determined more accurately.

1.5 The Paraxial Equation

The Helmholtz and paraxial equations are scalar equations related to the vector
Maxwell’s equations. It is these equations, particularly the paraxial equation,
that we work with in chapters 3 and 5. In this section we give a derivation of the
scalar Helmholtz equation and apply the paraxial approximation to arrive at the
main equation for our work, the paraxial equation.

Maxwell’s equations are a set of four coupled partial differential equations
that describe the time-dependence of both the electric and magnetic fields of an
electromagnetic wave. These equations are, in free space [BW59, Jac62]:

∇ ·B = 0, (1.9a)

∇×E + Ḃ = 0, (1.9b)

∇ ·D = 0, (1.9c)

∇×H − Ḋ = 0, (1.9d)

where the vectorsE (electric field),B (magnetic induction),D (electric displace-
ment field) and H (magnetic field) are three-dimensional real vector fields and
•̇ are derivatives taken with respect to time t. These equations have an integral
form which we do not considered here.

Although complete, when working with specific types of optical field, it is
convenient to work with a reduced form or approximation to Maxwell’s equa-
tions. Our interest is in light that takes the form of a coherent beam, like the
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monochromatic light emitted from a laser. We now look at the assumptions re-
quired when wanting an equation to describe such a beam, which is strongly
directional, and derive this equation, the paraxial equation.

When light propagates in free space, a perfect vacuum, the B field is pro-
portional to theH field vector, and similarly for theE andD field vectors, such
that

D = ε0E, (1.10a)

B = µ0H , (1.10b)

where ε0 and µ0 are the electric and magnetic permittivity of free space respec-
tively. Taking the curl of (1.9b) and substituting (1.9a)

∇×E = −Ḃ

−∇2E = −µ0∇× Ḣ

= −µ0Ḋ

= −µ0ε0Ë, (1.11)

where equations (1.10) and (1.9d) have been used. We assume that the vector
functions allow the spatial and temporal derivatives to be interchanged. Simi-
larly, taking the curl of the Maxwell equation (1.9d) and making the appropriate
substitutions allows us to arrive at a similar expression for B. Rearranging, we
have two equations

∇2E − c2Ë = 0, (1.12)

∇2B − c2B̈ = 0, (1.13)

where c = (µ0ε0)
1
2 is the speed of light in a vacuum and both of these equations

are the d’Alembert wave equation.
We now seek solutions to the d’Alembert equation which are monochro-

matic, with only one frequency present. The E field is the field we usually
measure and so we choose to work with E rather than B for that reason. We
observe the time-average of E and hence the structure is stationary. This al-
lows us to write the time-dependence as a factor e−iωt in equation (1.14). The
real vector field E(r, t) describes the actual time-dependence of the wave. A
monochromatic wave function, separable in space and time, has the form

E(r, t) = e−iωtE(r), (1.14)

where ω is a positive real number, the frequency of the wave.
Substituting this into equation (1.12), we are left with

∇2E(r) + k2E(r) = 0, (1.15)
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where the time-dependent exponential is dropped because it can never equal
zero and k = ω

c , a constant, which is the wavenumber defining the fundamental
physical length scale. This is the Helmholtz vector wave equation.

We now choose a particular component of E to work with, which can be of
arbitrary direction in the plane perpendicular to the direction of propagation.
This propagation direction is usually chosen to be the z-direction and we follow
this convention here. This means we only need to solve the scalar Helmholtz
equation

∇2Ψ + k2Ψ = 0, (1.16)

where Ψ is a complex scalar field. Ψ is required to be complex to retain the phase
information of the field as its argument, although this is not directly observable
and requires interferometric techniques to observe.

We finally make the paraxial approximation [LLM75]. This gives the differ-
ential equation that is used to represent beams of light such as those from a laser.
Consider a scalar solution of the Helmholtz equation of the form

Ψ(r) = ψ(r)eikz. (1.17)

The paraxial approximation requires ψ(r) to be such that∣∣∣∣∂2ψ

∂z2

∣∣∣∣� k
∣∣∣∣∂ψ

∂z

∣∣∣∣ .

This is implied by the assumption that the wave vectors form only a small angle
with the z-axis, which in our case is the beam axis and propagation direction.

Substituting such a function for Ψ(r) into the Helmholtz equation gives(
∂2

∂x2 +
∂2

∂y2

)
ψ(r) +

∂2

∂z2 ψ(r) + 2ik
∂

∂z
ψ(r) = 0, (1.18)

which, after applying the paraxial approximation, becomes

∇2
⊥ψ + 2ik∂zψ = 0 (1.19)

where ∇2
⊥ = ∂2

x + ∂2
y is the transverse Laplacian. This is the paraxial wave

equation. It is a parabolic PDE and is up to constants, the same as the (2 + 1)-
dimensional Schrödinger equation, with no potentials, with t replaced with z.
We consider the Schrödinger equation with potentials in 3 + 1 dimensions in
chapter 5, in which we generalise our knot construction to other differential
equations which are not optically motivated. Later we consider waves that sat-
isfy the paraxial or Helmholtz equations and use the notation ψ for a solution of
the paraxial equation and Ψ for a solution of the Helmholtz equation.

It is interesting to note how the classification of the PDE changes at each
stage of the derivation. The d’Alembert wave equation (1.12) is of hyperbolic
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type while the Helmholtz equation (1.16) is an elliptic equation. Our finally
derived paraxial equation (1.19) is a parabolic PDE. This takes us from a spa-
tially isotropic, time-dependent (polychromatic) solution to a time-independent
(monochromatic) solution which has a preferred propagation direction.

The complex scalar fields of Ψ and ψ, satisfying the scalar Helmholtz equa-
tion and paraxial equation respectively, do not represent the vector nature of
electromagnetic waves. This means that we only have access to the phase singu-
larities in an optical field. The full vectorial description can contain singularities
in the field’s polarisation. Polarisation, in two dimensions, is described by an
ellipse [Jac62]. A general state of polarisation, for plane waves satisfying the
d’Alembert wave equation (1.12), requires two independent plane waves of the
electric field E, which can be written as

E = (ε1E1 + ε2E2)eik·r+iωt (1.20)

where the ε1,2 are vectors such that ε1,2 · k = 0 and ε2 = k × ε1 (from equa-
tions (1.9a), (1.9c) and equation (1.9b) respectively) and E1,2 scalars. When the
argument (phase) of E1 and E2 are the same, the wave is said to have linear polar-
isation. When the argument (phase) of E1 and E2 differ by 90◦, the wave is said
to have circular polarisation. The general case is elliptical polarisation, arising
from the argument of the Ei giving different lengths to the vectors εi. Singular
polarisation is where the two axes of this ellipse cannot be uniquely defined :
circular polarisation, where both axes have the same length, and linear polari-
sation, where one of the axes has length zero [Den01]. Such singularities have
been studied in optical fields that are not necessary monochromatic, [Nye99,
and references there in]. Polarisation singularities do occur naturally in random
fields [BD01c], even in the sky [BDL04] and have a three-dimensional structure
akin to vortex lines [NH87, FODP08], albeit with a different mathematical struc-
ture.

1.6 Hermite- and Laguerre-gaussian Modes

Solutions of the paraxial equation represent light in a coherent laser beam. This
means that some solutions are physically realisable in real beams, arising as
modes of laser cavities. Here we introduce two commonly used mode fami-
lies, Hermite- and Laguerre-gaussian beams [Sie86], which we use and refer to
primarily in chapter 3.

In a system that is separable in Cartesian coordinates, the modes that arise
are the Hermite-gaussian modes. These are solutions of the paraxial equation
based on the Hermite polynomials, Hm, where m is the order of the polyno-
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mial [AS64]. The Hermite-gaussian modes are [Sie86]

HGmn(x, y, z) = Cm,n exp
(
−(x2 + y2)
2(w2 + i z

k )

)
Hm

(
x

(w2 + z2/k2w2)

)
×Hn

(
y

(w2 + z2/k2w2)

)
GP(w, k, z), (1.21)

where

GP(w, k, z) =

(
w2 − i z

k
w2 + i z

k

) m+n
2

, (1.22)

is the Gouy phase term, Cm,n = 1/
√

2m+nm!n!π is a normalisation constant and
w is the waist width of the beam. The Gouy phase is a term that arises from the
beam being focused in the waist (z = 0) plane and gives an overall rotation to
the phase structure upon propagation, increasing z [Sie86].

When m = n = 0, the beam is just a Gaussian beam, the fundamental mode.
Such a beam has a circular transverse cross-section and intensity given by a
Gaussian profile. There are no phase singularities in this mode, even on propa-
gation. In higher order modes, when at least one of m, n 6= 0, there are surfaces
of undefined phase lying on a rectangular grid. These surfaces in a single mode
propagating, retain their structure and only change by a rotation induced by the
Gouy phase and a scaling from the beam expanding. Examples of such modes
are shown in figure 1.6.

It is possible to also construct modes based on a separable polar symmetry,
giving rise to a set of paraxial solutions in cylindrical coordinates. Such solutions
are based on the associated Laguerre polynomials, Ll

p, where p is the order of the
polynomial and l arises from the associated Laguerre equation [AS64]. These
solutions are the Laguerre-gaussian modes:

LGl
p(R, φ, z) = Cl,pGP(w, k, z)

1
w|l|+1

R|l|eilφ(
w2 + iz

k

)|l|+1

× exp

(
− R2

w2
(
1 + iz

kw2

)) L|l|p

 2R2(
w2 + z2

k2w2

)
 , (1.23)

where l ∈ Z and p ∈N. The Gouy phase term is given by

GP(w, k, z) =

(
w2 − iz

k

w2 + iz
k

)p

, (1.24)

and the normalisation constant is given by

Cl,p =

√
2|l|+1 p!

π(|l|+ p)!
. (1.25)
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(a) (b)

(c) (d)

Figure 1.6: Examples of Hermite-gaussian modes. The parts (a)-(d) show the
intensity pattern of the modes, written (m, n), (0, 0), (1, 0), (0, 1) and (1, 1) re-
spectively. The dark lines, separating the bright regions, in the cases when m or
n is not zero, correspond to the lines of undefined phase, although they are not
optical vortices.
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The l = 0, p = 0 mode, LG0
0 , is equivalent to the Hermite-gaussian m = n =

0 mode, a Gaussian beam with no phase singularities. In a Laguerre-gaussian
mode there are two types of phase singularity present. When the integer l 6= 0,
the mode possesses a phase singularity on the beam centre, x = y = 0. This
is an optical vortex and can have both positive and negative topological charge
dependent on the sign of l and can be of arbitrary magnitude. The charge of
this vortex is sometimes referred to as the angular momentum of the beam or
azimuthal quantum number. The non-negative integer p indicates the number
of nodal rings in the beam and these coincide with the zeroes of the Laguerre
polynomial, in its given argument. The rings propagate as a surface in the shape
of an expanding cylinder forming a hyperboloid. The phase jumps by π across
the cylinders of undefined phase. We illustrate how this happens in figure 1.7.
We also give the intensity and phase in the z = 0 waist plane for the LG1

2 and
LG2

1 modes in figure 1.7.
Hermite and Laguerre polynomials form a complete basis for monomials in

their respective arguments. This means that for a fixed waist width, both sets of
modes form a complete basis for polynomials in the z = 0 plane. Finite sums of
a mode set, by linearity of the paraxial equation, form superpositions of modes.
A simple example is the creation of an off-axis vortex in a Gaussian beam. This
has superposition ψ = LG0

0 + εLG±1
0 , where ε is a small real parameter. Our

work constructs superpositions of Laguerre-gaussian modes to experimentally
realise optical vortex knots and links in chapter 3.

1.7 Knots in Optical Fields and Beams

We now review some recent results in topological optics. We concentrate on
knotted and braided optical vortices, of which the former has been realised in
experiments. This section concludes with a more general case of knotted field
lines.

Berry and Dennis created a scheme to construct torus knots and links in op-
tical fields satisfying the Helmholtz equation in [BD01a]. The scheme involves
constructing fields that contain a pair of high order vortices. One of these is
a closed loop, centred on the origin and lying in the (x, y)-plane at z = 0, of
strength n. The second lies on the z-axis with strength m. This is an unstable
system and when perturbed by a plane wave, the high order vortices unfold
into a set of charge one vortices. The axial vortex of strength m splits into m
separate helices. The planar ring unfolds into an (m, n)-torus knot if m and n are
coprime. The appropriate torus link is formed when m and n are not coprime,
with the number of components the greatest common divisor of m and n. The
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(a)

(b)

Figure 1.7: Examples of Laguerre-gaussian modes. (a) shows images of the LG1
2

mode. The upper plot is the intensity of a cross section of the beam taken in the
(y, z)-plane. The circular plots show the z = 0 plane of the intensity and phase.
(b) shows the same plots for the LG2

1 mode. The intensity plot has the same key
as in figure 1.6.
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solutions were written as superpositions of the Helmholtz Bessel beams [Dur87].
The question of the stability of the knots and links under further perturba-

tion was addressed in a later paper [BD01b]. Functions satisfying the paraxial
equation cannot have vortex loops that are of strength greater than one [BD01a].
Higher order vortices are possible, for example in an LG2

0 Laguerre-Gaussian
paraxial beam, but these are infinite open lines. Using polynomial solutions to
the paraxial equation, the required solutions were able to be constructed. Poly-
nomial solutions to the paraxial equation are introduced by us in section 3.2 and
later for the Helmholtz eqution in section 5.2.

The ability to form the required optical fields paraxially, without having to
create high order vortex loops, allowed for the knots to be realised in an ex-
periment [LDCP04]. Instead of using the Bessel beam superpositions [Dur87],
the required field is formed through an equivalent superposition of Laguerre-
gaussian beams [LDCP05]. The Laguerre-gaussian modes all have the same fre-
quency, hence same k value. A superposition of varying waist width modes is
created that is then perturbed. This perturbation is provided by a LG0

0 mode.
Experimentally, this was implemented using a spatial light modulator (SLM)
which displayed the appropriate diffraction pattern. A SLM is a computer con-
trolled hologram [LDCP05]. A hologram that includes the intensity information
in addition to the standard phase pattern was developed for this experiment,
allowing for an improved control of the beam. The vortices by their nature are
present in the dark regions of the beam and it can be difficult to control the be-
haviour of the beam in these regions. The computer controlled SLM allowed
for a real-time change of the perturbation being applied to the superposition.
The Hopf link and trefoil knot were both realised in the experiment as optical
vortices, both threaded by helices.

Our goal with knotted optical vortices has several motivations from this ear-
lier work. Only torus knots are possible by the Berry and Dennis construction.
We wish to be able to produce non-torus knots and links out of optical vortices.
We further desire to create isolated knots, those that are not threaded by other
vortices. Finally, for experimental implementation, it would be desirable to be
able to construct superposition of modes with all the same waist width, in con-
trast to the need to use a wider width mode for perturbation reasons.

Knotted topologies are not the only topology that has been considered for
being constructed from optical vortex lines. Braided vortex lines have been con-
structed in optical fields by Dennis [Den03]. This construction begins by con-
sidering the general case of braided zero lines in general complex scalar fields.
These do not in general satisfy a wave equation, Helmholtz or paraxial. The ap-
proach employed here is once again to create an unstable nodal set and apply a
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perturbation.
The unperturbed function consists of two, off centre, counter-propagating

Bessel beams, of order 3. This creates a vortex structure that contains a series of
threaded, non-planar loops. Upon applying a perturbation with a plane wave,
the vortex structure consists of a three strand braid. Transversely, these braid
strands follow a lemniscate (figure of eight) trajectory. The braid is not isolated,
as in the above knot construction, with some additional vortex lines around the
outside of the braid.

The above papers, and our work, are focused on linear optics. This is a very
good model for light propagation in free space (for standard intensities), how-
ever not all materials that light propagates through respond linearly. Some ma-
terials react in a nonlinear fashion. A beam ψ, propagating in such a nonlinear
medium obeys a nonlinear Schrödinger (paraxial) equation such as

∇2
⊥ψ + i

∂ψ

∂z
± κ|ψ|2ψ = 0, (1.26)

which represents propagation through a Kerr-type medium [DKT05]. In equa-
tion (1.26), the sign of κ determines the type of the nonlinearity : a positive sign
represents a self-focusing medium and negative a self-defocusing medium. In
general any function of ψ can form the nonlinear term in equation (1.26) to rep-
resent different physical situations. The review of Desyatnikov et al [DKT05]
gives an overview of optical vortices and solitons in nonlinear optics.

Knotted vortex lines have been observed in a numerical simulation of a beam
propagating in a saturateable, nonlinear medium. A twisted elliptical beam,
similar to that in [DBDK10], is propagated in a self-focusing medium. A bright
soliton is trapped close to the optical axis, whose diffraction is contained by
the self-focusing effect. The twist induces the formation of vortex rings around
the soliton. Under propagation and perturbation, these vortex lines tangle and
reconnect. This process can form linked and knotted optical vortex loops. An
example of a Hopf link and trefoil knot in such a nonlinear system is shown in
figure 1.8.

Freund [Fre00] makes the claim that torus knots, knots that can lie on the
surface of a torus (section 2.1 and figure 2.6), are not possible as optical vortex
knots. The above examples and our work of this thesis, show that torus knots
are possible as optical vortex trajectories. Figure 1.9 shows the optical vortex
trefoil knot, a torus knot, as the intersection of the Re = 0 and Im = 0 surfaces
of the overall function containing the knot as its zero set. These surfaces are 2-
hole tori which leads to some confusion because [Fre00] does not consider this
case.

Away from vortices, Irvine and Bouwmeester [IB08] also consider topology
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Figure 1.8: An example of vortex knotting in a saturateable, non-linear beam.
The vortices are on the edge of an elliptic twisting beam in a self-focusing
medium. The trefoil knot is coloured blue. The two components of the Hopf
link are coloured green and orange. The beam is propagating in the direction of
the yellow arrow. We are grateful to Anton Desyatnikov for use of the data to
create this figure.
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Figure 1.9: The trefoil knot, black curve, realised as the intersection of the Re =
0, silver surface, and Im = 0, gold surface, of a function constructed using the
techniques of section 3.3.

in optical fields. This work looks at the electric and magnetic field lines in so-
lutions of Maxwell’s equation. Using the Hopf fibration, they found solutions
(based on the work of Rañada [Rañ89]) in which the field lines are all mutually
linked. The authors propose that such topology is realisable experimentally but
viewing such features is a challenging experiment.

1.8 Random Optical Fields

Our main aim of this thesis is to study optical vortices in deterministic situa-
tions. Optical vortices also arise naturally from random processes, notably laser
speckle patterns. Laser light reflected from a surface has a grainy appearance,
caused by the random nature of the surface at length scales of the order of the
light coherence length [Goo07]. This two-dimensional pattern has been well
studied, [Ber78] through to [BD00, Goo07, DOP09].

We are interested in the three-dimensional properties of the random vortex
lines. To understand the random topological features of optical vortices in a
random field, we begin by using a lattice model to generate random lines. We
will compare results of this lattice model to the numerical simulations made
in [ODFP08] and [ODP00], which study the random speckle vortex lines in a
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Figure 1.10: A two-dimensional version of the Z3 model. The coloured squares
are equivalent to the corners of the cubes and are coloured red, green and blue to
represent phases 0,1 and 2 respectively. The black dots represent negative faces
and a vortex line coming out of the page. The white dots represent positive faces
and a vortex line passing into the page.

numerical simulation of a paraxial optical field. The speckle simulations can be
considered as a superposition of many plane waves. The simulation creates a
finite volume by using a superposition of plane waves with k vectors confined
to discrete rectangular grid. This makes the volume periodic in all three axial
directions. The k-space is a grid of size 27× 27, giving 729 plane wave contri-
butions, and is only required to be two-dimensional due to the simulation being
paraxial. We shall compare the fractal properties and topology of this simulation
to our Z3 simulation results which we describe below.

The fractal properties of the vortex lines can be used to investigate the self-
similarity properties of vortex lines [SAM93]. A line with a fractal dimension of
two is a Brownian curve [Fal03]. We use the measures of [VV84], for example
loop length spectrum, and [ODFP08], loop radius of gyration, to draw conclu-
sions about the fractality of our vortex lines and whether they are Brownian
curves.

Our model is a lattice model, discrete in real space, contrasting to the dis-
cussed optical simulation being discrete in k-space. This model is based on that
presented by Vachaspati and Vilenkin in [VV84] to provide initial conditions for
the modelling of cosmic string evolution. We consider a cubic lattice inside a
cubic volume to model our random vortex lines. The points in the volume are
represented as elements of Z3 and to these points a phase value is assigned. The
values for phase are also discrete, taking values from {0, 2π/3, 4π/3}which can
be associated with the elements of {0, 1, 2} respectively. We use the later repre-
sentation with addition modulo three for convenience. The phase values are
assigned randomly to each point with equal probability.
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(a) (b) (c) (d)

Figure 1.11: Using a planar representation of the cube, the sixth face is the region
outside of the outer square. (a) - (c) show two completely avoiding vortex lines.
(d) shows two vortex lines passing through opposite faces and hence the centre
point of the cube. The different colours are for clarity.

A vortex line passes though a face of a cube if there is a 2π change in phase
around it which we define as being the sum of differences between the values on
each corner traversed in a clockwise sense. The difference is taken modulo three
but the sum is taken in the standard way. When this sum is ±3 then a vortex
line passes through the face. For +3 we call it a positive face and the vortex line
is directed into the cube. Likewise, if the sum is −3, the face is negative and the
vortex line is directed out of the cube. There are only three examples of faces, up
to sense and cyclic permutation, that admit a vortex line to pass through ; those
with values 0012, 0112 and 0122 on their corners. The vortex lines are allowed to
pass from cube to cube as the orientation of a face is reversed when considering
neighbouring cubes. This gives that 24/81 ≈ 30% of all faces allow a vortex line
to pass through; calculated from testing all combinations of the three values on
the four edges of a square. Figure 1.10 shows a two-dimensional version of this
model.

There are 38 = 6561, three values on the eight vertices of the cube, possi-
ble configurations for the phases on each cube. Of these possible cubes we can
calculate which configurations of phase admit vortex lines to pass through the
cube. We can show that 1485 (22.6%) have no vortex lines passing through them.
There are 4320 (65.8%) cubes that allow one vortex line to pass through; that is
having only one positive and one negative face. There are 756 (11.5%) cubes
that allow two vortex lines to pass through. It can be seen that once a cube has
one positive face then there must be either one or two negative faces and in the
case of two negative faces, there must be a second positive face. There are no
combinations of phase on the cube vertices that allow three vortex lines to pass
through. This leads to an average of 0.88 lines per unit cube.

The possible paths inside cubes with two vortex lines passing through are
shown in figure 1.11. Three of the cases are unambiguous and the vortex lines
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follow distinct paths. In the fourth case, it is possible that a reconnection occurs
in the centre of the cube, where the two paths can intersect. When forming the
vortex lines in our simulations we choose at random, with equal probability,
which path to take when presented with a choice of two. We shall not discuss
disambiguating such cases further.

In order to implement this model we use the dual lattice to the cubic lattice.
The two-dimensional figure shown in figure 1.10 is dual to our description. This
associates the cubes with the phase values and the cube edges with possible
paths for the vortex lines. This has the advantage that all vortex line segments
have the same path length, one edge unit, as apposed to two possible different
values in the original lattice. In this lattice cubes that admitted two vortex lines
to pass though them now correspond to points where two lines meet.

The cubic lattice is not the only lattice considered for this problem. Hind-
marsh and Strobl [HS95] also use a lattice model to create initial conditions for
a cosmic string model but use a different lattice. They use a tetrakaidekahedral
lattice, formed from tetrahedrons. This is chosen so that the vortex line statistics
are invariant to rotation. The condition for a vortex line to pass through a tri-
angular face is simpler than the squares, with all three discrete values of phase
needing to be present. No tetrahedron allows two vortex lines to pass through it,
eliminating the need to make choices when faced with this scenario in the cubic
lattice. The method of tracing vortex lines in [HS95] differs from our method as
they start by assuming one tetrahedron has a line passing through it and calcu-
late the phase data required as they follow the line. This has allowed for much
longer lines to be studied than in [VV84], of the order that would require a 3003

sized lattice. This method does not suffer from the finite boundary effects of
the cubic lattice because the data is generated as required to form the next line
segment.

It is found in [HS95] that 63.3% of the total line segments are in infinite lines.
In [VV84] this is found to be 80% and our results are found to be similar to this.
In this tetrahedral lattice, it is more likely that shorter loops are formed and the
shortest loop length possible is 1/

√
3 times shorter than in a cubic lattice. These

factors mean that of the line segments in loops, less of the overall length is con-
tained in the loops. The numerical optical simulation finds that approximately
73% of the total vortex line length is in the infinite lines with the remaining 23%
of the total vortex length in the simulated volume contained within the closed
loops.

We now give some results from the Z3 model which we compare to those
of [ODFP08]. In the Z3 model there are two kinds of line : open infinite lines and
closed finite loops. Obviously the definition of a line being open or closed de-
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pends on how lines that end on the boundary are treated. The method of [VV84]
is that any line ending on the boundary is considered to be an open infinite
line, hence any closed loop is completely contained within the simulated vol-
ume. The paper of O’Holleran et al [ODFP08] employs a different method in
their optical simulation, making the simulated volume have periodic boundary
conditions. The computed volume is an elongated cube in the z-direction due
to the scaling effects of the paraxial equation. The volume is thus topologically
a 3-torus, (homeomorphic to a cube with periodic boundary conditions on the
faces; not a three hole torus).

Our first result concerns the open lines of the Z3 model. The fractal di-
mension of the curve can be determined by comparing the average over all
points on the line, of the Pythagorean distance between two points and the arc
length along the curve between them. We consider the relationship between the
Pythagorean distance between points, L, and the distance along the curve, R.
This is measured for lines in a volume with periodic boundary conditions. The
distance between the points along the curve is just the number of line segments
separating them in the lattice model. For the line to exhibit Brownian fractality,
the relationship R ∝ L0.5 must hold.

Figure 1.12 shows our results in a log-log plot. We find the fit line to be
log R = 0.03 + 0.48 log L which gives R ∝ L0.48 for our data, from 403 sized
volumes. This relationship holds in the range 2 < L < 100. Adjusting the
lower limit does not make a significant difference to the fit. For the upper limit,
increasing it does not make the fit better. Each of the black lines represents an
individual line from a simulation. At the upper limit, these individual lines
can be seen to diverge from the fit line. This is due to the line having to cross
the periodic boundaries, potentially several times, when it is tracked. We can
conclude from this measure that the Z3 open lines exhibit the property of being
Brownian fractal.

We also studied the fractality of the closed loops and present here the results
concerning the radius of gyration of the closed curves. The radius of gyration of
a closed curve is the root mean square of the points from its centre of mass,

R2
g =

1
N

N

∑
k=1

(rk − rmean)2, (1.27)

where rmean is the average position vector of the curve and the sum is taken of
the N line segments. For lattice curves, this is the mean of the vertex points. For
curves that exhibit Brownian properties, the radius of gyration scales such that
Rg ∝ L

1
2 where L is the length of the loop.

In the second O’Holleran et al paper [ODP00] on three-dimensional random
optical vortices, the radius of gyration is used to determine the fractal dimension
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of the closed vortex loops. They find that Rg ∝ L0.52 over a range of lengths
between 1.2 and 7.4 simulation units. We use our data to compare the discrete
real space Z3 model to the speckle simulation via radius of gyration. Our data
for 503 volumes is shown in figure 1.13, again for the simulation volume being a
3-torus.

Our plot show values for radius of gyration squared, for computational con-
venience. We therefore need to compute half the gradient of the fit curve. Our
plot has fit line of log(R2

g) = −2.40 + 0.98 log l. This gives for the discrete real
simulation that Rg ∝ L0.49. Both simulations, the Z3 model and the numerical
optical fields of O’Holleran, possess the similar Brownian scaling property.

Other random physical systems support the possibility of knotted struc-
tures including polymers in chemistry [OW07] (using lattice simulations), self-
avoiding random walks [DDM+03], DNA tangles [Sum90] and even how rope
knots itself [RS07]2. The complexity of tangled vortex lines in superfluids is also
studied [BRS01].

The Z3 model, being based on a cubic lattice, has some interesting restric-
tions placed on how the closed curves can form knots. The simplest knot is the
trefoil knot, used frequently through this thesis as an example. When searching
for knots on a cubic lattice, the length of a trefoil knot must be at least twenty-
four edge lengths, proved by Diao [Dia93]. Curves of shorter length can be dis-
counted in a search for knots. The simplest link, the Hopf link3, can be formed
on the cubic lattice by two curves of length eight. The more complex (unique
topologically) four crossing link must be formed of two curves with combined
length greater than twenty-eight lattice steps [EP02]. We are yet to observe link-
ing or knottedness with our cubic lattice simulation.

The topological features of optical vortex lines in random fields is also an
interesting feature of such fields [ODP00]. The vortex topology of low numbers
of plane wave in superposition is known, [OPD06, MD01], where three plane
waves can give rise to parallel infinite lines and four plane waves is enough
for loops, which are planar and parallel, to form. Higher numbers of plane
waves in superposition give rise to more complex geometries and topologies.
The topology of the superpositions in [ODP00] of up to 2025 plane waves, cor-
responding to a k-space grid of 45× 45, is expected to be highly non-trivial. A
hierarchy of threading of closed curves is studied to determine the topology of
the simulation: threaded by an infinite line, threaded by another closed loop
(linked) and self-threaded (knotted). Using the data from the numerical simula-
tions, estimates on the probability of loop threading and linking are made, and

2This work was awarded the 2008 Ig Nobel prize for physics.
3The Hopf link is studied extensively later in this thesis
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found to have a similar form to other random systems such as polymer mod-
elling [OW07]. The probabilities are found to be

Punthreaded ∝ exp
(

L− 1.15
30

)
, (1.28)

Punlinked ∝ exp
(

L− 1.88
185

)
, (1.29)

where L is the length of the loop in question. Notice how these are probabilities
for being not threaded and not linked respectively. These forms are similar to
the forms for the probability of not being knotted given by random polymer
studies [OW07]. The exponents of the probabilities can be interpreted as −L

TP

where P is the persistence length of the curves and T is a constant dependent on
the model and lattice type. The persistence length [GK94] is the length along the
curve before the tangent directions become uncorrelated.

No knots were observed in the simulation of [OW07]. This null result is dif-
ferent to saying random optical vortices cannot be knotted, just that they have
not been observed, even though that of the order of half a million curves were
tested for knottedness. We know that optical vortices can be knotted, section 1.7
and our work in chapter 3 and later chapters. Based on the probabilities ob-
tained, and the likely form of the probability of a curve being unknotted, it is
projected that a total simulation search volume is required to be 107 times that
studied to provide reliable data about the knottedness of the vortex lines in nu-
merical simulations of paraxial speckle.

1.9 Thesis Outline

This thesis now proceeds as follows :
Chapter 2 introduces the subject of knot theory, introducing the definitions

we require for our later work and give our interpretations of some of the mate-
rial.

Chapter 3 outlines our procedure to create knotted optical vortices in real
laser beams. Our general procedure for achieving this is outlined, although
some of the details are fully explained and explored in later chapters. The ex-
perimental procedure and results are reported. We also show how the paraxial
equation can be transformed into the Hermite and Laguerre differential equa-
tions to generate families of polynomial solutions to the paraxial equation. We
use these polynomials throughout the thesis, to examine the knots and links we
create as functions satisfying the paraxial equation.

Chapter 5 explores the knots and links we can create as the nodal set of
a complex scalar function. We generalise our construction based on braids to
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higher lemniscates and show how some additional parameters introduced into
the construction can be used to control the geometry of the knots. We outline
a classification of the knots and links of our construction using knot polynomi-
als and other knot invariants. Sequences are observed in the coefficients of the
Alexander and Jones polynomials we construct, as well as trends in the Conway
notation. We make use of these patterns to predict the identity of more compli-
cated knots that are accessible to our construction.

Chapter 5 uses the knots and links that we can construct and attempts to
embed them as the nodal set of functions satisfying various partial differen-
tial equations. We further examine our main example of paraxial nodal knots
but also consider the Helmholtz equation and various forms of the Schrödinger
equation. We construct polynomial solutions to the Helmholtz equation, anal-
ogous to our paraxial polynomials. Our look at the Schrödinger equation in-
cludes the potentials of the 3D harmonic oscillator and the hydrogen atom, and
we finish with a discussion of other physical equations that could be considered.

Chapter 6 approaches the geometry of optical vortex propagation from a
different perspective. Here we use the initial value problem nature of paraxial
propagation to construct a function describing the locus of the vortex lines. The
properties of the field we evaluate can be used as a measure of the complexity
of the vortex curve and predict which vortices of opposite sign will annihilate
each other given a non-trivial initial configuration.

We conclude this thesis with two appendices, the first outlining our proce-
dure for tracking the location of phase singularities in three-dimensional fields.
The second tabulates the knots and links we have been able construct.



Introduction to Knot Theory 2
The mathematical theory of knots is a rich and deep subject encompassing the
description of everyday objects through to the topology of high dimensional
spaces. Our motivation is to construct knots in physically realisable optical
structures and hence we focus on knots which are embeddings of S1, the cir-
cle, in R3 and S3, the 3-sphere. These are the classical dimensions of knot theory.
This chapter outlines the background to our knot construction and the proper-
ties of the knots we desire.

2.1 A Quick Trip Into Knot Theory

Let us begin by defining a knot.

Definition 2.1 (Knot (General)). A knot, K, in classical dimensions is a subset of S3

that is homeomorphic to S1,
S1 ∼= K ⊂ S3. (2.1)

Equivalently this is (the image of) an embedding of S1 in S3.

The requirement for a knot to be closed curve avoids the problem of an open
string untying itself.

With all knots being homeomorphic to S1, they are all homeomorphic to each
other. This is in contrast the complements, S3 \ K, of different knots which are
not homeomorphic to each other [Rol76, p2]. This allows us, using methods
described later, to distinguish between distinct knot types.

To find this topological equivalence between knot types we are required to
use ambient isotopy.

Definition 2.2 (Ambient Isotopy [BZ85]). Consider two embeddings of the circle into
the 3-sphere, f1, f2 : S1 → S3 such that fi(S1) = Ki, i = 1, 2, where the images, the

33
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Ki, are two knotted curves. Let H : S3 × [0, 1]→ S3 be a continuous function, denoted
H(u, t) ≡ Ht(u), such that Ht : S3 → S3 is a homeomorphism. H is an ambient
isotopy between f1 and f2 if H0 = id : S3 → S3 and H1 ◦ f1 = f2 : S1 → S3.

Ambient isotopy deforms the entire embedding space not just the curve.
This leads us to formalise our definition of two knots being equivalent to each
other.

Definition 2.3 (Knot equivalence). Two embeddings of S1 in S3 are equivalent, the
image curves are the same knot type, if there exists an ambient isotopy between them as
described in definition 2.2.

We will relax the use of the term “knot type” to just “knot”.
Despite it being mathematically desirable to work with S3, we require for

physical reasons to consider the embedding space to be R3. We now modify
definition 2.1 to take this into account.

Definition 2.4 (Knot (for this thesis)). A knot is a curve homeomorphic to S1 embed-
ded in R3.

It is the actual knotted curves we want to work with and later in this chapter
we describe techniques to distinguish knot types without having to explicitly
find an ambient isotopy function, which is in general difficult. Some of our
later constructions still require the use of S3 and we now describe the concepts
required.

The 3-sphere can be defined as

S3 =
{

xi ∈ R4 : |x0|2 + |x1|2 + |x2|2 + |x3|2 = 1
}

=
{

u, v ∈ C2 : |u|2 + |v|2 = 1
}

∼= R3 ∪ {∞}.

For our work the most useful way to think of the 3-sphere via the second defini-
tion in terms of two complex coordinates. The 3-sphere can be stereographically
projected into R3 but what is more useful for us is the inverse stereographic
projection from R3 to S3 to give complex coordinates for the 3-sphere. We use

u =
x2 + y2 + z2 − 1 + 2iz

x2 + y2 + z2 + 1
=

R2 + z2 − 1 + 2iz
R2 + z2 + 1

, (2.2)

v =
2(x + iy)

x2 + y2 + z2 + 1
=

2Reiφ

R2 + z2 + 1
, (2.3)

given in both cartesian and cylindrical coordinates, the forms given explicitly
in [SW03], where R2 = x2 + y2 and Reiφ = x + iy. The 3-sphere coordinates are
given by (u, v) ∈ C2.
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Figure 2.1: The wild knot based on the construction given in [Fox62]. Each
knotted component is reducing in size, with an infinite number of copies and no
lower limit on the size of each copy [CF63].

The knots that we work with are those that can be realised as a finite set of
polygonal edges which are the tame knots ; otherwise, the knot is wild and can
posses pathological properties. Knots that are ambient isotopic to a simple close
polygon are tame. The curve given by Fox [Fox49] is simply constructed but
wild and figure 2.1 shows an example of constructing a wild knot. The tame
knots can be considered as smooth curves at all points [Rol76, p. 48]. All the
knots we work with will be tame.

In general, it is hard to find an ambient isotopy function, therefore we need
to consider other methods for determining and distinguishing the knot type of
a curve. The starting point for the majority of the methods we employ involves
projecting the knot into two dimensions. This gives a two-dimensional diagram
in which the projected curve has potentially many self-intersections. At all of
the self-intersection points, we show which part of the curve is passing over
the lower section. These points, with this information given, are called crossings
and the total number of crossings in the diagram defines the projection’s crossing
number. If a projection gives points with more than two parts of the curve self-
intersecting, then the curve can be deformed through ambient isotopy or viewed
from a different projection direction, to simplify the projection and make each
crossing unambiguous.

The number of crossings in a projection is dependent on the projection di-
rection and any deformation of the curve. The projection can be manipulated
in three formal ways, equivalent to an ambient isotopy in three dimensions, the
Reidemeister moves [Rei26]. We illustrate the Reidemeister moves in figure 2.2.
The first type of move, RI, removes one crossing that is simply a twist in the
curve. The second move, RII, acts on two crossings, allowing an under part of



36 INTRODUCTION TO KNOT THEORY

(a) (b)

(c) (d)

(e) (f)

Figure 2.2: The Reidemeister moves : Type 1, RI, interchanges (a) and (b). Type
2, RII, interchanges (c) and (d). Type 3, RIII, interchanges (e) and (f).

the curve that simply returns back under the same over section, with no other
crossings in between to be removed. The RII move lowers the crossing number
of the projection by two. The third type of move, RIII, does not change the over-
all crossing number of the projection, but may reveal hidden type one and/or
type two moves which are not obviously available to be made. The RIII move
takes a strand from one side of a crossing to the other side.

After a repeated application of Reidemeister moves, a projection of a knot
can be achieved in which no more crossings can be removed. This number of
crossings is the minimum crossing number of the knot. This number is an invariant
of the knot : it is the same whichever projection is initially taken. It is not obvious
how to determine when this minimum number is reached, nor in what order to
apply the required Reidemeister moves to achieve this.

The minimum crossing number has been used as a tool for the classification
of knots. Historical knot tabulations have used this measure for grouping knots,
for example in [Tai83a] and [Rol76, appendix C]. The unknot is a curve with
minimum crossing number zero. There are no knots with minimum crossing
number one or two. In such knots, the crossings can be removed by one or two
applications of the RI move respectively.

From now on, unless otherwise stated, we shall assume that the number of
crossings is the minimal number. With this, there is one distinct knot with three
crossings and one with four, the trefoil and figure-8 knots respectively. There are
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Figure 2.3: The sum of two trefoil knots. The two components are coloured
red and green. This sum gives the granny knot, and is plotted from the formula
given in [SKK98, ch. 18].

two knots with five crossings, the cinquefoil and the 3-twist knot.
For knots with six or more crossings there are two classifications that natu-

rally arise : the prime knots and the composite knots, a concept similar to prime
and composite numbers.1 Two knots can be topologically joined to form their
connected sum. A knot sum is formed by cutting the two knots and joining the
loose ends of one knot to their respective ends in the second in such a way that
no additional crossing are created. We illustrated this process in figure 2.3 for
the sum of two trefoils. The sum of two knots is denoted Ksum = K1#K2.

Definition 2.5 (Prime Knot). A knot K is prime if its only decomposition into a knot
sum is K = K#unknot.

The sum of two knots always leads to a more complicated knot and cannot
become the unknot. This means that although K#unknot = K there is no K′ such
that K#K′ = unknot unless both knots are themselves the unknot. There are no
inverse knots for the knot sum operation. This result is due to the genus of a
composite knot (the knot genus is discussed in section 2.5) being the sum of the
genera of the component knots [Rol76, p. 119] where the unknot has genus zero.
We shall assume all knots we encounter are prime.

1Other classifications exist at this stage, but will be introduced as required later.
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The prime knots are listed by Rolfsen [Rol76] for crossing number up to ten
based on Conway’s tabulation [Con70]. We use the same notation for prime
knots, which are the class we consider, as Rolfsen, based on the Alexander-
Briggs notation [AB27] : Ci represents the ith knot with crossing number C in
this table. The problem of classifying knots is an ongoing process in which more
knots are being classified and mistakes corrected. Rolfsen’s table proliferated
a mistake in the tabulation of prime knots. The knots 10161 and 10162 are actu-
ally the same but shown with differently projected diagrams. This error origi-
nates from the work of Little [Lit00] and was discovered by Perko [Per74]. Perko
noted this error before the publication of Rolfsen; however when discussing the
ten crossing knots care, is needed to make sure this error is not reflected in the
notation.

The existence of the Perko pair illustrates the difficulties in tabulating knots.
Tabulation of knots was first considered by Tait, working on the vortex atom
hypothesis of Lord Kelvin [Tho67]. The work of Tait [Tai77, Tai83a, Tai83b] and
Little [Lit90, Lit00] extended the tabulation, although not the concept of vortex
atoms. The tabulation was increased further by Hoste et al [HTW98] report-
ing an extension of knot tables up to those with sixteen crossings. The title of
this paper, “The First 1706936 Knots” gives an insight to the scale of the project.
Recently, the work of Rankin et al [RFS04a, RFS04b, RF04] enumerated the al-
ternating knots up to twenty two crossings. Their work gives nearly five billion
distinct alternating knots with twenty two crossings, a number which does not
include the non-alternating knots, nor those with lower crossing numbers! Ta-
ble 2.1 shows the number of prime knots for each crossing number up to thir-
teen.

We have only considered the presence of one curve. It is possible for there to
be multiple copies of S1 embedded in S3. Such situations give rise to links.

Definition 2.6 (Link). A link Ln with n components, is the disjoint union of (possibly
knotted) curves such that

S3 ⊃ Ln =
⋃̇n

i=1
Ki, (2.4)

where each Ki
∼= S1.

Linking of spheres in higher dimensions can occur when the embedding
space has codimension > 2 [Rol76].

In common with knots, the curves of a link are free to be deformed by am-
bient isotopy whilst always remaining distinct. If a plane can be positioned
between two curves of a link (after appropriate deformation) then they are not
linked: they form an unlink [Ada94]. Linking can be detected by considering
the link’s projection into two dimensions. In such a projection, each curve is
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Minimum Crossing Number Number of Prime Knots
0 1
1 0
2 0
3 1
4 1
5 2
6 3
7 7
8 21
9 49

10 165
11 552
12 2176
13 9988

Table 2.1: The number of prime knots, up to chirality and orientation, for a given
minimal crossing number up to thirteen. The tabulation up to ten crossings
is popularly taken from [Rol76]. The numbers of knots with higher crossings
is in [HTW98], with data on the higher crossing knots available at [BNM10]
and [CL10].

(a) (b)

Figure 2.4: (a) A positive +1 crossing. (b) A negative −1 crossing.
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(a) (b)

Figure 2.5: (a) The three component Borromean rings in a configuration that
is created with the construction of chapter 4. (b) The Whitehead link, from the
form given in [PW92], given from a different projection direction to the standard
projection of Rolfsen [Rol76].

given an orientation and for each crossing, a sign can be assigned as shown in
figure 2.4. When disregarding self-crossing, those with another part of the same
curve, half the sum of the ±1 assigned to each crossing is the linking number,
Lk. This does not detect links which have a zero linking number but are actually
linked, such as the Whitehead link, L5a1, and the Borromean rings, L6a4, illus-
trated in figure 2.5. These kinds of linking can be detected by other measures
but we do not employ them in this thesis. We use the Thistlethwaite notation for
links to be consistent with [BNM10].

An important class of knots are the torus knots which are relatively simple to
construct and are well studied. A torus knot is a closed curve that can be em-
bedded on the surface of a torus in R3 or S3. The curve wraps round the internal
circle n times and the central hole m times. When m and n are coprime, then
the curve is a (m, n)-torus knot, Tm,n. In cases where m and n are not coprime,
then it is not possible to form such a curve on the surface of a torus. However
for hcf(m, n) = d, it is possible to create d distinct curves that wrap round the
central hole m/d times and the internal circle n/d times. This set of curves is a
torus link, also denoted Tm,n. Such wrapping around the two circles of the torus
can be seen by viewing the torus as a square, with periodic boundaries imposed.
This is shown for the Hopf link, T2,2, and trefoil knot, T2,3, in figure 2.6.

In identifying torus knots, the simple projection and three-dimensional geo-
metric form they possess has often been overlooked. The knot 819 is isotopic to
T3,4 yet is presented in the historical tabulation in an overly complex projection.
The calculation of knot invariants and their properties is made simpler if the
calculation begins with a simpler representation. This comparison of common
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(a) (b)

(c) (d)

Figure 2.6: (a) The planar representation of the torus with the two components
of the Hopf link shown in red and green with (b) showing the curves lying on the
surface of a torus. (c) The trefoil knot shown on a planar torus with (d) showing
the same knot on the surface of a torus.

(a) (b)

Figure 2.7: Two different geometric forms of the knot 819. (a) The common form
given for this knot, [Rol76] compared to (b) showing the many symmetries asso-
ciated with this torus knot. The “nicer” form does not have any fewer crossings.
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geometric forms for the same knot is shown in figure 2.7.
An extension of the torus knots are the cable knots. A cable knot is a form of

satellite knot [BZ85] constructed in the following way : a knot, K1 , is embedded
in an unknotted torus, the torus is then treated as a curve itself and knotted
to form K2. The resulting knot is a satellite knot. A cable knot is a satellite knot
formed when K1 is itself a torus knot. These are also known as iterated torus
knots. We consider cable knots in section 2.6.

2.2 Notations of Planar Projections

We make extensive use of the planar projections of knots and links into two
dimensions to describe and identify the original three-dimensional curve. To
algorithmically utilise these diagrams, we require methods to describe them.
The three notations introduced in this section all possess properties that reveal
different properties of the knot directly. Our preferred method in calculations
is the “Planar Diagram Notation” (PD notation) [BNM10], with Conway nota-
tion [Con70] used extensively in later sections and chapters.

PD notation treats the knot projection as a graph, inheriting its planar orien-
tation from the knot’s orientation. This notation labels the edges between each
crossing, the vertices of the graph, of an orientated curve. An initial crossing is
chosen and one of the edges leading away from the crossing following the ori-
entation is labelled “1”. The orientation is followed and each edge is labelled
consecutively as shown in figure 2.8. This procedure associates four numbers
to each crossing, each representing an edge that begins/terminates there. They
are listed a specific order : the first is the edge whose direction is towards the
crossing and one of the two lower edges, passing under the top two edges, with
the remaining three following in the order they appear travelling anti-clockwise
about the crossing. The PD notation is presented as a list of Xabcd where the
a, b, c, d are the edges in the detailed ordering.

The presence of crossings that can be removed by RI is readily seen from
the PD notation. Such a crossing has an edge both start and end on the same
crossing, giving a label Xaabc up to a cyclic permutation of aabc. Crossings with
labels like this can be removed to make a simpler projection with the all the edge
labels greater than a relabelled as one less.

It is also possible to remove crossings using RII directly from the PD no-
tation. There are eight cases of pairs of crossings that can be removed in this
fashion. The eight cases are shown in table 2.2. These cases represent the differ-
ent combinations of the possible orientations of the curve segments and crossing
signs.
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{a, b + 1, a + 1, b} {a + 1, b + 1, a + 2, b + 2}
{a, b + 2, a + 1, b + 1} {a + 1, b, a + 2, b + 1}
{a, b + 1, a + 1, b + 2} {a + 1, b + 1, a + 2, b}
{a, b, a + 1, b + 1} {a + 1, b + 2, a + 2, b + 1}
{b, a, b + 1, a + 1} {b + 1, a + 2, b + 2, a + 1}
{a, b + 2, a + 1, b + 1} {a + 1, b, a + 2, b + 1}
{b, a + 1, b + 1, a + 2} {b + 1, a + 1, b + 2, a}
{b, a + 1, b + 1, a} {b + 1, a + 1, b + 2, a + 2}

Table 2.2: The eight pairs of crossings that can be removed by the RII move by
the inspection of the PD notation.

(a) (b)

Figure 2.8: (a) The figure-8 knot with the edges labelled to compute the PD
notation. It can be seen that the PD notation is X1627X5263X7584X3148. (b) The
figure-8 knot with the vertices labelled to compute the Dowker notation. From
this it is {6284}.

We now introduce a second notation, Dowker notation [DT83], to compare
with. This assigns two integers to each crossing, starting with 1, and following
the orientation, the labels are assigned consecutively. Each crossing is therefore
labelled with a pair of numbers, one odd and one even, shown in figure 2.8. In
order of their appearance following the orientation, the even numbers only are
kept. This list of even numbers is the Dowker notation.

The knot reconstructed from Dowker notation is unique if the knot is am-
phichiral. Amphichiral knots are equivalent to their mirror image [Ada94]. The
difference between these mirror images is not usually considered when tabulat-
ing distinct knots, nor in our work on the construction of knotted nodal curves.
The trefoil knot is chiral, a left-handed and right-handed version exist, but the
figure-8 knot is amphichiral, not having the existence of such a mirror image.
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Conway Notation

The third notation we introduce is the Conway notation [Con70]. Unlike the
PD and Dowker notations, which assign a symbol to each crossing, the Conway
notation builds up from elements that can represent several crossings. These
individual elements are tangles. A section of a knot is enclosed in a 2-sphere,
which becomes a circle when represented in a plane. In both cases, the knot
section only intersects the bounding sphere at four distinct points. The four in-
tersection points can be moved to fixed positions, represented by the compass
directions NW, NE, SE and SW. When a projection is made, it is the interior of
the circle, with the curve segments arranged as such, that we refer to as tangles.
Specifically, these are 2-tangles, with only two curves terminating on the bound-
ing circle with a not necessarily empty set of closed curves contained within the
circle.

A tangle itself is not a knot or link but may contain a complete closed curve
that is. To build up to a notion of a complete knot or link we begin with the
simplest tangles, which contain at most one crossing in the projection. There are
two tangles with no crossings, that with a curve linking the NE to NW points
and a separate curve joining SE to SW, and the tangle that links NE to SE and NW
to SW with no crossings. These are called the zero (0), and infinity (∞), tangles
respectively. There are also two tangles that contain just one crossing, both with
curves linking NE to SW and NW to SE. The sign of the crossing determines
the name of such a tangle. With no orientation defined on the tangle as yet, the
upper strand being the NE to SW curve leads to the tangle +1 and respectively
the −1 tangle has this curve as the lower strand. With this orientation of the
tangle, the upper stand has positive gradient; directed from the SW to the NE
locations. These four basic tangles are illustrated in figure 2.9. The Reidermister
moves can be used to modify a tangle to achieve one of these basic tangles, and if
this is possible, then the original tangle is equivalent to the basic tangle achieved
through this process.

Tangles containing more crossings are possible. The tangle 2 contains two
crossings formed by the twisting of the zero tangle twice, to form two positive
crossings. This tangle is shown in figure 2.9. Likewise the tangle −2 is formed
in the same way by twisting in the opposite direction. Higher numbers of cross-
ings, all with the same sign, are formed in this way.

Two arbitrary tangles, T1 and T2, can be combined in a number of formal
ways. The first is addition, denoted T1 + T2. The sum is formed by joining the
NE point of T1 to the NW point of T2 and the SE point of T1 to the SW point
of T2. The new tangle formed has the NW and SW points corresponding to the
respective points in T1 and NE and SE points corresponding to the respective
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NENW

SW SE
(a) (b) (c)

(d) (e)

Figure 2.9: (a) The tangle 0, shown with the compass points labelled. (b)-(e)
show the ∞, 1, −1 and 2 tangles respectively. This enumeration extends to
higher numbers of crossings in the obvious way.

points in T2.
The multiplication of tangles is denoted T1 · T2 = T1T2 which is also called

the product of the two tangles. Unlike addition, multiplication requires an oper-
ation on T1 before combining the two tangles. This operation is T 7→ −T which
takes a tangle to its reflection in the line from the NW to SE points. The product
of two tangles is defined as T1T2 = (−T1) + T2.

The third binary operation on tangles is ramification. This is defined as
T1, T2 = (−T1) + (−T2) = −T1 − T2. These three operations are illustrated in
figure 2.10.

A tangle forms a knot by joining the points on the circle to each other with
two curves that remain outside of the circle. The numerator closure is given
by joining the northern points together and similarly the southern points. The
denominator closure given by joining the two eastern points to each other as
well as the two western points to each other. It is the numerator closure we
assume and use through out.

It is not possible to represent every knot and link using the three operations
defined so far. Conway lists a set of graphs, called polyhedra, with each ver-
tex having valency four. The vertices, labelled 1 . . . n, are then replaced with n
tangles T1 . . . Tn, joined as defined in Conway’s paper. Each tangle is separated
by . for example 6∗a.b.c.d.e. f . The polyhedron 6∗ is shown in figure 2.11. Two
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(a) (b)

(c)

Figure 2.10: The three operations to combine tangles in Conway notation : (a)
summation, (b) product and (c) ramification. The word “Tangle” shows the ori-
entation of the tangle within each unit being combined.

Figure 2.11: The graph of the six vertex, four-valent polyhedron represented by
the symbol 6∗ in Conway notation. The orientation of the tangles placed in at
each vertex is shown with the word “Tangle”.
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distinct graphs with six vertices are required, additionally 6∗∗, along with one
for both eight and nine vertices. The tabulation of knots of up to eleven cross-
ings and links up to ten crossings, requires three graphs with ten vertices and
one with eleven vertices to describe them all in Conway notation. These graphs
have no unique notation outside of Conway’s tabulation. The symbol : is used to
contract several 1’s for example 8∗2.1.3.4.1.1.5.1, a knot on an eight vertex graph,
becomes 8∗2 : 3.4 : 5 :.

The simplest polyhedron is the 1∗, which admits just one tangle.

Definition 2.7 (Algebraic Knot (Conway)). Knots and links formed by the numer-
ator closure of a tangles formed on the simplest polyhedron, 1∗, are the algebraic knots
and links in the sense of Conway. These knots are also called rational knots, explained
in section 2.7 and the equivalent definition 2.14.

We display the Conway notation of rational knots (knots algebraic in the
sense of Conway) in [] brackets. These knots are formed by only combining tan-
gles using the product operation on tangles formed on 1∗ graphs. These knots
and links are discussed in the later section 2.7. If a knot is not rational, the knot
is called non-algebraic (in the sense of Conway) or polyhedral.

The figure-8 knot is a rational knot with Conway notation [2 2]; however
the related Borromean rings are not rational with Conway notation 6∗. The Bor-
romean rings are hence a polyhedral link. The Borromean rings are realised in
this tangle language by placing the tangle “1” on all the vertices of the graph 6∗.
This cannot represented as a sequence of products of tangles.

2.3 Braids and Complex Functions with Braided Zeroes

An important step in our work to consider functions with knotted zeroes are
functions with zeroes that form braids. The abstract group definition of braids
has remarkable geometric and topological interpretation which allows us to use
group theoretic properties to describe a knot, yet use the simpler braided func-
tions.

Definition 2.8 (Braid Group [Bir74]). The braid group, of n strands, denoted Bn, is
the group with n− 1 generators, σi, with the following relations,

σiσj = σjσi when |i− j| ≥ 2 (2.5)

σiσi+1σi = σi+1σiσi+1 when i ≤ n− 2. (2.6)

We refer to equations (2.5) and (2.6) as BR1 and BR2 respectively. A braid
word, b, is a sequence of l generators and has length l. We refer to each element
in a braid word as a letter.
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It is the geometric interpretation of braids that makes them a powerful tool.
The motion of n particles in R3 moving between two parallel (x, y)-planes such
that z is always increasing monotonically, an example of which is given in fig-
ure 2.12, trace out as their trajectory a set of strings which forms the braid. The
motion is described, without loss of generality, between the z = 0 and z = 1
plane and the motion in z is always increasing, not stationary or reversed. The
strings do not intersect. The particles’ initial locations are positioned with in-
creasing x coordinate and arbitrarily in y. As z increases the particles move to a
point in z = 1 such that it is opposite one of the starting positions in the z = 0
plane. This action takes the set of n points in the z = 0 plane (xi, yi, 0) to the set
(xi, yi, 1). In such a motion, they remain distinct, never touching each other. The
path that is taken by each particle is considered as a piece of string leading to n
strands that twist around each other.

Choosing a fixed viewing direction, the braid strands pass over and under
each other. These are similar to the crossings of a knot projection and map one
to one to the braid group generators. At a crossing, the two strands involved are
the ith and (i + 1)th position. The ith strand crossing over (i + 1)th corresponds
to the generator σi. Crossings of the opposite sign correspond to the inverse
element, σ−1

i . The list of the crossings in the order they occur leads to a braid
word representing the string’s topology. We additionally use the notation 1 and
1̄ to represent σ1 and σ−1

1 respectively.
Equivalently the particles can be replaced by the zeroes of a complex scalar

function. In the (x, y)-plane, the zeroes move around, never overlapping to form
a point where the multiplicity of the zero increases. The loci of the zeroes as z
varies can form a braid if the conditions above are met.

We illustrate braids contained inside a cylinder. The circular faces contain the
required subset of the start and end planes such that the braid intersects both of
these planes in the periodic fashion described above. We represent the distance
between the parallel faces by h, the height of the cylinder, and this becomes the
parameter for a function describing the transverse position of each braid stand.
We now use h rather than z for this coordinate to make clear in our construction
the difference between the abstract braid space and real space where the knotted
curve exists. An example of a braid enclosed like this is shown in figure 2.12.

To construct functions with knotted zeroes, our initial step is the construction
of complex scalar fields with braided nodal lines. We construct complex func-
tions ph with braided zeroes as follows. For each height h, the braided functions
we construct are factorisable in a formal variable u and have N distinct zeroes
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Figure 2.12: The braid for the word (σ1σ−1
2 )2. The braid is shown contained

inside a cylinder with height coordinate h. The braid is given by the zeroes
of equation (2.7) with sj = cos hj + i sin 2hj, N = 2 and hj = h − 2π j/3. The
strands of the braids follow the Lissajous figure, the lemniscates shown in black,
as h varies.

at positions parameterised by h,

ph(u) =
N−1

∏
j=0

(u− sj(h)), (2.7)

where sj defines the location of the N roots as a function of h. We choose to pa-
rameterise the roots trigonometrically to form Lissajous curves because of a later
use of v from equation (2.3) and its proportionality to eih = cos h + i sin h, allow-
ing us to form Milnor maps, described below. In general, any well-behaved
function can be used to construct ph but we will only use trigonometric func-
tions. These functions give plane curves of the form (cos αh, sin βh) where α, β ∈
N give the number of “loops” in the x and y directions respectively. We choose
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to set α = 1 and hence only have, for β > 1, loops in the x direction. The case
β = 1 leads to a circle, β = 2, a lemniscate and β = 3 the “double lemniscate”.

We require the braids to be periodic in h. This means that for a set of starting
positions at h = 0, {(xi, yi)}, the braids strands end at a point in this set when
h = 1. In the next step, we shall be closing the braid by associating these points
at h = 0 with their corresponding point, their opposite, at h = 1. A strand
starting at a specific member of this set does not have to finish at the opposite
point.

This means we can write equation (2.7) as

ph(u) =
N−1

∏
j=0

(
u−

(
cos hj + i sin βhj

))
. (2.8)

It is now natural with this trigonometric expression to consider the braid to be
formed in the region 0 ≤ h ≤ 2π rather than the more general normalised
0 ≤ h ≤ 1. The (trigonometric) braid being periodic in h means that after each
change of h by 2π, the zeroes in the complex u plane are in the same position as
where they started.

Definition 2.9 (Basic Braid Word). The braid word formed in one h period of equa-
tion (2.8) is the basic braid word of the equation.

The number of strands, N, must be chosen such that as h varies they remain
distinct. For a circular trajectory this is not an issue because the curve does not
self-intersect. For β > 1 the number of zeroes and their respective spacings
needs to be chosen to avoid such pathological situations. This method of con-
structing functions with braided nodal lines we call the Lissajous construction. We
explore the full details of the Lissajous construction are explored in chapter 4.

Geometrically a braid is a set of open ended curves. Our interest in knots
requires closed curves. Alexander [Ale23] showed that any knot or link can be
expressed as the closure of some braid. The closure is formed by joining each
(xi, yi, 0) to their respective (xi, yi, 1) such that the braid encloses a fixed axis.
Obviously, the stands may be in a different order in the end plane to the start
plane. No strands are able to cross the fixed axis. This closure forms the knot or
a link. We denote the closure of a braid word b as b̂.

We form the closure of the braid in the following fashion. The product ph(u)
has trigonometric terms, eih, which are substituted for a second formal variable,
v. This leads to an expression in u, v, v∗, where v∗ is the complex conjugate of v
used to substitute e−ih.

Definition 2.10 (Milnor Polynomial). The Milnor polynomial is the function that is
formed by substituting u, v, v∗ into ph of equation (2.8).
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(b)

A

(c)

Figure 2.13: The two Markov moves. Starting with an initial braid in (a), con-
jugation is given by forming B−1AB in (b) and taking its closure. Stabilization
is the addition of the extra strand and crossing shown in (c), equivalent to a
Reidemeister move type one on the inner loop.

The nodal set of the Milnor polynomial corresponds to the closure of the
braided nodal curves formed by taking u and v as in equations (2.2) and (2.3).
The use of vn and v∗n in the formation of the Milnor polynomial leads to the
closure of n repeats of the basic braid word. We study the details of this closure
along with the Lissajous construction in chapter 4.

In a comparable way to the Reidemeister moves, a closed braid can also be
manipulated in a geometric fashion too. These are the Markov moves and there
are two of them [Man04]. The first is conjugation of A with respect to B. This
operation takes the closure of A and gives the closure of B−1AB as an isotopic
pair. The second move is stabilization of A. This gives as equivalent Â and
the closure of Aσn−1, where A ∈ Bn−2, the braid group of n − 2 strands. The
additional crossing can be positive or negative (by replacing σn−1 with σ−1

n−1).
We make use of stabilization in our work to simplify braid word generated by
our construction.
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2.4 Alexander Polynomials

The problem of identifying knots is that many different knotted curves share
common properties with inequivalent curves. For example, the minimum cross-
ing number of a knot is shared with many different knots as this number in-
creases. Knot theory aims to be able to uniquely determine the knot type of a
given curve, and tell if it is topologically distinct from another curve. One kind
of invariant that improves on what we have seen are knot polynomials.

A knot polynomial does not describe the curve itself; it is not a function
that can be used to directly draw the knot. They encapsulate in their coeffi-
cients information about the complement of the knot and its properties. Here
we introduce the Alexander polynomial of a knot [Ale28]. We now give a descrip-
tion of the Alexander polynomial and outline our algorithm for calculating it as
well as discussing further knot polynomials, the Jones [Jon85] and HOMFLY-PT
[FYH+85, PT87] polynomials. We begin our description by requiring the notion
of the group of a knot.

Definition 2.11 (Knot Group [CF63]). The group of a knot is the fundamental group
of the complement of the knotted curve K, π1(R3 \ K, p) where p is a fixed base point
not on K.

This could equally be defined using the complement in S3 but we use the no-
tations and descriptions of Crowell and Fox [CF63] and Fox [Fox62] throughout
this section.

For a knot, a set of curves which can be used to define the knot group can
be found by considering a projection of the knot. In between each crossing of a
projection, the curve is split into arcs. Let a loop start and end at p be such that
it has an arc of the projection “thread” through it. We call such a loop a homotopy
curve. Labelling the arcs sequentially following the orientation of the knot, each
arc has an associated homotopy curve xi. Figure 2.14 shows this for the trefoil
knot.

The number of required curves, labelled xi, to define the knot group can be
reduced with the following relation

xjxix−1
j = xk, (2.9)

which involves one crossing in the projection and where j corresponds to the jth

arc, the over arc, orientated such that two under arcs, the ith and kth are on the
left and right respectively, as in figure 2.15.

Using this relation, a presentation for the knot group can be given, involving
a set of relators ri = 1, created by using the relation in equation (2.9). Ideally
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Figure 2.14: The process of constructing the Alexander polynomial for the trefoil
knot. We show the three possible homotopy loops from a base point p : x1, x2, x3.
The respective arcs of the projection are also labelled 1, 2, 3. The loop x3 around
arc 3, can be written in terms of the other two homotopy loops such that x3 =
x1x2x−1

1 .

this set of relations will be as simple as possible, eliminating as many of the xi

as possible. To arise at the Alexander polynomial, we need to introduce the free
derivative, as used in both Crowell and Fox [CF63], and Fox [Fox62]. This is a
form of calculus that acts on the elements (words) of the homotopy group π1

and returns elements of an integral group ring of a free group, which consists of
polynomials of elements of π1 [Fox53].

Definition 2.12 (Free Derivative [Fox62]). For a word w = xε1
j1

xε2
j2

. . ., an element of
the fundamental group in our case, the free derivatives are the

∂w
∂xj

= ε1δjj1 x
1
2 (ε1−1)
j1

+ ε2δjj2 xε1
j1

x
1
2 (ε2−1)
j2

+ . . . (2.10)

where δjji = 0 when j 6= ji and equals 1 when j = ji.



54 INTRODUCTION TO KNOT THEORY

Figure 2.15: The relation for reducing the number of distinct homotopy loops
required to create a presentation for the knot group. The jth arc is the over-arc
and it has an orientation defined on it. The ith and kth arcs form the under strand
and their order and orientation are not required for xk = xjxix−1

j .

We now give an example of the free derivative, with word w in a group with
two generators, x1 and x2, where w = x1x2x−1

1 x2x1x−1
2 :

∂w
∂x1

= 1− x1x2x−1
1 + x1x2x−1

1 x2 (2.11)

∂w
∂x2

= x1 + x1x2x−1
1 − x1x2x−1

1 x2x1x−1
2 (2.12)

The free derivatives of the knot group presentation’s relations are now used
to map from homotopic loops (elements of the fundamental group) to a homo-
logical loop which is an element of a homology group, which the Alexander
polynomial will represent. To do this, we require a Jacobian matrix J of the free
derivatives of the relations. This is formed as

J =


∂r1
∂x1

. . . ∂r1
∂xn

...
. . .

...
∂rm
∂x1

. . . ∂rm
∂xn

 . (2.13)

This matrix J is next abelianized, by mapping each of the xi to t. The vari-
able t will form the formal variable of the Alexander polynomial. For a knot
group, this final group created is the first homology group of the knot comple-
ment, H. The abelianized J is called the Alexander matrix, we denote A. The
minors of the Alexander matrix define ideals in the polynomial ring, of polyno-
mials in formal variable t in the group H. The minors of size n− 1 give gener-
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ators for the Alexander ideal. Each of these generators is an Alexander polynomial,
∆(t), for the knot and are all the same up to a factor of ±tλ, λ ∈ Z a constant.

We now give a worked example from Fox [Fox62] for computing the Alexan-
der polynomial of the trefoil knot, ., from its knot group. The trefoil has three
crossings (minimum number) and hence it has three arcs in its projection. This
gives rise to three homotopy loops, x1, x2 and x3 = x1x2x−1

1 , shown in fig-
ure 2.15. The fundamental group can be written with presentation

π1(.) = {x1, x2 : x1x2x1 − x2x1x2 = 0}. (2.14)

This gives one relation which can be written as

r = x1x2x1x−1
2 x−1

1 x−1
2 = 1. (2.15)

This means that the Jacobian matrix, J , is a 2× 1 matrix, two columns for the
two generators x1 and x2, and one row for the one relation r. The Jacabian is
hence

J =
(

∂r
∂x1

,
∂r

∂x2

)

= (1− x2 + x1x2,−1 + x1 − x2x1) , (2.16)

which when abelianized with by letting xi → t, becomes the Alexander matrix
A,

A =
(
1− t + t2,−1 + t− t2) . (2.17)

The Alexander polynomial is given by any minor, a 1× 1 entry in this case

∆(t) = 1− t + t2. (2.18)

Both minors are equivalent to equation (2.17) up to multiplication of −1.
In constructing the Alexander polynomial we have moved from working

with homotopy to working with homology. The Alexander polynomial de-
scribes a homological loop that transverses different levels in the infinite cyclic
cover of the knot [Rol76, p. 162]. An image of the homotopy base point exists
in each level of the cover. Moving from level to level is akin to passing though
the Seifert surface of the knot. Seifert surfaces are two-dimensional manifolds
that have the knot as their boundary ; we introduce them in section 2.5. Within
each level, a homological loop is able to move freely without affecting the parts
of the curve that exist in different levels. The Alexander polynomial describes
the structure of loops in the infinite cyclic cover that can be annihilated by a
single curve. Each term of the Alexander polynomial, ti, describes what level
in the cyclic cover the action is occurring. The coefficients, ai, describe how
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Figure 2.16: An illustration of the loops the Alexander polynomial of the trefoil
knot describes and how they can be annihilated. The black loops, exist indepen-
dently in the three levels of the infinite cyclic cover, at levels 0-2. The Alexander
polynomial, ∆(t) = 1− t + t2, describes that the “annihilator” loop can make
trivial one positive loop in the 0th level, the coefficient of the t0 term, one loop
of negative orientation in the first level and one positive orientated loop in the
second. This process is shown by the red curve.
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many loops, and of what sign, can be annihilated. The Alexander polynomial
describes the annihilator of loops in the infinite cyclic cover of the knot it has
been constructed for. This annihilator is shown in figure 2.16 for the trefoil knot
to conclude the construction of the Alexander polynomial for that knot.

The Alexander polynomial is a symmetric polynomial. This means that for a
polynomial of order n, the coefficients are such that a0 = an, a1 = an−1 . . . Only a
half list of coefficients need to be given to define the polynomial and this is often
the only information tabulated, for example the tables in Rolfsen [Rol76]. Tradi-
tionally, if the Alexander polynomial is expressed fully, it is given as a symmetric
Laurent polynomial, and hence the polynomial ring arising in the construction
is the ring of Laurent polynomials with integer coefficients.

Jones and HOMFLY-PT Polynomials

The Alexander polynomial is not a perfect discriminator of knots. The knots 61

and 946 share the same Alexander polynomial. For knots with eight or less cross-
ings, the Alexander polynomial does distinguish all thirty-six cases. Clearly bet-
ter methods of identifying knots are required.

The Jones polynomial V(q), [Jon85], gives an improvement in knot identi-
fication over the Alexander polynomial. The difference in dates of Alexander
1928, and Jones 1985, shows the difficulty in the problem of knot identification.

The Jones polynomial is in a formal variable q
1
2 and for knots this computes to

integer powers of q. However, this polynomial faces difficulties in determining
all knots. The knots 51 and 10132 share the same Jones polynomial. This is an
improvement of an additional 214 knots over the Alexander polynomial before
a repeat is found.

In chapter 4 we use the Jones polynomial to predict the knots and links
created by our nodal knot construction of that chapter. Although a combina-
toric method can be used to compute the Jones polynomial, we use the software
“KnotTheory”, a Mathematica program from [BNM10].

The final knot polynomial we consider is the HOMFLY-PT polynomial. This
was found independently by [FYH+85] and [PT87].2 The former paper is the
amalgamation of four separate papers submitted with four different methods
and interpretations! The latter was sent at a similar time but sent to the different
journal.

The HOMFLY-PT polynomial is a two variable polynomial, H(a, z). It is re-
lated to both the Alexander and Jones polynomials. These can be recovered by
∆(t) = H(1, t

1
2 − t

−1
2 ) and V(q) = H(q, q

1
2 − q

−1
2 ) respectively. This relationship

2HOMFLY-PT is an acronym of the authors of [FYH+85], (Hoste, Ocneanu, Millett, Freyd,
Lickorish, Yetter) and PT from Przytycki and Traczyk [PT87].
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between the three polynomials means that although two knots may have the
same Alexander or Jones polynomial, the HOMFLY-PT polynomial may distin-
guish the knots, but not necessarily. If two knots have the same Alexander and
the same Jones polynomial, then the HOMFLY-PT polynomial is the same for
both knots. This is the case for the 51 and 10132 knots.

Computing the Alexander Polynomial

The Alexander polynomial of a knot is computationally less involved than the
equivalent Jones or HOMFLY-PT polynomials. Here we implement the method
of Alexander [Ale28]. Orlandini and Whittington in [OW07] present the method
used in the investigation of [ODP00] and Şimşek et al present an alternative
in [ŞBY04].

Our approach is that of Alexander [Ale28] and we use the PD-notation of a
knot projection as the input to the algorithm. To create the matrix required, we
need the faces (or regions) of the projection to be found. This is so that their
location with respect to each vertex can be correctly assigned. This is done by
considering adjacent edges at a crossing that form a corner of the face, repre-
sented by the ordered pair {a, b}. This can be any consecutive edge labels from
one crossing, such that you turn right when going from edge a to edge b. The al-
gorithm looks for what the next possible corner is, that continues to make a right
turn. Unless a crossing is removable by a Reidemeister type one move, which
is normally pre-removed from the input, there are two possibilities for the next
edge on the face boundary.

The next edge is chosen to continue round the face so that the edge chosen
does not relate to the crossing it has just passed through. This process continues
until an edge is found that is related to the first crossing considered. A look up
table is formed of the location of the face with respect to each crossing as they
are found. Once the maximum number of faces is found, number of crossing
plus two, the algorithm halts its search process and this avoids double counting.

The matrix from which we compute the Alexander polynomial, the incidence
matrix, is constructed by placing the values ±1,±t as appropriate. The look-up
table is used to remove columns from the incidence matrix that relate to adjacent
faces. As a check, the algorithm will not remove faces bounded by a single edge,
even though it can be assumed that crossings that lead to this situation have
already been removed.

The determinant of the modified incidence matrix is computed. It is for this
reason that we desire as many crossings that can be removed prior to entering
the algorithm are removed as computing determinants is expensive computa-
tionally. The result is returned as a list of integers, representing the coefficients
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-t 1

t -1

Figure 2.17: The designation of the terms±t and±1 in constructing the Alexan-
der polynomial from a projection. The orientation of the under arc is not impor-
tant in the calculation. This is comparable to constructing a presentation for the
knot group, see figure 2.15.

of the Alexander polynomial. This list is checked to ensure the central element is
positive, and the list multiplied by −1 if necessary. The Alexander polynomial
is symmetric, hence only the need for the coefficient list to be returned. This also
removes the need for the correct power of±t to be found by which to divide the
determinant.

2.5 Fibred Knots

Now we have a method for constructing knotted zeroes in functions, we ask
can these knots be realised as optical vortices? Or is there a prohibition from a
property of the knot that restricts this physical realisation? We now look at such
a property of a knot, the Seifert surfaces and relate this to optical situations.

A knotted curve has codimension two in its embedding space. To introduce
fibred knots, we first consider the properties of the codimension one objects.
These are two-dimensional manifolds and have the knot as their boundary. Such
a manifold is a candidate to be a Seifert surface for the knot. If a manifold M2 ⊂
S3 such that ∂M2 = K is connected, orientable and compact, then it is a Seifert
surface for the knot [Rol76, p. 118]. The surfaces normally considered have
the lowest possible genus. The genus of an oriented surface is the maximum
number of closed curves that can be removed from the surface, such that the
remaining surface is still connected. The genus of a sphere is zero and that of a
torus is one. The minimal genus of a Seifert surface is the genus of the knot and
is a knot invariant. The genus of the Seifert surface of a torus knot Tm,n, is given
by 1

2 (m− 1)(n− 1) [Rol76, p. 122].
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f−1(U)
h

> U × F

U
projection<

f >

Figure 2.18: The properties of a fibration require that this diagram commutes,
the functions and spaces are defined in the text.

We are now interested in a class of knots that have certain properties of their
Seifert surfaces. Let f be a map between two topological spaces, f : E → B
where E is known as the total space and B as the base space. There is also an
associated space, F, the fibre. For all points b ∈ B, assign a neighbourhood U
such that h : f−1(U) → U × F as in figure 2.18. If given U and h, a homeo-
morphism exists for each b and the diagram in figure 2.18 commutes, then f is a
fibration [Rol76, p. 323], where the projection map is (u, x) 7→ u. The sets f−1(b)
are the fibres of the map f and are each homeomorphic to F.

Definition 2.13 (Fibred Knot [Rol76]). If a fibration, f , can be found for E = S3 \ K
and B = S1, then K is a fibred knot. It is also required that f when restricted to a tubular
neighbourhood of the knot S1 × D2 \ 0 is the map to S1 given by (x, y) 7→ y

|y| where
y ∈ D2 \ 0 which is a punctured disk. A fibred link has the same definition but with K
replaced by L a link.

If K is a fibred knot, then for x ∈ B the base space, each of the f−1(x) ∪ K is
a 2-manifold with the knot as its boundary. This is a Seifert surface for the knot.
In this case, they do not intersect except on the knot and they fill all space. Each
Seifert surface can be parameterised by an angle in [0, 2π) arising from such a
description of S1.

It is this property that interests us in seeking optical fields with knotted nodal
lines. Optical fields have two-dimensional surfaces that are orientable and rep-
resent all phase labels in [0, 2π). These are the surfaces of constant phase, or
wavefronts. The wavefronts only intersect on vortex lines and hence have any
knotted (or otherwise) vortex line as their boundary. For this reason, it is the
fibred knots that we consider to create as optical phase singularities.

Fibred knots arise in singularity theory. The case for classical dimensions
is explored here, although it can be to n-dimensional spaces. Let f (u, v) be a
polynomial with u and v being complex variables, that is not constant. The
nodal set (the zero set) of this polynomial is V = {(u, v) : f (u, v) = 0} = f−1(0)
and is a complex hypersurface. Around a critical point of f , where ∂ f

∂u = ∂ f
∂v = 0,
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a small 3-sphere, denoted Sε, is centred about the point. The intersection formed
V ∩ Sε is a fibred knot [Mil68].

Fibred knots are detectable from the coefficients of their Alexander polyno-
mial. The Alexander polynomial of a fibred knot is monic [Rol76, p. 326]. A
monic polynomial has first and last (non-zero) coefficients equal to ±1. This
property gives the Alexander polynomial an advantage over the other knot
polynomials in our work because it detects an important property in our work.

Not every knot is a fibred knot. All of the torus knots are fibred, as well as
the figure-8 knot. It is however early on in the knot tabulation that examples of
non-fibred knots are found. The knot 52 is not fibred.

The braid representation of a knot can be used to detect whether a knot is
fibred or not. A homogeneous braid of n strands is one in which each of the
n − 1 generators appears in the braid word, each time at the same power, ±1.
The braid σ1σ−1

2 is homogeneous. By Stalling’s theorem [Sta78], the closure of a
homogeneous braid is a fibred knot.

2.6 Knots which are Algebraic in the sense of Milnor

In complex scalar fields, linked nodal lines are readily obtainable when the com-
ponents themselves are unknotted. A single zero ring can be created as ψ = u(r)
where u is defined in equation (2.2). The location of the ring can be moved ar-
bitrarily while maintaining the topology of the ring. Two rings can be placed
by forming ψ = (u + v)(u− v) = u2 − v2, where v is as in equation (2.3). This
forms the Hopf link. Chains of linked zeroes can be formed using this method
by a simple extension. These chains are fibred links as the unknotted curve of
each component is fibred; links consisting of components that are all fibred, are
fibred links [Sta78].

The above polynomial in u and v generalises to the form um − vn which has
a (m, n)-torus knot (or link) as its nodal set. Brauner [Bra28] gives this as a
knot in S3 arising from the intersection of the pre-images of zero with a small
3-sphere. This intersection lies in the torus of all points (u, v) where |u| = ξ

and |v| = η where both ξ and η are constants [Mil68]. The knot is then the set
K =

{
(ξeinθ , ηei(mθ+ π

n )) : 0 ≤ θ < 2π
}

. Functions such as um − vn are algebraic

C2 → C functions. The torus and cable knots can be constructed from mappings
of this form.

We therefore need to consider polynomials of a more general form to create
a more varied range of knots. The case of functions C2 → C are not the only
way knots can arise. Functions that are algebraic R4 → R2 functions, not re-
quiring the complex structure of above, can also realise knots in their zero set.
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(a) (b)

Figure 2.19: (a) The figure-8 knot of Perron, given in equation (2.19). Here,
ρ2 =

√
2 as in [Per82]. (b) The figure-8 knot of Rudolph, given in equation (2.20).

Both plotted curves are the zero (nodal) set of their respective functions.

Looijenga [Loo71] gives that a fibred knot arising from an isolated polynomial
singularity of a function of the type R4 → R2 cannot be homeomorphic to a
fibred knot arising from an isolated holomorphic singularity of a C2 → C func-
tion. Grothendieck’s3 work in this area gives that the Alexander polynomial
of a fibred knot arising from an isolated holomorphic singularity of a function
C2 → C is always cyclotomic. The roots of a cyclotomic polynomial are roots
of unity. In this case the Alexander polynomial is multiplied by the appropriate
power of t to remove negative powers of t.

This is another reason for using the Alexander polynomial instead of other
knot polynomials and invariants; it detects what type of function realises the
knot. The figure-8 knot is fibred with Alexander polynomial (multiplied by t),
t∆(t) = t2− 3t + 1. This is not cyclotomic, however the trefoil knot ( (2, 3)-torus
knot) has t∆(t) = t2 − t + 1 which is cyclotomic. This is consistent with our
polynomial u2 − v3 being a function C2 → C.

Perron [Per82], gives an explicit form for the figure-8 knot, as a function
R4 → R2:

F(x, y, z, t) = (zρ2 + x(8x2 − 2ρ2,
√

2tx + y(8x2 − ρ2)) (2.19)

where ρ2 = x2 + y2 + z2 + t2. The set V = F(x, y, z2 − t2, 2zt) ∩ S3
ε, where S3

ε is a
3-sphere in R4 with a small radius centred on the origin in R4, gives rise to the
knotted curve. The expression requires replacing z and t with the real and imag-
inary parts of the complex variable v2 where v = z + it. Using v2 allows for the
figure-8 knot to be realise; the cube, v3, gives rise to the Borromean rings. This

3We believe this result to be in Grothendieck’s Séminaire de Géométrie Algébrique du Bois
Marie.
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comes from the underlying braid being generated by equation (2.19); we study
this braid in sections 3.3 and 4.2. Writing solely in coordinates of C2, with addi-
tionally u = x + iy, this becomes a complex function in R3 once equations (2.2)
and (2.3) are substituted for u and v respectively. The higher powers of the braid
word have the z and t expressions substituted for Re(z + it)n and Im(z + it)n re-
spectively. The figure-8 knot curve formed is shown in figure 2.19(a).

Akbulut and King [AK81] prove that every knot arises from considering such
intersection of algebraic sets in R4. The algebraic sets can be taken as the inter-
section of a small sphere around a singularity of a function R4 → R2. Hence
all knots are algebraic in a real sense. This does not provide a restriction on the
knots that are accessible to us.

A further class of functions are those of type C×R2 → C. Rudolph in [Rud87]
gives an expression for the figure-8 knot (and other multiples of its basic braid
word) as

qrudolph(u, v, v∗) = u3 − 3(vv∗)2(1 + v− v∗)u− 2(v + v∗). (2.20)

When v is taken as v2 the zeroes of this function are the figure-8 knot, with
vn giving the higher powers of the basic braid word. The curve is shown in
figure 2.19(b).

We believe that the type of function required to realise knots in the above
fashion, allows us to think of knots existing in three categories, detailed in ta-
ble 2.3. This classification is based on the type of braid word that the knot allows
to describe it. Knots that admit a strictly positive braid word, all letters in the
word with positive power, are the torus and cable knots. Fibred knots allow
a braid word of homogeneous type, each occurrence of a specific word σi al-
ways occurs raised to a power of the same sign. Outside of these two classes
are the non-fibred knots, which do not have any such restrictions on a specific
form of braid word being admissible to represent them. This classification is or-
dered. A torus knot can be given a non-strictly positive braid representation and
a inhomogeneous braid word. Hence, if a knot is in the set of torus and cable
knots, then the knot is in the set of fibred knots and in the set of all (including
non-fibred) knots. The figure-8 knot is in the homogeneous and inhomogeneous
braid word sets but is not a torus or cable knot and cannot be given a braid word
that is strictly positive. It is knots with Milnor-like maps of type C×R2 → C

that we believe are accessible to us via the constructions we present in later
chapters.
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Braid representation admit-
ted by knot

Knot Class Milnor-like Map

Strictly Positive Torus and Cable Knots C2 → C

Homogeneous Fibred Knots C×R2 → C

Inhomogeneous Non-fibred knots R4 → R2

Table 2.3: Our classification of knots via the braid representation they admit.
The classifications are as described in the main text.

2.7 Knots which are Algebraic in the sense of Conway

The Conway notation [Con70] of a knot is sufficient to determine if a knot or
link is algebraic by Conway’s definition, given by us in definition 2.7.

Definition 2.14 (Algebraic in the sense of Conway). A Knot is algebraic in the
sense of Conway if its Conway notation is made of products of the n-crossing tangles.
Such Conway notation is of the form [t1t2 . . . tn] where the ti are basic tangles defined
on page 44 and explained in figure 2.9.

Such knots are also called rational knots. Knots of this form have an invariant
that is calculated from the list of tangles, the rational fraction of the knot. Hence,
algebraic knots are also called rational knots.

The rational fraction is a continued fraction

R(knot) = an +
1

an−1 +
1

an−2 +
1

an−3 + . . .

(2.21)

where [a1, a2, . . . , an] is the Conway notation for the tangle.

Theorem 2.15 (Equivalence of rational knots with the same rational fraction
value [Con70]). If two rational knots (or links) formed by the closure of different ratio-
nal tangles have the same rational fraction, then they are equivalent by ambient isotopy.

Proof. Conway in [Con70] admits a proof of his theorem. A proof can be found
in Goldman and Kauffman [GK97].

Rational knots coincide exactly with the class of 2-bridge knots. We now dis-
cuss bridge numbers of knots to understand some results about 2-bridge knots.
Normally, a knot is considered completely projected onto a plane, but here con-
sider a plane that the knot intersects several times, but in which a projection of
the knot either side of the plane can be formed. The intersection points of the
knot and the plane are called vertices with arcs the part of the knot between
vertices. The knot is manipulated, by ambient isotopy, such that if all the arcs
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Figure 2.20: The trefoil knot in a projection showing that it is a 2-bridge knot
because of the two over arcs above the grey plane.

above the plane are projected onto it, they are unknotted and do not intersect.
Similarly for the arcs below the plane. This coincides with an arc above the
plane crossing the maximal number of arcs below the plane before intersecting
the plane. Any further crossings of the arcs would have to be on the same side
of the plane but this is not allowed. The number of arcs which can achieve this
in the given projection is the bridge number of the projection.

Definition 2.16 (Bridge Number). The bridge number, b(K), of the knot is the least
value possible for the number of bridges, over all projections, and is equal to half the
number of intersections of the plane in such a projection. A knot is said to be an n-
bridge knot when n = b(K).

Figure 2.20 shows the trefoil knot projected such that it can be seen that it is
a 2-bridge knot.

Knots that are algebraic in the sense of Conway arise in our tabulation of
knots that have been successfully created as nodal sets of paraxial functions. In
chapter 4 we use the Conway notation of these rational knots and links, and pat-
terns within a list of knots, to create families of knots based on similar notations.
It is these families that our constructions seek to generalise with the Lissajous
construction.





Vortex Knots in Gaussian
Beams 3
We now apply the theory of the previous chapter to construct a variety of func-
tions that contain as their nodal set a desired knot or link. Following the out-
line of [DKJ+10], we introduce a scheme to construct solutions of the paraxial
equation which are used to construct functions that contain the desired nodal
topology and satisfy the paraxial equation. We construct explicit Milnor poly-
nomials from the Lissajous construction before introducing a scheme to embed
the Milnor polynomial’s nodal topology into solutions of the paraxial equation.
We construct a family of polynomial solutions to the paraxial equation, paraxial
polynomials. These polynomials are used to construct functions with our knot-
ted nodal set as solutions of the paraxial equation. These paraxial polynomials
are finally expressed as superpositions of Laguerre-gaussian laser modes which
have been experimentally implemented. This chapter introduces several con-
cepts which we study in detail in later chapters, both in the construction of
functions with knotted nodal sets and the implications for the nodal topology
when embedded as a solution of the paraxial equation.

3.1 Milnor Polynomials

In chapter 2 we constructed functions with their pre-image of zero a periodic
braid. We now construct braids where the trajectory of the strands follows first
a circle, and secondly a lemniscate. The two products formed with these zero
sets are

pcircle(u) =
1

∏
j=0

[u− (cos (h + π j) + i sin (h + π j))] , (3.1)

and

plemniscate(u) =
2

∏
j=0

[
u−

(
cos

(
h +

2π j
3

)
+ i sin

(
2
(

h +
2π j

3

))
/a
)]

. (3.2)
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(a) (b)

Figure 3.1: The braids generated from equations (3.1) and (3.2) shown in (a) for
the circular trajectories and (b) for the lemniscate trajectory respectively. The
h direction is vertical, in the direction of the arrow points (both ways) and the
black trajectories show the two dimensional projection of the braid strands in
the u plane. The arrow’s length indicates the basic braid word, σ1, which is
repeated three times for the circular trajectory and σ1σ−1

2 , repeated twice for the
lemniscate trajectory. These braid words represent the trefoil and figure-8 knots
respectively.

We set a = 2 in this chapter and the effects of this real parameter a are studied in
chapter 4. The circular braids with two strands have a basic braid word σ1 and
the lemniscate based braids with three strands have basic braid word σ1σ−1

2 .
These braids are shown in figure 3.1, for three repeats of the circular trajectory
and two repeats of the lemniscate trajectory. The closure of these braids, σ3

1 and
(σ1σ−1

2 )2, are the trefoil and figure-8 knot respectively.
These products can be written in terms of exponentials, and letting v = eih,

we form functions in formal variables u and v. The number of repeats of the
basic braid word depends on the power of v and hence v is replaced with vn

where n is the number of repeats of the basic braid word. This gives rise to

qcircle(u, v) = u2 − vn (3.3)

qlemniscate(u, v) = 64u3 − 12u(2vn + 2v∗n + 3)

−(14vn + 14v∗n + v2n − v∗2n). (3.4)

We now take the Milnor map of the respective q functions in equations (3.3)
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and (3.4). This procedure is performed by setting u and v to the functions in
equations (2.2) and (2.3). The height coordinate of the braid cylinder is smoothly
mapped to the azimuthal coordinate of the torus in the closure of the braid. This
creates a complex function of position r. We take this complex function over a
common denominator which gives a polynomial in x, y, z. This polynomial is
the Milnor polynomial, definition 2.10. We require a polynomial function, not
a rational function, to enable us to re-write the function at z = 0 in terms of
another basis, then apply its z-dependence to let this newly formed function
satisfy the paraxial equation (and in later chapters other PDEs).

The Milnor maps of equations (3.3) and (3.4) give rise to their respective
Milnor polynomials

ftrefoil(r) = {(R4 − 1)(R2 − 1)− 8R3e3iφ}+ 4iz(R4 − 1)

+z2(3R4 − 6R2 − 5) + 8iz3R2 + z4(3R2 − 5) + 4iz5 + z6,

(3.5)

and

ffigure-8(r) = {28R8 − 8(19e2iφ + 19e−2iφ + 25)R6

−(7e2iφ + 19e−2iφ + e4iφ − e−4iφ)R4

+8(5e2iφ − 19e2iφ + 25)R2 − 28}

+24i(13− 25R2 − 8e2iφR2 − 25R4 − 8e2iφR4 + 13)z

+(121− 14e2iφR2 − 38e−2iφR2 − 171R4 − 38e2iφR4

−38e−2iφR4 + 14R6)z2

−8i(139 + 214R2 + 24e2iφR2 − 117)z3

−8(267R2 + 19e2iφR2 + 19e−2iφR2 − 21R4)z4

−8i(139− 117R2)z5 − 8(121− 14R2)z6 + 312iz7 + 28z8,

(3.6)

where the numerator of the Milnor map is taken from the function over a com-
mon denominator. The {•} emphasises the part of the Milnor polynomial that
is not z-dependent and remains upon setting z = 0 and hence defines f in the
z = 0 plane. This plane is used later in this chapter to build functions that sat-
isfy the paraxial equation and in chapter 5, the Helmholtz equation. The nodal
sets of the respective f are the trefoil and figure-8 knots. In the (R, z)-plane as φ

varies, the geometry of the braid trajectories is not necessary the same as before
taking the Milnor map, although topologically they are equivalent. The lemnis-
cate of the figure-8 knot can be seen to have lost the symmetry in the size of the
loops in figure 3.2(b) (the black curve). (R, z)-plane projections are considered
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(a)

(b)

Figure 3.2: The closure of the braids in figure 3.1 formed by taking the Mil-
nor maps of the respective braid functions corresponding to equations (3.5)
and (3.6). The cylinder enclosing the braids in figure 3.1 is mapped to the torus
and the knots are contained within the solid torus (not on the surface like a torus
knots). The disks show the join of the ends of the cylinders under closure and
the black curves show the image of the braid trajectories in the u-plane under
the Milnor map. The strand colours are the same as in figure 3.1 and (a) shows
the trefoil knot and (b) shows the figure-8 knot. The z-axis is the central torus
axis and the z = 0 plane intersects the equatorial plane of the tori.
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further in chapter 4 on the study of constructing Milnor polynomials for more
general Lissajous figures.

3.2 Paraxial Polynomials

Milnor polynomials do not satisfy the paraxial equation (1.19). We require a
method of constructing functions that satisfy the paraxial equation that also in-
herit the nodal topology of the Milnor polynomials. As an intermediate step we
now construct a specific set of solutions, the paraxial polynomials, which we use
to achieve this topological embedding.

The Laguerre-gaussian modes, introduced in chapter 1, are solutions of the
paraxial equation. Properties of these solutions make the initial investigation
into paraxial nodal knots difficult. The Gouy phase term and the overall Gaus-
sian factor contribute to additional zeroes in the field away from the vortex knot
in question being introduced. Ultimately we desire our knots to be embedded
in such physical solutions but we begin this chapter with the construction of so-
lutions which do not introduce these effects. These are the paraxial polynomials.
Linear combinations of these polynomials are created in the next section, based
on Milnor polynomials, to obtain solutions of the paraxial equation that contain
a knotted nodal set.

Polynomial solutions to wave equations have been considered before, al-
though not directly for the study of optical vortex topology. The case of poly-
nomials satisfying the Helmholtz equation has been used by Nye [Nye98] and
Berry [Ber98]. Both papers use the polynomials to consider properties local to
singularities of wave fields. Both Dennis [Den01] and Berry and Dennis [BD01b]
have used expansions of non-polynomial solutions to the Helmholtz and parax-
ial equation to generate the respective polynomial families. We now derive for
the paraxial equation, polynomial families based on both the cylindrical-polar
and Cartesian coordinate systems. These coincide with the results of expanding
known solutions to the paraxial equation [Den01].

We begin by deriving the Laguerre differential equation [AS64] from the
paraxial equation. Beginning with the paraxial equation (1.19), in cylindrical
coordinates

ψRR +
1
R

ψR +
1

R2 ψφφ + 2ikψz = 0, (3.7)

where subscripts represent derivatives, we consider solutions of the form

ψ(R, z, φ) = Rleilφ f (R, z), (3.8)

where l > 0 is an integer. Substituting this into equation (3.7) we get

R2 fRR + (2l + 1)R fR + 2ikR2 fz = 0. (3.9)
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We now make a change of variables

R→ ρ = R2, z→ ζ = −2iz
k ,

and let f (R, z) = F(ρ, ζ), which after taking out a common factor of 4ρ allows
us to write,

ρFρρ + (l + 1)Fρ + Fζ = 0. (3.10)

The final step is to assume that F is a homogeneous function that has the form
F(ρ, ζ) = ζ pG( ρ

ζ ) and letting ρ
ζ = X, equation (3.10) is finally expressed as

XG′′ + (l + 1− X)G′ + pG = 0, (3.11)

where •′ is the derivative with respect to X and the differential equation (3.11)
is the Laguerre differential equation.

We also derive polynomials based on the Cartesian coordianate system. Ex-
pressed in Cartesian coordinates the paraxial equation is

ψxx + ψyy + 2ikψk = 0, (3.12)

and we seek a separable solution, in x, z and y, z, of the form

ψ(x, y, z) = F(x, z)G(y, z). (3.13)

With this substituted into the paraxial equation, we arrive at the equation

Fxx(x, z) + 2ikFz(x, z) = 0, (3.14)

for x, which is the same equation for y but with x exchanged for y. We make the
substitution, only needed for one of the variables in this case,

z→ ζ =
−2iz

k
, (3.15)

which transforms equation (3.14) into

ψxx + 4ψζ = 0. (3.16)

We seek a solution of the form

ψ(x, z) = ζ
n
2 H
(

x√
ζ

)
, (3.17)

which when substituted into equation (3.16), we get, up to a multiple of ζ
n−2

2 ,
and letting X = x√

ζ
,

HXX − 2XHX + 2nH = 0, (3.18)
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which is the Hermite differential equation. Hence the Cartesian paraxial poly-
nomials are of the form

ψm,n(x, y, z) = ζ
m+n

2 Hn

(
x√
ζ

)
Hm

(
y√
ζ

)
, (3.19)

where Hm is the mth Hermite polynomial.
Such polynomial solutions have also been considered before as solutions of

parabolic partial differential equations like the paraxial equation. The heat equa-
tion, in one space and one time dimension, is

∂2u
∂x2 =

∂u
∂t

, (3.20)

which can be seen to be of the same form as the paraxial equation with iz → t,
and is a real equation. The heat equation has a particular solution of the form
given in Cannon [Can84]

pn(x, t) = n!
[ n

2 ]

∑
k=0

tk

k!
xn−2k

(n− 2k)!
, (3.21)

where [ n
2 ] is the greatest integer less than n

2 . Such polynomials in equation (3.21)
are the heat, or caloric polynomials. When t = −1, these are of the form of
the Hermite polynomials [PŠ08], where Poláčik and Šverák are also similarly
interested in nodal sets of differential equations. This suggests that it is possible
to also transform the heat equation into Hermite’s equation.

The paraxial polynomials can be constructed from other solutions of the
paraxial equation. These are used as a generating function and expanded about
a parameter not dependent on the paraxial equation. The beginning for this
construction, of [Den01], are the Bessel beams [Dur87] and have the form

ψparaxial = eimφe−iz2 κ
2 Jm

(√
κR
)

. (3.22)

This is a solution for all κ but it is physically only valid for small κ [Den01]. We
Taylor expand equation (3.22) about κ = 0 and consider the coefficients of the
powers of κ. These are functions in R, φ, z with m as a parameter. Each coefficient
is itself a solution of the paraxial equation. These functions are normalised to
form the set of functions shown in the tables of appendix 3.A to this chapter.
For each power of R, the z-dependence is the unique function that allows Rn to
satisfy the paraxial equation.

The physically realisable solutions formed by superpositions of Laguerre-
gaussian modes constructed later in this chapter can also be used to create the
paraxial polynomials. Here, expanding in 1

w , the Laguerre-gaussian modes act
as a generating function for the cylindrical paraxial polynomials. An example
of this is shown for the Hopf link in appendix 3.C to this chapter.
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3.3 Constructing Paraxial Knots

The functions of section 3.1 with braided zeroes lines and their respective Mil-
nor polynomials are used now to create solutions of the paraxial equation which
contain the same knotted nodal topology. Using the Milnor polynomials for the
Hopf link and cinquefoil knots, in addition to that of the trefoil equation (3.5)
and the figure-8 knot of equation (3.6), we now construct their paraxial counter-
parts and examine their nodal topology.

The Milnor polynomial of a knot has a symmetry plane at z = 0. There exists
a unique function, that coincides at z = 0 with the Milnor polynomial, and sat-
isfies the paraxial equation. We construct this function using the paraxial poly-
nomials. The constructed polynomial is endowed with the paraxial propagation
dependence in z and in general the z-dependent terms are different to that of the
Milnor polynomial. For each term of the form Rmeinφ in the Milnor polynomial,
it is substituted with Rmeinφ + g(r) where g(r) is as constructed in section 3.2.
This leads to a function, ψ, for which ψ|z=0 = f |z=0. Hence for a given Mil-
nor polynomial at z = 0, the Rmeinφ terms are replaced with the corresponding
paraxial polynomial. In the case of m = n, terms have the form Rme±imφ and
satisfy the paraxial equation themselves and do not require z-dependent terms
to do this. This leaves the R- and φ-dependence in this plane unchanged but all
z-dependent terms change. We now construct such functions ψ and examine the
associated nodal topology.

We have the following procedure to follow:

• Construct the Milnor polynomial and set z = 0

• Collect the Rmeinφ terms

• Construct, using paraxial polynomials, the function that coincides with
this at z = 0 and satisfies the paraxial equation.

(2, n)-torus Knots

The Hopf link has a Milnor polynomial of

fHopf(r) = {1− 2R2 − 4R2e2iφ + R4}

−4iz + 4iR2z− 6z2 + 2R2z2 + 4iz3 + z4,

(3.23)

arising from qHopf = u2 − v2, with terms that are not z-dependent placed in
the {•} brackets. This comes from taking the Milnor map of equation (3.1) and
setting n = 2. At z = 0 there are four terms that remain. For each remaining
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term in equation (3.23) at z = 0, we construct ψHopf by replacing each term
Rmeinφ with its corresponding paraxial polynomial, defined in section 3.2. The
paraxial polynomial that corresponds at z = 0 is, with k = 1,

ψHopf = 1 + 8
(

1
4

R2 +
1
2

iz
)

+ (4e2iφR2) + (R4 + 8iR2z− 8z2)

= {1− 2R2 − 4e2iφR2 + R4} − 4iz + 8iR2z− 8z2. (3.24)

We set k = 1 throughout this chapter.
In both the Milnor and paraxial forms, the terms in the {•} brackets are iden-

tical. However, the z-dependent terms are very different with ψHopf, since the
highest degree in the z terms have only half the degree in z of fHopf. Despite this
difference, the nodal lines of both equations form the Hopf link. This difference
in z-dependence can be seen by plotting the curves in the (R, z)-plane. Figure 3.3
shows the curves formed in this plane as φ varies. The paraxial function has a
more complicated geometry of the curves compared to that of the Milnor poly-
nomial. The (R, z)-plane shows the mapping of the braid trajectories in φ which
are first mapped from braid space to R3 by the Milnor map, and second time by
constructing the function that satisfies the paraxial equation.

The (R, z)-plane plots are an important tool in determining the success of
this procedure. The two curves, of the Milnor polynomial and paraxial function,
can be compared to ensure they both are equivalent to the lemniscate the braid
was constructed on. In the paraxial case, the geometry of the paraxial case, as
in figure 3.3, is more complicated than the Milnor polynomial’s case. This can
be used to understand differences in crossing numbers of the two cases, even if
they have the same projection directions.

The same procedure is now applied to the Milnor polynomial of the trefoil
knot in equation (3.5). Similar to the Hopf link, the z = 0 part of the polynomial
is used to construct a function that satisfies the paraxial equation. After the
paraxial polynomial substitution, we arrive at

ψtrefoil = {1− R2 − 8R3e3iφ − R4 + R6}

+i(−2− 8R2 + 18R4)z + (8− 72R2)z2 − 48iz3,

(3.25)

which as before matches the Milnor map at z = 0 with both functions coinciding
in the {•} terms. The nodal line of ψtrefoil forms the trefoil knot as in the Milnor
map.

The nodal line of the paraxial trefoil knot is shown in figure 3.4. The geomet-
ric form of the nodal line of the paraxial function is again different to that of the
Milnor map.
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Figure 3.3: The (R, z)-plane of the Hopf link for the Milnor polynomial, black,
and the paraxial function, blue. The difference in z range is clear and the geome-
try of the trajectories can be seen to be different. These curves are the maps from
the circular braid trajectories.

The cinquefoil knot has a Milnor polynomial constructed from qcinq = u2 −
v5, which arises from two braid strands following a circular trajectory with five
repeats of the basic braid word. This polynomial has corresponding paraxial
function

ψcinq(r) = {1 + R2 − 2R4 − 32e5iφR5 − 2R6 + R8 + R10}

+2i(1− 8R2 − 18R4 + 16R6 + 25R8)z

+16(1 + 9R2 − 18R4 − 50R6)z2

+96i(1− 8R2 − 50R4)z3 + 384(1 + 25R2)z4 + 3840iz5.

(3.26)

This contains only one term of the form Rmeimφ, where m = 5. This arises from
the vm term in construction the function of u and v. The trefoil knot similarly
exhibits this for m = 3 and the Hopf link for m = 2.

This function contains the cinquefoil knot in its nodal set in the geometric
form of the (2, 5)-torus knot. A Milnor polynomial constructed for the (5, 2)-
form, a five strand braid (σ1σ2σ3σ4)2, can also be entered into this procedure. In
this case the resulting paraxial function does not contain the cinquefoil knot as
its nodal set. The (3, 2)-form of the trefoil knot exists in its place. This failure to
embed the topology is examined in chapter 5 where a procedure to successfully
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Figure 3.4: The trefoil knot formed in the nodal set of the paraxial function equa-
tion (3.25). The coloured, semi-transparent plane is the circular region about the
origin at z = 0. The colouring represents the phase of the function with our
standard colour key for phase.

embed it is discussed. Our given examples do not prove the general case of all
knots constructed in this fashion will be successfully transferred into solutions
of the paraxial equation.

This difference in the geometric appearance of the paraxial polynomial nodal
curve and that of the Milnor polynomial, can be attributed to the paraxial func-
tion have a different z-dependence. The order in z of the paraxial polynomials is
half that of the corresponding terms in the Milnor polynomial. This difference in
order arises from the paraxial equation treating the transverse and z derivatives
differently. This procedure has been used to create all the (2, n)-torus knots and
links for n ≤ 10. There does not appear to be any restriction that would place an
upper bound on n; however the range in z where the nodal knot exists, decreases
as n increases.

The Figure-8 Knot Family

The figure-8 knot has Milnor polynomial equation (3.6). We now construct the
function that satisfies the paraxial equation and coincides with this Milnor poly-
nomial in the z = 0 plane. To do this, we follow the same procedure as before
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and arrive at

ψfigure-8(r) = {28R8 − 8(19e2iφ + 19e−2iφ + 25)R6

−(7e2iφ + 19e−2iφ + e4iφ − e−4iφ)R4

+8(5e2iφ − 19e2iφ + 25)R2 − 28}

+16i(25− 42e2iφR2 − 114e−2iφR2 − 225R4

−152e2iφR4 − 152e−2iφR4 + 56R6)z

+192R2(75 + 38e2iφ + 38e−2iφ − 42R2)z2

+384i(25− 56R2)z3 + 10752z4. (3.27)

The paraxial nodal figure-8 knot is shown in figure 3.5 along with the phase of
the z = 0 plane.

The higher repeats of the basic braid word, n = 3 and n = 4, give rise to the
Borromean rings and Turk’s head knot respectively. These curves, constructed
with the above method, give rise to a three-fold and four-fold symmetric geome-
try of the same basic azimuthal braid structure. The figure-8 knot has a two-fold
symmetry. A paraxial function for the Borromean rings, constructed from its
Milnor polynomial, successfully inherits the link as its nodal set. Again, due to
the difference in z-dependence, the lemniscate of the braids, mapped into the re-
spective (R, z)-planes, show these differences. Figure 3.6 shows this projection
for the Milnor polynomial and the paraxial function for the Borromean rings.
Similarly, figure 3.7 shows these images for the Turk’s head knot. Higher re-
peats of the basic braid word give rise to an interesting family of knots and links
that include, when n ≡ 0 mod 3, a set of generalised three component Brun-
nian links, [Jab99] and section 4.2. This family is considered further in chapter 4.
In chapter 4 the Lissajous construction is generalised and additional parameters,
such as a of equation (3.2), are discussed.

3.4 Laguerre-gaussian Knots

The paraxial polynomials used throughout this chapter are not physically real-
isable solutions to the paraxial equation. Their absolute value tends to infinity
as R tends to infinity. Solutions with an overall Gaussian factor, such as the
Hermite-gaussian and Laguerre-gaussian laser modes introduced in section 1.6,
do converge as R increases.

We use the cylindrical coordinate system to construct the Milnor polynomi-
als. It is natural therefore to use the cylindrically symmetric Laguerre-gaussian
modes in this section to construct realisable optical fields with a prescribed knot
in its vortex structure. The Hermite-gaussian modes could equally be used, and
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Figure 3.5: The nodal curve of the paraxial function equation (3.27) which is the
figure-8 knot. The circular disk is as in figure 3.4. This plane is identical in both
the Milnor polynomial and paraxial function.

Cartesian coordinate functions can be used. Cylindrical coordinate are natural
for us because v(r)n ∝ LGn

0 at z = 0, this allows simpler superpositions, with
less modes required, to be constructed.

Our methodology for creating the mode superpositions is similar to that
used to create the paraxial polynomial solutions. The z = 0 plane of the Mil-
nor polynomial forms the focal plane of the superposition. Laguerre-gaussian
modes have a parameter w giving the beam’s Gaussian width. We show later
that this width acts as a parameter controlling the success of the nodal topol-
ogy transferring from the Milnor polynomial to the superposition. The width is
thus kept as a parameter in the following integrations and the results shall be
w-dependent. For a fixed width w, the Laguerre-gaussian modes form a basis
for functions of R and φ in the z = 0 plane. The use of all modes having the
same width contrasts to the approach of [LDCP04].

We form the superposition as a sum of weighted modes,

ψLGknot = ∑
l,p

cl,pLGl
p(r, w), (3.28)

where the sum taken over all modes where cl,p 6= 0, each term satisfying the
linear paraxial equation (1.19). The coefficient weighting to each mode, cl,p, is
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(a)

(b)

Figure 3.6: Paraxial and Milnor Borromean rings. (a) The (R, z)-plane trajecto-
ries of the Borromean rings for the Milnor polynomial in black and the parax-
ial function in blue. (b) The paraxially propagating Borromean rings, with the
phase of the z = 0 plane shown. The three-fold symmetry of the knot con-
structed from the braid (σ1σ−1

2 )3 can be seen, especially in the z = 0 plane vortex
constellation. Each of the three components is coloured distinctly in red, green
and blue.
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(a)

(b)

Figure 3.7: Paraxial and Milnor Turk’s head knot, also denoted 818. (a) The
(R, z)-plane of the Turk’s head knot for the Milnor polynomial in Black and the
paraxial function in blue. (b) The paraxially propagating Turk’s head knot, with
the phase of the z = 0 plane shown. The four-fold symmetry of the knot con-
structed from the braid (σ1σ−1

2 )4 can be seen, especially in the z = 0 plane vortex
constellation, the opaque disk. The contortions in the knot in (b) are represented
by the “bat’s ears” in (a).
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calculated from a Fourier-like integral

cl,p =
∫∫

R2
d2R LG−l

p (R, 0, φ)LG0
0(R, 0, φ) fknot(R, 0, φ), (3.29)

where fknot(R, 0, φ) is the Milnor polynomial at z = 0 and the cl,p are the coeffi-
cients of the respective LGl

p.
The LG0

0(R, 0, φ) term in equation (3.29) means that we are integrating a func-
tion of the form polynomial times Gaussian. This is a non-zero factor which does
not effect the phase at z = 0, which means we are examining the paraxial prop-
agation of

F(R, 0, φ) = e−
R2

w2 fknot(R, 0, φ), (3.30)

but we shall refer to just the function f when necessary. The Gaussian width w
is kept in the cl,p but assumed to be constant. In the Milnor polynomial, addi-
tional parameters such as a and further parameters discussed in later chapters,
can be kept in the integration to give coefficients, the set of all non-zero cl,p of
equation (3.29), dependent on them in addition to w. This allows the superpo-
sition to be fine tuned experimentally, as well as the geometric effects on the
superposition to studied. The coefficients should really be written cl,p(a, w).

In appendix 3.B to this chapter, we give the Laguerre-gaussian mode super-
positions for the Hopf link, trefoil, cinquefoil and figure-8 knots. The topology of
the vortex lines is successfully transferred to the superposition and as expected
it has a different geometric form to the Milnor map. We now explore the effect of
the Gaussian width w on the superposition’s vortex topology and its isolation.

Unlike the paraxial polynomials, the Laguerre-gaussian superpositions have
an additional vortex structure to them away from the knot. The rest of this
section is concerned with studying these additional vortices. These additional
nodal lines arise from the Gouy phase terms of the mode that have different p
values. This additional structure is evident in the far-field of the beam. The far-
field, the plane formed in the limit as z → ∞, is given by the Fourier transform
of the z = 0 plane, where the length scale of the propagation direction z moves
the beam from the Fresnel diffraction region into the Fraunhofer regime [BW59,
p. 421]. The Laguerre-gaussian modes at z = 0 can be written

LGl
p |z=0=

√
p!

π(p + l)!
w−1−l Rleilφe

−R2

2w2 Ll
p

(
R2

w2

)
. (3.31)

The Fourier transform of a circularly symmetric function can be written

F (ρ, θ) =
∫∫

R2
d2R f (R, φ)eiRρ cos(φ). (3.32)

For the Laguerre-gaussian modes, the φ integral is∫ 2π

0
dφ eil(φ+θ)eiRρ cos(φ+θ) = 2πil Jl(ρR), (3.33)
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which is of the form of Bessel’s first integral. The remaining R integration is now
in the form a Hankel transform of lth order, and using [GR00],∫ ∞

0
dR f (R)Jl(ρR) = C(l, p, w)

∫ ∞

0
dR Rl+1e

−R2

2w2 Ll
p

(
R2

w2

)
Jl(ρR)

= K(l, p, w)ρle
−ρ2w2

2 Ll
p

(
w2ρ2

4

)
, (3.34)

where C is a mode and width dependent constant encompassing all such terms
and the final constant is

K(l, p, w) = il 2
√

2l+1 p!π
2
3√

(l + p)!w2(l+2p+1)
. (3.35)

This shows that the Laguerre-gaussian modes are eigenfunctions of the Hankel
transform integral operator. Hence up to constants, the Fourier transform of a
Laguerre-gaussian mode is the same Laguerre-gaussian mode, with a factor il

and a substitution of w 7→ 1
w .

In the limit w → ∞, the Laguerre-gaussian mode superpositions generate
the paraxial polynomial of the Milnor polynomial. This is because the Laguerre-
gaussian modes are generators for the paraxial polynomials when expanded in
1
w . We now explore the effect of varying w in superposition and observe critical
values for w which are topology-changing.

The Hopf link far-field plane, in polar coordinates, is given by

ψ̃Hopf =
1√
π

e
−w2(ρ2)

2 (w− 4w3 + 2w5(4 + ρ2 + 2ρ2e2iθ)− 8w7ρ + w9ρ2) (3.36)

where ρ and θ are the Fourier variables for R and φ respectively. As w varies, a
quantitative change in the vortex constellation occurs. A numerical search, by
counting the number of zeroes in a given plane for a fixed z, finds the transitional
value at w ∼ 1.41421, to five decimal places, where greater than this value, there
are eight zeroes in the far field and less than, there are four zeroes. At the critical
value there are six zeroes, with two of them being higher order zeroes with a
topological charge of two. This transition is shown in figure 3.8 with values of
w above and below the critical value.

However, this critical value of w is not the same Gaussian width value for
which the vortex link becomes isolated. Except in the limit w → ∞ in the case
of Gaussian beams, the vortex knot is not the only vortex structure present. The
knot can be isolated by a region of space in the z direction from the additional
structures present.

The transition from the link actually existing and being destroyed by the vor-
tices persistent to infinity exhibits intricate geometric and topological features.
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(a) (b)

Figure 3.8: The far-field of the Laguerre-gaussian superpositon for the Hopf link
for (a) w = 1.35 and (b) w = 1.45. The former has a vortex constellation with
four vortices and the latter with eight, representing the vortex lines that persist
from the near-field region to the far-field.

As the Gaussian beam width decreases, the vortices persisting to the far-field
reconnect with the vortex link and the topology undergoes an interesting tran-
sition from isolation to four infinite lines. For values of w where there are eight
vortices in the far field, the vortex link exists and is isolated from the additional
vortex structure of the beam. Decreasing w, the far-field plane loses four of its
vortices, creating vortex lines which now have hairpin like bends in them, cre-
ating four distinct vortex lines away from the link instead of the eight (counting
both cases as z → ±∞) before. With further reductions in the value of w, to
w = 1.378, a reconnection occurs creating four vortex lines that persist from −∞
to +∞. The vortex lines passing through the outer vortices in the z = 0 plane
do not undergo any further topological change and remain distinct from the rest
of the vortex structure as the Gaussian width further decreases. The inner pair
of lines still possess the hairpin geometry created when the number of vortices
present in the far-field decreases. This structure now creates a self-reconnection,
that destroys the structure of the hairpins that have remained after the far-field
has lost four of its vortices, and creates four vortex rings. These rings are formed
at w = 1.352 and shrink in size until they annihilate at w = 1.347. These topol-
ogy changing events are shown in figure 3.9.

The remaining four infinite vortex lines remain in this form as w → 0 al-
though they move towards each other and develop very sharp turns close to
z = 0, in order to pass through the prescribed points in this plane.
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(a) (b) (c)

(d) (e) (f)

Figure 3.9: The vortex curves formed by the Laguerre-gaussian superposition
for the Hopf link as the Gaussian width is increased, for values of w : (a) w =
1.301, (b) w = 1.349, (c) w = 1.353, (d) w = 1.376, (e) w = 1.381 and (f) w = 1.440,
numerically found. The infinite lines in (a) reconnect with the loops nucleated
shown in (b) which reconnect with the infinite lines to form the geometry in (c).
The layout of the Hopf link can be forming in (d) which has formed in (e). The
infinite lines that return to the same far-field plane are eight distinct lines in (f)
where the far-field has eight vortices persisting to it. Persisting lines are shown
in red, loops which are not linked are green, linked loops are shown in pink
and blue, identifying the components and lines that start and return to the same
far-field plane are magenta. The z-direction is vertical. The view point is on the
positive y-axis looking at the origin and we have plotted the range −10 ≤ z ≤
10.

3.5 Experimental Realisation

The methods of this chapter were used to create real optical fields with knot-
ted phase singularities. The experiments and optimisation algorithms were car-
ried out by Miles Padgett, Kevin O’Holleran and Barry Jack, at the University
of Glasgow. These take the form of superpositions of Laguerre-gaussian laser
modes with weightings created using the method of the previous section. Such
Laguerre-gaussian mode superpositions have been implemented successfully
in several cases. In contrast to previous experimental investigations [LDCP05],
which by necessity of the construction were threaded, these knots are isolated.
This isolation persists up to the Gaussian beam width decreasing below the crit-
ical value as described above. Based on functions described here, the Hopf link,
trefoil and cinquefoil knots have been successfully created in the vortex struc-



86 VORTEX KNOTS IN GAUSSIAN BEAMS

ture of real optical systems. The full details of the experimental setup can be
found in [DKJ+10, O’H08], with the vortex line positions obtained using the
methods of [OFDP09]. We now describe the procedure and present the results.

The beam from a standard Helium Neon (HeNe) laser is manipulated us-
ing a spatial light modulator (SLM). A SLM is a computer controlled pixelised
liquid crystal device which imposed an optical delay to light incident on its sur-
face. The different phase values imprinted depend on the brightness of each
pixel which can be given one of 256 (8-bit) values. A pattern is formed on the
SLM that represents the superposition of Laguerre-gaussian modes requires to
create the desired vortex knot. This pattern normally only contains phase infor-
mation but this experimental setup also uses a technique to include the intensity
information, as in [LDCP04]. Finally, the SLM has a blazed diffraction grating
applied to put the desired reflection in the first order diffracted component. This
allows the zero ordered reflection to be blocked out from entering the imaging
part of the system but at the cost of making the intensity of the used component
lower.

The beam containing the imprinted phase pattern then propagates and the
interference pattern evolves with distance along the beam. A CCD camera is
used to image the beam in planes transverse to the propagation direction. Each
plane is imaged separately with a set of mirrors on a motorised stage moved to
lengthen the beam path to the desired length. Approximately one hundred sep-
arate planes are measured for each knot. The intensity can be measured directly
and the phase obtained by a series of interferometric measurements.

The theoretically created superpositions of Laguerre-gaussian modes do con-
tain the desired vortex knot but they often do not provide a sufficient contrast
between individual vortices to accurately image their location. The vortices are
located in regions of the beam that have a low intensity because the intensity
must be zero at the vortex. To overcome this, the superposition is subject to an
optimisation algorithm to modify the superposition so that the required vortex
topology remains but an area of higher intensity persists between vortices. This
also creates a superposition where the additional vortex hairpins at high z are
moved away from the structure to be viewed. A cost function is used to deter-
mine if one superposition is better experimentally than another. The sum of the
inverse intensity at a set of points in each transverse plane, in a cylindrical vol-
ume containing the vortex knot, is minimised with the constraint that the vortex
topology remains unchanged. A coefficient of one mode is randomly changed
by a small amount and

fcost = ∑
r in the prescribed volume

(min(I0, I(r)))−1 , (3.37)
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(a) (b)

Max0

(c) (d)

Figure 3.10: The effect of optimising the Laguerre-gaussian superposition of the
trefoil knot for the experiment. The unoptimised z = 0 plane is shown in (a)
and (c) for the intensity and phase respectively. The optimised superposition is
shown in (b) and (d). The intensity is shown as “inverse intensity” where the
lighter the colour, the lower the intensity as per the key (this is different to other
intensity plots throughout this thesis) where the contours match those contour
values in the planes shown. The increased areas of darkness in the optimised
plane between the vortices can be seen in the intensity plots.

is calculated, where I0 is a saturating intensity and I(r) is the intensity at the
position r. If this value is lower and the vortex topology is correct then the new
coefficient set is kept and the process is repeated, creating an iterative process,
which converges on the same set of values after several runs of a few hundred
iterations.
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The effect of this optimisation is shown in figure 3.10. Overall, the vortices re-
main approximately parallel to the beam axis over a larger distance, only begin-
ning to approach another vortex close to where they annihilate. This is shown
in figure 3.11.

The fact that the optimised superposition has, for some of the modes, a large
variation over the initial theoretical values demonstrates the stability of knotted
vortices in superposition space.

The theoretical construction has been used to create the Hopf link, and the
trefoil and cinquefoil knots. A superposition of Laguerre-gassian modes is cre-
ated which is then acted on by the optimisation algorithm. The locations of
the vortices in each transverse plane can be combined to give the full three di-
mension vortex lines. We do this in figure 3.13 which are constructed from the
experimental data. The Hopf link was realised with an unoptimised superpo-
sition; however attempting this with the cinquefoil led to the T2,4 link being
formed [O’H08] which we plot in figure 3.12.

In order to avoid the target knot reconnecting with the additional vortex
structure of the Laguerre-gaussian superpositions, different beam widths were
required for each knot. The Hopf link, trefoil and cinquefoil knots were formed
in beams with Gaussian widths w = 1.40, 1.20, 0.93 respectively. Figure 3.14
additionally shows the experimental trefoil knot with the measured phase from
the symmetry plane.

To date, the figure-8 knot has not successfully been experimentally realised.
At the time the experiments were being carried out, the technique to create
the figure-8 knot from the Lissajous construction had not been fully developed.
A Hermite-gaussian superposition was created based on the equation (2.20) of
Rudolph. In the z = 0 plane, the range in R in which vortices occur is very large
compared to those of the successfully created knots. An experimental attempt
using a Laguerre-gaussian superposition, with appropriate choice of a and θ in-
troduced in chapter 4, based on the Lissajous construction we believe would be
successful.

3.6 Discussion

This chapter has described the method we use to construct optical fields that
contain knotted optical vortex lines. The knots constructed go beyond the torus
knots of the existing construction of Berry and Dennis [BD01a, BD01b] and we
have presented knots and links based on the figure-8 knot. Knots and links,
constructed from braids following lemniscate trajectories are fully introduced in
the next chapter. These vortex knots have been implemented successfully for a
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(a)

(b)

Figure 3.11: (a) The simulated three-dimensional form of the trefoil knot from
the theoretically created Laguerre-gaussian superposition and (b) for the opti-
mised superposition. The black arrows represent the waist width, w = 1.2, with
both arrows pointing in the x and y directions respectively. The yellow arrows
show a Rayleigh range in the propagation z-direction.
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Figure 3.12: The experimentally formed vortex curves for the unoptimised cin-
quefoil Laguerre-gaussian superposition. There are two components, coloured
yellow and blue, which form the T2,4 link. The circled crossing shows where the
“error” occurs. The cinquefoil knot is formed after the appropriate superposi-
tion optimisation and this vortex curve is shown in figure 3.13(c).

number of cases, figure 3.13.
The paraxial polynomials of section 3.2 provide an ideal basis for explor-

ing the nodal topology permitted by the paraxial equation. They are free from
factors that induce additional vortex structure, such as those arising from the
interference of the Gouy phase terms different Laguerre- or Hermite- gaussian
modes contain. In Gaussian beams, the topology of the vortex lines is dependent
on the width of the Gaussian. The width of the beam that allows the knot to be
successfully formed needs to be found which is not the case for the polynomial
solutions. We have seen (section 3.4) that the vortex topology in a Laguerre-
gaussian superposition is beam width w-dependent. We introduce additional
parameters into our knot construction in the next chapter which could effect the
required beam width for successful realisation.

The superpositions of Laguerre-gaussian modes provide a physically real-
isable solution set. The Hopf link, trefoil and cinquefoil knots have been ex-
perimentally realised as such superpositions. These results give a vortex knot
that is not threaded, and constructed using knot theory as its basis. In principle,



3.6 DISCUSSION 91

(a)

(b)

(c)

Figure 3.13: The experimentally realised (a) Hopf link, with the two components
coloured distinctly in pink and blue, (b) trefoil knot and (c) cinquefoil knot. The
arrows are the same as in figure 3.11.
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Figure 3.14: The experimental trefoil knot with the measured phase of the sym-
metry plane shown. The Newton rings formed from reflection of the light from
dust can be seen. The measurement of the phase was only accurately measured
in the dark regions of the beam, hence the patchy nature of the colouring away
from vortices, where the intensity had reached a saturating value.

the figure-8 family of knots could be implemented experimentally, as well as the
families of knots and links we explore in chapter 4. This would provide an inter-
esting demonstration of more complex knots beyond the torus knots normally
encounted in physics.

These physically realisable superpositions introduce additional vortex lines
as illustrated in figure 3.9. This additional structure is dependent on the waist
width, w, of the beam. The presence of these additional structures means that
the vortex knots we desire to create are not truly isolated. However, the vortex
knot in the neighbourhood of z = 0, is isolated for a range of w, with a vortex
free region around the knot.

We have seen that the Hopf link superposition actually exhibits a range of
topology types as w varies, from multiple infinite lines and unlinked loops, in
addition to the desired linked loops. For small w, we observe the vortex lines
persist from the z = 0 plane through to the far-field. Finding the critical values of
w for when the link is destroyed is in general difficult. It is also not clear when
the vortex lines are infinite or not. This is a question of algebraic geometry,
section 6.7, finding solutions of multi-variable polynomials, in our case three-
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dimensional polynomials parametrised by w.
We seek to address the questions that arise from the knot construct in chap-

ters 4 and 5.
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3.A The Paraxial Polynomials

n = 0 1
n = 1 R2 + 2i(1 + m)z
n = 2 R4 + 4i(2 + m)R2z + 4(1 + m)(2 + m)z2

n = 3 R6 + 6i(3 + m)R4z− 12(2 + m)(3 + m)R2z2

−8i(1 + m)(2 + m)(3 + m)z3

n = 4 R8 + 8i(4 + m)R6z− 24(3 + m)(4 + m)R4z2

−32i(2 + m)(3 + m)(4 + m)R2z3

+16(1 + m)(2 + m)(3 + m)(4 + m)z4

n = 5 R10 + 10i(5 + m)R8z− 40(4 + m)(5 + m)R6z2

−80i(3 + m)(4 + m)(5 + m)R4z3

+80(2 + m)(3 + m)(4 + m)(5 + m)R2z4

+32i(1 + m)(2 + m)(3 + m)(4 + m)(5 + m)z5

Table 3.1: The paraxial polynomials, explained in the text of this appendix.

Table 3.1 shows the function fm,n(R, z) such that ψ = Rmeimφ fm,n(R, z) satis-
fies the paraxial equation. These are the Laguerre polynomial based cylindrical
coordinate functions. The table is constructed from the techniques of section 3.2.

3.B Laguerre-gaussian Mode Coefficients

The following tables list the Laguerre-gaussian mode superpositions with their
w dependent coefficients for the Hopf link, trefoil, cinquefoil and figure-8 knots.

mode (l, p) (0, 0) (0, 1) (0, 2) (2, 0)
Coefficient 1− 2w2 + 2w4 2w2 − 4w4 2w4 4

√
2w2

Table 3.2: Laguerre-gaussian mode coefficients for the Hopf link.

mode (l, p) (0, 0) (0, 1) (0, 2)
Coefficient 1− w2 − 2w4 + 6w6 w2 + 4w4 − 18w6 2w4(−1 + 9w2)

(0, 3) (3, 0)
−6w6 8

√
6w3

Table 3.3: Laguerre-gaussian mode coefficients for the trefoil knot.
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mode (l, p) Coefficient
(0, 0) 1 + w2 − 4w4 − 12w6 + 24w8 + 120w10

(0, 1) −w2(1− 8w2 − 36w4 + 96w6 + 600w8)
(0, 2) 4w4(−1− 9w2 + 36w4 + 300w6)
(0, 3) −12w6(−1 + 8w2 + 100w4)
(0, 4) 24w8(1 + 25w2)
(0, 5) −120w10

(5, 0) 64
√

30w5

Table 3.4: Laguerre-gaussian mode coefficients for the cinquefoil knot.

mode (l, p) Coefficient
(0, 0) 1

16

(
168w8 − 300w6 + 50w2 − 7

)
(−2, 0)

w2(−19−42w2+60w4)
4
√

2
(0, 1) −(1/8)w2(25− 450w4 + 336w6)

(2, 0) −w2(−5+42w2+228w4)
4
√

2

(−4, 0)
√

3
2 w4

(−2, 1) 1
2

√
3
2 w4 (7− 20w2)

(0, 2) 9
4 w6 (−25 + 28w2)

(2, 1) 1
2

√
3
2 w4 (7 + 76w2)

(4, 0) −
√

3
2 w4

(−2, 2) 5
√

3w6

2
(0, 3) 75w6

4 − 42w8

(2, 2) − 19
2

√
3w6

(0, 4) 21w8

2

Table 3.5: Laguerre-gaussian mode coefficients for the figure-8 knot.

3.C Laguerre-gaussian Superpositions as Generating
functions for Paraxial Polynomials

We now show that from the Laguerre-gaussian superposition of table 3.2 we can
extract the paraxial polynomial solution for the Hopf link. This is the analo-
gous calculation to one given in the supplementary information of [DKJ+10] for
the trefoil knot. We can write the Laguerre-gaussian modes, equation (1.23), in
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terms of the Rayleigh range [Sie86]

LGl
p(R, φ, z) =

√
p!

π(|l|+ p)!
R|l|eilφ

w|l|+1
(

1 + iz
zR

)|l|+1

(
1− iz

zR

1 + iz
zR

)p

× exp

− R2

2w2
(

1 + iz
zR

)
 L|l|p

 R2

w2
(

1 + z2

z2
R

)
 , (3.38)

which allows us to look at the w dependence in a clearer fashion, with zR = kw2

and we will set k = 1. Using the coefficients of table (3.2), and collecting the
z

zR
terms, we get, after dropping the non-zero terms which include the Gaussian

factor,

ψ = {1− 2R2 − 4e2iφR2 + R4}

+
4i
(
−1 + R2 − 2e2iφR2 + w2 + 2R2w2) z

w2

+
2
(
3− R2 + 2e2iφR2 − 6w2 + 4R2w2 − 4w4) z2

w4

+
4i
(
1− 3w2 + 4w4) z3

w6

+
(
−1 + 4w2 − 8w4) z4

w8 , (3.39)

which in the limit w→ ∞, gives

ψ = {1− 2R2 − 4e2iφR2 + R4} − 4iz + 8iR2z− 8z2, (3.40)

which is the paraxial polynomial for the Hopf link given in equation (3.24).



Lissajous Constructed Knots 4
In the previous chapter we constructed several knots and links as the nodal sets
of functions. Such knots were shown to be able to be embedded in solutions
of the paraxial wave equation and ultimately produced in real light beams. We
now explore the construction of the knots and links and in chapter 5 go on to
investigate the physics of the construction.

The knots and links we construct exhibit patterns in their Conway notation
and the coefficients of their Alexander and Jones polynomials. These patterns
manifest themselves when the knot formed is from a square of a braid word
constructed by the Lissajous construction. The patterns can be used to predict
the knot or link created by increasing the number of strands in the braid while
keeping the trajectory they follow fixed. Different trajectories give rise to differ-
ent patterns.

Our knot/link construction naturally forms a three-dimensional set of fibred
knots and links. Although our analysis is restricted to lemniscates, a form of Lis-
sajous curve, this classification can be extended to include more general closed
Lissajous figures for the braid strand trajectories.

We create functions with knotted nodal lines from functions with zeroes
forming a periodic braid. The Lissajous construction, chapter 2, creates braids
that are formed with the strands transversely following a Lissajous curve. We
have explored simple torus knots and generalisations to knots and links that are
related to the figure-8 knot in chapter 3, along with their ability to arise as so-
lutions of the paraxial equation. This chapter explores the extent of the knots
and links that can be created by the closure of braids formed by the Lissajous
construction. We develop relations between the knot polynomials of the knots
and links that are created from the same braid trajectories and use this to give
predictions of how the families extend. In this chapter, we begin by studying

97
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specific lemniscates and the knots generated from such braid trajectories before
introducing some intricacies of our construction. Recall from chapter 2 that the
equation for a function with a braided nodal set b is:

p(h) =
N−1

∏
j=0

[
u−

{
cos

(
h− 2π j

N

)
+ i sin

(
β

(
h− 2π j

N

))}]
, (4.1)

where β ∈ N is the type of lemniscate (a specific type of Lissajous figure) the
strands follow and b ∈ BN , the group of all braid words with N strands.

4.1 Torus Knots

The torus knots have braid words of the form bn where b = σ1σ2 . . . σN−1 is
the basic braid word, see definition 2.9 and section 3.1, and N is the number
of strands [Lic97]. The closure of this braid word is a (N − 1, n)-torus knot.
We have constructed Milnor polynomials based on braids following a circular
trajectory with two strands in chapter 3, with braid word σn

1 . These are the
(2, n)-torus knots. We now increase the number of strands in the construction to
obtain Milnor polynomials for these higher torus knots.

The torus knots are such that Tm,n ∼= Tn,m giving a symmetry we expect to
be preserved by our construction. We now construct the Milnor polynomial for
the (3, 2) form of the trefoil knot. The function with the appropriate braid as its
nodal set takes equation (4.1) to

p(h) =
2

∏
j=0

[
u−

{
cos

(
h− 2π j

3

)
+ i sin

(
h− 2π j

3

)}]
. (4.2)

The Milnor polynomial, see section 3.1, has the form

qT3,2(u, v) = u3 − v2 (4.3)

fT3,2(r) = {1− 3R2 + R2e2iφ + 3R4 + 4R4e2iφ − R6}

−6iz + 12iR2z− 6iR4z− 15z2 + 18R2z2 + 4R2e2iφz2 − 3R4z2

+20iz3 − 12iR2z3 + 15z4 − 3R2z4 − 6iz5 − z6, (4.4)

where {•} is the z-independent part. The nodal set of this function is the trefoil
knot, formed with the curve having a different symmetry to the (2, 3)-form of
chapter 3 ambient isotopic to it. It is this (3, 2)-form of the trefoil knot that shows
that it is a 2-bridge knot, as shown in figure 2.20.

Higher torus knots, both (3, n)-, and in general (m, n)-, can be constructed in
this fashion. The higher torus knots do not however always transfer their nodal
topology to a paraxial function using the methods described. Section 4.6 shows
how the paraxial function can be built with a modified approach and the knot
or link inherited successfully.
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Repeats n 2 3 4 5 6
Name Figure-8

41

Borromean
Rings
L6a4

Turk’s
Head 818

10123 12 Cross-
ing Brun-
nian Link

Table 4.1: The knots and links formed by the closure of n repeats of the braid
word σ1σ−1

2 . Their common name is given where it exists and the Rolfsen [Rol76]
or Dowker/Thistlethwaite notation is given where known.

4.2 Lemniscate Knots

When β = 2 in equation (4.1) the zero points in the u plane follow a lemniscate
(figure of eight, 2-lemniscate, ∞-shape) trajectory. Hence the braided function
takes the form

p(h) =
N−1

∏
j=0

[
u−

{
cos

(
h− 2π j

N

)
+ i sin

(
2
(

h− 2π j
N

))
/a
}]

, (4.5)

where a ∈ R+ is discussed later in this section. Given that the lemniscate curve
self-intersects, the number of strands becomes critical; we desire that the stands
remain distinct. For the lemniscate, N is required to be odd, so the first non-
trivial case is N = 3. This gives rise to the figure-8 knot family of knots and
links, seen in chapter 3. The basic braid word in this case is b = σ1σ−1

2 , which
has closures b̂n, shown in table 4.1.

For n ≥ 6 with n ≡ 0 mod 3, the closure of the braid gives rise to a Brunnian
link [Jab99]. A Brunnian link is a link that becomes trivial (unlinked) when one
component is removed. In our three strand braids, (σ1σ−1

2 )n, this is equivalent
to removing one strand, which represents one component.

The real, positive definite parameter a in equation (4.5) is now investigated.
The effect of increasing a is to reduce the range of the lemniscate curve in y in the
u-plane. As a parametric curve, (cos h, sin 2h

a ), the maximum value of y reached
is 1

a . In the closure of the braid, the geometric form of the knot varies as a varies.
This is shown in figure 4.1, for a = 1, 2, 3 as well as showing how the lemniscate
of the strand trajectories varies with a. Figure 4.1 also shows, for various a, the
lemniscate of the braid trajectories. In this case of the lemniscate, a = 2, forms
the “lemniscate of Gerono” [Law72] as the trajectory of the braid strands.

As a increases, the z = 0 plane of the Milnor polynomial retains the same
zero constellation but the spacing of the zeroes increases as a increases. The
effect this has on the three-dimensional curve is shown in figure 4.1. This allows
the zeroes in the z = 0 plane to be positioned closer to each other, providing
for a narrower Gaussian width, to enclose all the zeroes, in Laguerre-gaussian
superpositions. Along with a parameter introduced in section 4.5, we give the
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(a)

(b)

Figure 4.1: The figure-8 knot formed from closing the braid of equation (4.5)
with different values of a. (a) The 3-dimensional curves formed for a = 1, 2, 3,
shown by the red, green, blue curves respectively. The z = 0 plane is shown
for orientation, with the origin at the centre. Although similar near the origin,
the three curves differ substantially as r increases. (b) The actual lemniscates for
a = 1, 2, 3 coloured as in (a).
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13̄24̄13̄24̄ Starting word from Lissajous construction
3̄1214̄3̄24̄ Use of σiσj = σiσj when |i− j| ≥ 2
3̄2124̄3̄24̄ 121 = 212
3̄224̄3̄24̄ Stabilisation
3̄224̄3̄4̄2 Use of σiσj = σiσj when |i− j| ≥ 2
3̄223̄4̄3̄2 4̄3̄4̄ = 3̄4̄3̄

3̄223̄3̄2 Stabilisation
2̄112̄2̄1 Relabelling of the strands
112̄12̄2̄ Cyclic permutation

Table 4.2: The steps to the braid word from the Lissajous construction, a lem-
niscate with five strands, to the form given by Gittings [Git08].

Strands 3 5 7 9 11
Knot / Link Figure-8 63 89 1017 12a1273

Conway Notation [22] [2112] [3113] [4114] [5115]

Table 4.3: The knots formed in the closure of the square of a the basic braid
word of the braid stands following a lemniscate trajectory with N strands. The
Conway notation for the knots is also shown.

Laguerre-gaussian superposition for the figure-8 knot in appendix 4.A to this
chapter, to complement the superposition given in table 3.5.

We now increase the number of strands in the braid, which must be odd to
avoid the braid strands intersecting each other. Increasing the number of strands
creates a generalised family of knots which we now construct. For N = 5 the
basic braid word formed is, now dropping the symbol σ and using overbars for
inverses for brevity, 13̄24̄, whose square represents the knot 63. This has eight
letters and is obviously not the minimum length of word for 63. The use of the
Markov move of stabilisation, section 2.3, is required to reduce the number of
strands down to three. These steps are shown in table 4.2. The final word is
the form given by Gittings [Git08] where the minimal braid representations for
knots are tabulated.

This family continues with the closure of the cube representing the knot
12n706.1 Beyond twelve crossings it becomes difficult to uniquely identify knots
and links from the common sources. Obviously these higher crossing knots are
accessible via the Lissajous construction. We will next concentrate on increasing
the number of strands following the lemniscate trajectories.

Table 4.3 shows the knot / link formed by the closure of lemniscate based
braids with various numbers of strands. Also shown is the Conway notation
for the knot, which apparently forms a pattern as N increases. The pattern in

1The notation we use for knots of eleven and higher minimum crossing number is from Knot
Atlas [BNM10] and KnotInfo [CL10].
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the Conway notation is [(N − 1)/2 1 1 (N − 1)/2], where N is the number of
strands in the Lissajous construction which suggests that these knots and links
are related in other ways. The basic braid words for the lemniscate knots, bstrands

(also called bs), have the form of the ordered product

bs =
M

∏
i=1

i (M + i), (4.6)

where M = (N − 1)/2 and N is the number of strands. Given this form, and
the ability of the knot 63 to simplify as above, this leads us to the following
proposition.

Proposition 4.1. The knot formed by the closure of b2
s , as in equation (4.6) for a 2-

lemniscate braid, can be written in the form of (1 N̄ 2 (N + 1) . . . N (2N + 1))2,
arising from the Lissajous construction on the lemniscate trajectory. This can then be
written in the form 1N 2̄12̄N , to be consistent with the minimal forms given by Git-
tings [Git08].

Proof. The case of three strings is trivial and for five strands is shown in table 4.2.
For higher numbers of strands, the same procedure as presented in table 4.2
needs to be followed :

• Use the braid relation σiσj = σiσj when |i− j| ≥ 2 (BR1, equation (2.5)) to
rearrange the braid word to form a sequence of letters (M + 1)M̄(M + 1).
This can occur only once and be rearranged to M̄(M + 1)M̄ by the other
braid group relation, (BR2, equation (2.6)). This leaves only one occur-
rence of (M + 1) which can be removed by the Markov move stabilisation
(figure 2.13).

• A similar procedure is applied to the element 1 and it is removed. It may
be necessary to make use of the fact the braid word is closed, so any cyclic
permutation of the elements still represents the same knot. This leaves a
braid word with two less strands than the constructed word.

• These two steps are repeated, cyclically permuting the word as necessary,
reducing the number of strands the word needs. This will ultimately create
a word with only two uniquely labelled elements which are relabelled 1
and 2. There are N + 1 occurrences of each and 2 occurs as 2̄.

• The string of N 1’s is written 1N ; similarly for the string of 2̄’s. In general
this requires the use of cyclic permutation. This leaves a braid word of the
form 1N 2̄12̄N .
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Knot Alexander Polynomial
Coefficients

Figure-8 1 -3
63 1 -3 5
89 1 -3 5 -7

1017 1 -3 5 -7 9
12a1273 1 -3 5 -7 9 -11

Table 4.4: The Alexander polynomial coefficients for the given knots, which
are the closure of the square of a basic braid word where the strands follow a
lemniscate trajectory. Only the non-repeated coefficients are shown, in order,
because of the symmetry of the Alexander polynomial coefficients.

The Conway notation is not the only knot invariant that exhibits a pattern
for the squared lemniscate braids. The coefficients of the Alexander polyno-
mials of the knots also form a pattern. Table 4.4 shows the Alexander polyno-
mial coefficients for the knots in table 4.3. This set of coefficients have the form
−1i+1(2i − 1) where i ∈ N. The alternating sign is due to the fact the coeffi-
cients of the Alexander polynomial of a 2-bridge (rational) knot must alternate;
Hartley has a proof of this [Har79].

This relationship between the Alexander polynomial and the Conway no-
tation form has been observed by Jablan [Jab01]. This reference uses Conway
notation to group knots by relationships between their knot polynomials and
other invariants. The closest family given to our construction is the knots with
Conway notation [p11q] where p ≡ q mod 2. When p = q, this is the family of
knots we generate from the squares of basic braid words following a lemniscate
trajectory. We now look for similar relationships between the knots and links
generated from braids following higher lemniscates.

4.3 3-Lemniscate Knots

Higher order lemniscates are those with more loops and they can also be used
in the Lissajous construction. The case of β = 3 in equation (4.1) gives rise to
the double lemniscate with two self-intersections, we call this a 3-lemniscate. The
braid strands are initially positioned with equal spacing between them on the
3-lemniscate. In order to avoid the strands intersecting as h varies, the number
of strands must not be N ≡ 0 mod 3.

Definition 4.2 (Trivial Lemniscate Knot / Link). If a knot or link can be formed by
the Lissajous construction using a m-lemniscate and a n-lemniscate such that m < n,
we call it a trivial knot or link on the n-lemniscate.
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The (2, n)-torus knots and links are trivial on the 3-lemniscate. They can be
formed on the 1-lemniscate (the circle).

The lowest non-trivial number is four strands and has basic braid word 132̄
which has the link L6a1 as the closure of its square. This braid, (132̄)2 is illus-
trated in figure 4.2 with the link L6a1 shown as its closure. This braid is the same
word given by Gittings but shorter than the word given by the online resource
“Knot Atlas” [BNM10]. Like in the case of the 2-lemniscates, the basic braid
word can be taken to higher powers before the braid is closed. Let b = 132̄, then
b̂3 is the knot 940 and b̂4 forms a twelve crossing four component link. There are
no common names for this twelve crossing link or the higher crossing number
knots and links formed in this fashion.

We now increase the number of strands and look at the relationship between
the square of the basic braid word and its Conway notation. On five strands, the
basic braid word is b = 13̄2̄4 and b̂2 is the knot 77. This braid trajectory gives
rise to both knots and links for b̂2, contrasting to only knots for the 2-lemniscate
trajectories. The minimal crossing number of the knots increases by one for each
additional strand in the construction and hence there is a jump of two when
missing the case of N ≡ 0 mod 3. These knots and links are shown in table 4.5.

The Conway notation for the knots and links exhibits a pattern as the number
of strands increase in b̂2. This notation exhibits a relationship between adjacent
knots in the table. When increasing the number strands in the braid by one,
the central element increases by one. In the case where the number of strands
increases by two, when missing out a multiple of three, the outer two elements
both increase by one. This sequence begins when the number of strands is seven
and can be seen in table 4.5.

The 3-lemniscate braid trajectory gives rise to both knots and links as the
square of the basic braid words. This means that the Alexander polynomial is
not a good invariant to find patterns and sequences. We will use the Jones poly-
nomial for these knots and links we look at the Jones polynomial. The Jones
polynomial, section 2.4, is only used as a tool in the chapter and we do not con-
sider its construction or more general properties here. The Jones polynomial
is defined for links, where for links with an even number of components it is
a Laurent polynomial in the variable q

1
2 [Jon85], otherwise only in q. We now

consider just the coefficients of the Jones polynomial as an ordered list created
by multiplying the polynomial by the appropriate factor qm such that we create
a polynomial with a constant term and the remaining terms have positive in-
teger powers. The order of the coefficient list is reversed for links in table 4.5,
mirroring the polynomial by taking q→ q−1.

As the number of strands in the basic braid word increases, the number of
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(a)

(b)

Figure 4.2: (a) The braid word (132̄)2 on the 3-lemniscate in B4. This has basic
braid word, 132̄. (b) The two component link L6a1 formed by the closure of the
braid word (132̄)2.
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Strands Conway
Notation

Knot or
Link

Jones Polynomial Coefficients

4 [2 2 2] L6a1 1 2 2 2 3 1 1
5 [2 1 1 1 2] 77 1 2 3 4 4 3 3 1
7 [2 1 1 1 1 1 2] 931 1 4 6 8 10 9 8 5 3 1
8 [2 1 1 2 1 1 2] L10a91 1 4 7 10 13 13 9 3 1
10 [3 1 1 2 1 1 3] Two com-

ponent 12
crossing
Link

1 4 9 14 20 23 24 21 17 11 6 3 1

11 [3 1 1 3 1 1 3] 13a4296 1 4 9 15 22 28 30 29 25 18 12 6 3 1
13 [4 1 1 3 1 1 4] K15a75986 1 4 9 17 26 36 43 45 44 37 29 20 12 6 3 1

Table 4.5: The knots and links constructed from the squares of the basic braid
words created from braids following a 3-lemniscate trajectory. The Conway no-
tation and the coefficients of the Jones polynomials are given.

terms in the Jones polynomial increases. Unlike the Alexander polynomial, the
coefficients of the Jones polynomial are not symmetric. We find the Jones poly-
nomial exhibits two sequences, one starting at either end of the list. For the first
few 3-lemniscate knots, we list their Jones polynomial, V(q), and highlight the
terms forming the two sequences with underlining:

[2112112] V(q) = −q
7
2 (1− 3q + 6q2 − 9q3 + 13q4 − 13q5 + 13q6 − 10q7

+7q8 − 4q9 + q10)
[3112113] V(q) = −q

−5
2 (1− 3q + 6q2 − 11q3 + 17q4 − 21q5 + 24q6 − 23q7

+20q8 − 14q9 + 9q10 − 4q11 + q12)

The coefficients of the successive Jones polynomial, as the number of strands
increases, tend to these sequences; the central coefficients are not members of
the sequence. These sequences are

1, 4, 9, 17, 29, 65, 89, 117, 149, 185, 225, 269, 317, 369, 425 . . .

1, 3, 6, 12, 21, 33, 49, 69, 93, 121, 153, 189, 229, 273, 321, 373 . . .

which are the appropriate 31 terms of the 53 term Jones polynomial for the link
with Conway notation [16 1 1 16 1 1 16]. Neither of these sequences appear
on the Online Encyclopaedia Integer of Sequences database [OEI10]. This is
an online database of common integer sequences and using this we have not
been able to determine if there is a known pattern or meaning to the sequence.
This does not mean that there is not a known meaning to the sequence. The
existence of these sequences shows that the 3-lemniscate knots and links have
related properties between them beyond the braid construction.
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Strands Conway Notation Knot / Link
3 [ 2 2 ] Figure-8
5 [2 2 2 2] 812
7 [2 1 1 1 1 1 1 2 ] 1045
9 [2 1 1 1 1 1 1 1 1 2] 12a499

11 [2 1 1 2 1 1 2 1 1 2] 14a10074
13 [3 1 1 2 1 1 2 1 1 3] A 16 crossing knot
15 [3 1 1 3 1 1 3 1 1 3] An 18 crossing knot

Table 4.6: The knots constructed from the squares of the basic braid words cre-
ated from braids following a 4-lemniscate trajectory. The Conway notation is
given and the common name shown where it exists.

4.4 Higher Lemniscate Knots

The Lissajous construction can be extended to use general n-lemniscate braid
trajectories, for any β ∈ N. The 4-lemniscate is the next set of knots and links
we can construct. The closure of the basic braid words formed, squared, exhibit
a relation in their Conway notations as the number of strands in the braid is
increased. The number of strands N must be odd to ensure that they remain
distinct. Table 4.6 shows the knots formed by the closure of the square of the
basic braid word with its Conway notation.

We list the 5-lemniscate knots we have studied in the tables of Appendix B.
There are a number of trivial knots on this lemniscate and we expect for these-
higher lemniscates, the knots and links formed by the closure of the basic braid
word squared, duplicate those that can be formed more simply from lower val-
ues of β before non-trivial knots are formed and patterns can be observed. This
means that the patterns in the Conway notation and knot polynomial coeffi-
cients potentially begin at a high number of braid strands. In the case of β = 5
the Conway notation pattern begins at braids with eleven stands, which corre-
sponds to a fifteen crossing knot. This leads us to believe that a knot or link with
a low number of crossings, if it cannot be created by a lemniscate with a low
β, then it cannot be created with a higher order lemniscate. We expect, as the
number of loops in the lemniscate increases, the number of unique knots and
links created will increase for a high enough number of braid strands.

4.5 The z = 0 Plane

The paraxial functions of chapter 3 and their later analysis in this thesis, require
the z = 0 plane of the Milnor polynomial in their formation. The nodal knot or
link in these functions is formed from the closure of a braid. We are however free
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to choose the location of this axis in braid space. This axis forms the z-axis in real
space. The topology of the nodal set of the Milnor polynomial is isotopic to any
other axis choice, but the geometric shape of the curve is in general different. We
now introduce a further parameter into the Lissajous construction to position the
closure axis.

Our illustrations of braids are shown contained inside a cylinder. The closure
axis is located at the mid-point in the braid’s height h. It touches the cylinder
tangentially and such that it is perpendicular to the h direction. This gives a full
2π possible positions for the location of the axis. We label this angle θ. This
angle is that which the closure axis makes with the y = 0 line in a transverse u
plane.

Under closure, the axis, in braid space, forms the z-axis passing through the
origin of R3 and hence the z = 0 plane in R3 is the plane that intersects the
enclosing torus, the image of the cylinder under the Milnor map, through the
equator. This is the plane parallel to the h direction and perpendicular to the
closing axis. Geometrically, the nodal curve is unique up to the value of θ mod-
ulo π. An illustration of placing the closure axis and the value of θ is shown in
figure 4.3.

The value of θ is built into the Milnor map by letting u→ eiθu. The 3-sphere
inverse stereographic projection is preserved : |eiθu|2 + |v|2 = 1. The Milnor
maps taken so far have closed the braid with θ = 0 and we call this the standard
closure and view of the knot.

We now explicitly construct the Milnor polynomial for the figure-8 knot with
the parameter θ included. The process is shown in figure 4.4. When θ = 0, the
standard view, the braid strands pass through the z = 0 plane eight times. This
persists under the Milnor map to keep eight zeroes in the Milnor polynomial at
z = 0. The other extreme value for the angle is θ = π

2 , equivalent to u→ iu. Here
the same braid only passes through the z = 0 plane four times. This leads to two
very different curves of the nodal figure-8 knot but they remain ambient isotopic
to each other. In the z = 0 plane, we get a θ-dependent Milnor polynomial

ffig-8(r, φ, θ) = e3iθ − 2e3iθ R2 + 3eiθ R2e−2iφ − 3eiθ R2e2iφ + 2R2e−2iφ + 2R2e2iφ

+4R4e−2iφ + 4R4e2iφ − 2R4e−4iφ + 2R4e4iφ

+2e3iθ R6 − 3eiθ R6e−2iφ + 3eiθ R6e2iφ + 2R6e−2iφ + 2R6e2iφ

−e3iθ R8. (4.7)

This Milnor polynomial can be made into a function satisfying the paraxial equa-
tion using the techniques of chapter 3. We give the Laguerre-gaussian superpo-
sition for the figure-8 knot, with the mode coefficients containing the θ- and
a-dependence, in appendix 4.A to this chapter.
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(a)

(b)

Figure 4.3: The location of the axis around which the braid is closed. (a) In a
u-plane, an example braid trajectory lemniscate is shown. The blue circle rep-
resents the enclosing cylinder and the positive x-axis is drawn in black, from
which the angle θ is measured. The example angle shown is θ = π

4 with the
corresponding axis shown as the thick red line. (b) A three-dimensional plot of
two possible axes for closing the shown braid. They are in a tangential direction
to the enclosing cylinder, lying in the u-plane at half the total height of the braid.
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(a) (b) (c)

(d) (e) (f)

Figure 4.4: The effect of varying θ when using eiθu in the Milnor map for the
figure-8 knot. The z = 0 plane shown intersecting the braid (a) eight times for
θ = 0 and (d) four times for θ = π/2. The z = 0 plane of the Milnor map (b) with
eight corresponding zeroes and (e) with four zeroes for θ = 0, π/2 respectively.
The geometric form of the nodal lines show in (c) the standard view for θ = 0
and (f) the form generated with θ = π/2.

The link L6a1 undergoes a similar change in its geometric form when dif-
ferent positions for the closure axis are chosen. The z = 0 plane for this link is
shown in figure 4.2 for θ = 0 and for θ = π

2 .
The torus knots constructed from a circular trajectory do not undergo a ge-

ometric change with a variation with θ. The circle does not have an orientation
direction definable like the lemniscates do. Hence the number of zeroes in the
z = 0 plane is constant and the constellation also remains fixed up to rotation.

The parameter θ provides a method of controlling the geometric form of the
knot or link being constructed. This means that a continuous set of curves can
be formed and solutions of the paraxial equation created and tested to see if all
the forms of the curve are supported. Different values of θ in general lead to
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(a) (b) (c)

(d) (e) (f)

Figure 4.5: The link L6a1 with θ = π
2 . The braid now only intersects the z =

0 plane four times, (d) in braid space ((a) θ = 0) and in the expected two-
fold symmetric way in (e) showing the phase of the z = 0 plane of the Milnor
polynomial ((b) θ = 0). The two components of the link are coloured distinctly
in (f) and although geometrically different to the curves in (c) where θ = 0 they
are equivalent topologically.

different zero constellations in the z = 0 plane. These different constellations
could lead to successful experimental implementations when the default θ =
0 value leads to a more complex layout, for example the figure-8 knot which
becomes a lot simpler, figure 4.4, when θ = π

2 .

4.6 Over Homogenisation

We have remarked that some knots do not successfully occur in a paraxial func-
tion using the methods we have developed so far. This section examines one
such knot and introduces a method that can be used to aid this topology trans-
fer.
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In taking the Milnor map of a braided function to form the Milnor polyno-
mial, the functions u and v are rational functions of position with a common
denominator, 1 + R2 + z2. Our Milnor maps have consisted of the numerator of
the complex function formed once the function is placed over a common denom-
inator to each term. This is achieved by making all terms in u, v, v∗ homogenous
by multiplying by a function w(r) = 1 + R2 + z2 such that there is no overall
factor of w in the expression. When a function satisfying the paraxial equation
is constructed from such a Milnor polynomial, we have already noted that some
knots, for example the T5,2 form of the cinquefoil knot, do not successfully in-
herit the desired nodal topology. We now investigate the effect of introducing
an overall factor of w (and multiple factors of w) on the nodal set of the corre-
sponding paraxial function.

The homogenisation with w above is the minimal power of w to be able to
take the numerator of the expression to form the Milnor polynomial. A Milnor
polynomial can be formed with a different power of w such that the polynomial
in u, v, v∗, w is still homogeneous but with an overall factor of w present. This
leads to a equation form of the Milnor map

q′s = wsq(u, v, v∗, w), (4.8)

where q is the Milnor map created by the Lissajous construction and s ∈ N is
the level of over homogenisation. The case of s = 0 corresponds to the unchanged
Milnor map which we call the standard homogenisation.

We now illustrate over homogenisation by example using the T5,2 cinquefoil
knot and how this affects the topology of the nodal set in the formed function
that satisfies the paraxial equation. This knot can be given the following levels
of homogenisation

q0 = u5 − v2w3, (4.9)

q1 = wu5 − v2w4, (4.10)

q2 = w2u5 − v2w5, (4.11)

where s in qs is the level of homogenisation. All three levels of homogenisation
contain the cinquefoil knot in their respective Milnor polynomial’s nodal set and
they are almost identical in their geometric appearance. The paraxial functions
they create are very different in their nodal sets.

The standard homogenisation, q0, when made to satisfy the paraxial equa-
tion does not form the cinquefoil knot in its nodal set. For almost all values of φ,
only three zeroes are present in the (R, z)-plane. This is in contrast to the five in
the Milnor polynomial arising from the five braid strands. Figure 4.6 shows the
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(a) (b) (c)

Figure 4.6: The phase of the (R, z)-plane at φ = 0 for the paraxial function
homogenised at different levels. The standard homogenisation, s = 0, is shown
in (a). Only three zeroes can be seen in this plane despite the rapid phase change
at two points. This does not give the five braid strands required to form the
cinquefoil knot. The over homogenised functions, (b) and (c) for s = 1, 2 respec-
tively, do exhibit five zeroes, which persist for all values of φ and the cinquefoil
knot is successfully formed.

phase of the three qi functions, in which this difference in the number of zeroes
is clear.

This partitions the paraxial torus knots into two classes, standard and over
homogenised knots. The symmetry of the torus knots, Tm,n ∼= Tn,m means that
some torus knots, like the cinquefoil, have geometrically different, but still am-
bient isotopic, forms in both partitions.

The level of homogenisation of the Milnor polynomial can affect the transfer
of the nodal set topology to a function satisfying the paraxial equation. The
paraxial equation contains derivatives of R and z at different orders to each
other. This restricts the power of z that appears in the paraxial polynomial to
be half of the power that R appears as. The Milnor polynomial does not restrict
the power and hence contributes to the number of zeroes in this way. Increasing
the power of w increases the power of R and hence the power z in the created
paraxial function. This allows for more information to be carried over from the
Milnor map to the paraxial function.

4.7 Discussion

We now summarise the results of this chapter before further discussion:

• We have detailed a construction of complex scalar functions with pre-
images of zero that are a prescribed knot or link in R3, based on first
constructing braided zeroes where the braid strands follow a lemniscate
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trajectory, sections 4.1-4.4. The braid is closed by taking the Milnor map of
the braided function to form the function with a knotted/linked nodal set.

• We have introduced three parameters into the construction that have a
geometric effect on the curves constructed, a (section 4.2), θ (section 4.5)
and s (section 4.6).

• The Conway notation of the knots/links constructed from squares of braid
words of our construction forms a sequence as the number of strands in
the braid word increases, tables 4.3, 4.5 and 4.6. We can use this to predict
the next knot or link in the series.

• The coefficients of the Alexander polynomial of the lemniscate knots, sec-
tion 4.2, for the knots created by squares of a constructed braid word, form
a sequence as the number of strands in the braid increases.

• Higher lemniscates β > 2 give rise to links as well as knots for the squares
of the braid words constructed. The Jones polynomial coefficients give
rise to a pattern in this case, section 4.3. Unlike the Alexander polyno-
mial where all the coefficients (half of them by symmetry) appear in the
predicted sequence, in the case of the Jones polynomial, the sequence ap-
pears to limit to the pattern. This gives rise to two different sequences of
integers, one starting from either end of the polynomial.

The Lissajous construction creates functions with a knot or link as the pre-
image of zero. These arise as the closure of periodic braids where the strands
follow a generalised lemniscate as their trajectory. The basic braid words are ho-
mogeneous braids so the created knots and links are fibred by Stallings [Sta78].

The construction naturally creates a three-parameter subset of all knots. The
(integer) dimensions of this this space are given by:

• β the number of loops in the lemniscate of the braid trajectory,

• N the number of strands in the braid,

• n the number of repeats of the basic braid word before closing the braid.

Not every discrete triplet (β, N, n) is a unique knot or link; duplicates can occur.
The torus knots in the β = 1 plane of this space are an example of this: the
symmetry of Tm,n ∼= Tn,m means there are two entries for each torus knot and
link with possibly more occurring in other planes. These are examples of trivial
knots / links on the 1-lemniscate as defined in definition 4.2. Trivial knots and
links appear to occur when the number of braid strands n is less than β.
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The construction also allows for three natural parameters that affect the ge-
ometric shape, giving an ambient isotopy of the knot or link :

• a ∈ R+, a parameter that effects the scaling of the curves,

• θ ∈ [0, 2π), a parameter that positions the z = 0 when closing the braid,

• s ∈ N, the level of homogenisation that can be used to to modify the Mil-
nor polynomial to aid the inheritance of the nodal topology into functions
satisfying the paraxial equation.

In chapter 5 we examine the effect of a on the topology of the 63 knot and con-
clude that there is a range of validity, at least for the Milnor map we use, where
the desired knot is actually formed. Chapter 6 concludes with a look at s, the
level of homogenisation of the complex function, and uses the cinquefoil knot
as an example to show how this effects the creation of a function satisfying the
paraxial equation and its nodal set.

The traditional tabulations of knots, such as Rolfsen’s [Rol76], group the
knots by their minimum crossing number. Within these groupings, the knots
share no other similarly valued invariants. The Lissajous construction naturally
groups the knots / links with similar other invariants together. Notably, the co-
efficients of knot polynomials can be predicted in the n = 2 plane of our knot
space as well as their respective Conway notations. Each column for an increas-
ing n gives an increasing number of rotational symmetries to the knot.

This way of tabulating knots has similarities to the work of Jablan [Jab01] and
Jablan and Sazdanović [JS07]. Such tabulation orders knots by their Conway
notation and patterns such as those given in table 4.4 are also present. Our
tabulation from the Lissajous construction includes non-rational knots, for knots
and links with n > 2, the number of repeats of the underlying basic braid word.

The coefficients of the Alexander polynomial of the 2-lemniscate knots, that
are formed from the square of the basic word, follow an obvious pattern shown
in table 4.4. More complicated sequences are formed in the Jones polynomial
coefficients from the braids following a 3-lemniscate trajectory. This structure
to the knots and links not obviously observed when tabulating knots and links
by their crossing number alone. In fact, the three-dimensional tabulation we
form does not necessarily construct the curves with a form that exhibits their
minimum crossing number, for example β = 2, N = 5, n = 2 the 63 knot. This
knot has a Lissajous constructed braid word of length eight but a minimum
crossing number of six. Our construction does give braid words with a minimal
amount of information, taking advantage of the symmetry that the knot inherits
from the use of a repeated basic braid word.
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This three-dimensional tabulation puts knots and links on an equal level,
that is to say that we do not require a one component knot table separate from
the multi-component links. We can label any knot or link from our construction
with just the position (β, N, n). From our observations we propose that

• The knots and links formed by the closure of the square of a basic braid
word from the Lissajous construction exhibit patterns in their respective
Conway notations and coefficients of their Alexander and Jones polyno-
mials. Each pattern is specific to the type of lemniscate the braid strands
follow, labelled by β. These are the patterns shown in tables 4.3 and 4.4-4.6
and appendix B.

Appendix B shows the knots and links we have constructed and studied using
the Lissajous construction.

Lemniscate curves are a special case of Lissajous curves. A Lissajous curve
has parametrised form (sin αh, cos βh) where α 6= 0. However, attempts to close
these braids using our Milnor maps have failed. One reason for this failure
could be our use of u(r) and v(r). We have considered the 3-sphere of unit ra-
dius in our Milnor maps and inverse stereographic projection of equations (2.2)
and (2.3). This is the size of the small 3-sphere enclosing the singularity in our
function [Mil68]. Within the definitions of u and v, we could explicitly include
the radius of the 3-sphere as an additional parameter of the construction.

We could investigate alternative forms of the inverse stereographic projec-
tion functions from R3 to the 3-sphere, for example the functions

p(r) =
1√
2

(u(r) + v(r)) , (4.12)

q(r) =
1√
2

(u(r)− v(r)) . (4.13)

For the cases we have investigated with these functions, the nodal curve formed
is open. If this curve is broken and a closing curve adjoined, then the resulting
curve was the desired knot. But by requiring knots to be closed, these “knots”
with their infinite open nature, are not considered further by us.

A similarly named class of knots, to the Lissajous construction, are the Lis-
sajous knots [BHJS94]. These are three-dimensional curves that are ambient iso-
topic to a parametric curve of the form

x = cos(ηxt + φx)
y = cos(ηyt + φy)
z = cos(ηzt)

where 0 ≤ t < 2π, (ηx, ηy, ηz) ∈ N3 and φx, φy ∈ R. To avoid self-intersections
in the curve the ηi are all co-prime to each other. Obviously this only constructs
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knots not multi-component links. Examples of Lissajous knots, with values
(ηx, ηy, ηz, φx, φy), are

52 (2, 3, 7, 0.2, 0.7)
821 (3, 4, 7, 0.7, 1)
31#3̄1 (3, 5, 7, 0.7, 1)

where 3̄1 is the mirror image of the trefoil knot. Hence fibred, non-fibred and
non-prime knots can be Lissajous and there are an infinite number of Lissajous
knots [Lam97]. This means that the Lissajous knots and our three-dimensional
table of Lissajous constructed knots are in general very different knots. The
similarity is in the name of the constructions only.

The Lissajous construction can be used to construct a wide range of knots,
forming an infinite family of related knots and links. This family does not in-
clude all knots, especially non-fibred knots. It is unknown whether a composite
knot can be constructed from the Lissajous construction.

There exist other methods for constructing braids and fibred knots and these
could potentially be used to construct complex scalar functions with knotted
nodal sets. Similar to our method, at least qualitatively, is the construction of
symmetric fibered links by Goldmith [Gol75], where fibred knots and links are
constructed that have rotational symmetry in S3. This contrasts to our construc-
tion which has a rotational symmetry in R3. Berger [Ber01a] constructs braids
with three strands using Hamiltonian dynamics. This allows for a simple trajec-
tory in an abstract space to describe a complicated braid word. This construction
has not lent itself to our method of Milnor mapping functions containing such
braids to form closed knots, requiring a trigonometric trajectory for the braids
to allow us to use equations (2.2) and (2.3) to close the braid.

We conclude this chapter with a review of some questions that arise from
our Lissajous construction.

• What is the full sub-set of knots that are possible to construct with the
Lissajous construction? This includes the generalisation from lemniscate
trajectory braids to general closed Lissajous figures. We believe that our
construction gives at least a subset of the fibred knots and gives rise to
homogenous braid words, table 2.3. It may be possible with a Lissajous
figure to construct inhomogeneous braid words and it is unclear as to if
this would give rise to a non-fibred knot or a braid word of a fibred knot
that is not in a homogeneous representation.

• Can it be proved that the coefficients of the Jones/Alexander polynomial
form a sequence as the number of braid strands increase when the knot or
link is the square of a basic braid word from the Lissajous construction?
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The sequences we have observed, sections 4.2 and 4.3, certainly appear
robust and continue to form as we increase the number of strands in our
construction. Do other knot invariants exhibit similar patters and do these
form sequences when increasing the other two parameters of the lemnis-
cate constructed knots, β (equation (4.1)) and n the number of repeats of
the basic braid word?

• The basic braid words we construct, when repeated n times, in general
have more letters than the minimum crossing number of the knot/link
they represent. Do these braid words reveal more topological information
about the knot itself? For example, the braid words in proposition 4.1
are significantly longer than the minimum braid representative [Git08].
Can this difference in braid word lengths tell us anything about the knots
and links we construct? The braid words we construct do however give
a minimal information representation, which may have a high number of
strands compared to Gittings [Git08], but only needs the basic braid word
to be given and the number of times this is repeated.



4.A FIGURE-8 LAGUERRE-GAUSSIAN SUPERPOSITION WITH a AND θ 119

4.A Figure-8 Laguerre-gaussian Superposition with a
and θ

mode (l, p) Coefficient

(0, 0) −
(

3(−1+a2)(1+2w2)(−1+12w6)
4a2

)
eiθ

+
(
−1 + 2w2) (1 + 12w6) e3iθ

(−2, 0)
w2(6aeiθ(−1+12w4)−(3+a2)(1+6w2+12w4))√

2a2

(0, 1) 1
2 eiθw2

(
−4e2iθ (1− 18w4 + 48w6)+

3(−1+a2)(−1+18w4+48w6)
a2

)
(2, 0) −w2(6aeiθ(−1+12w4)−(3+a2)(1+6w2+12w4))√

2a2

(−4, 0) 4
a3

√
6w4

(−2, 1)
√

6w4(−24aeiθw2+(3+a2)(1+4w2))
a2

(0, 2) 1
a2 9w6e2iθ ((3− 7a2 + 4

(
3 + a2)w2) cos θ

+i
(
−3− a2 + 4

(
−3 + 7a2)w2) sin θ

)
(2, 1)

√
6w4(24aeiθw2+(3+a2)(1+4w2))

a2

(4, 0) − 4
√

6w4

a3

(−2, 2) − 2
√

3(3+a2−6aeiθ)w6

a2

(0, 3) 3eiθw6
(
−4e2iθ (−1 + 8w2)+

3(−1+a2)(1+8w2)
a2

)
(2, 2)

2
√

3(3+a2+6aeiθ)w6

a2

(0, 4) 1
a2

(
6w8 ((3 + a2) cos θ + i

(
−3 + 7a2) sin θ

)
(e2iθ)

Table 4.7: Laguerre-gaussian mode coefficients for the figure-8 knot with the
dependence on a and θ given.





Nodal Lemniscate Knots 5
We now look at several physical PDEs and use our construction to examine
whether we can construct our nodal knots in functions satisfying such equa-
tions. We continue our approach of constructing the function as an initial value
problem based on the z = 0 plane. In the case of the Schrödinger equation in
the absence of potentials, equivalently we begin with a constructed knot in three
dimensions, present at t = 0 and evolve time.

We begin with some further examples of paraxial knotting, and use the 63

knot as an example of a restricted parameter space of success in both the Mil-
nor polynomial and the paraxial function. The Helmholtz equation is the sec-
ond equation we attempt to satisfy and we show how our Lissajous constructed
nodal knots can be transferred to functions satisfying it. Our concluding ex-
ample is the three-dimensional Schrödinger equation with various potentials.
This gives examples that go beyond our optical motivations within this thesis.
Specifically, we try the three-dimensional harmonic oscillator and the hydrogen
atom.

5.1 Paraxial Nodal Knots

We now examine some further cases of how the nodal topology of Milnor poly-
nomials, created by the Lissajous construction, can be transferred to that of func-
tions satisfying the paraxial equation. At this stage we also further examine the
effect of the geometric parameter a. The knots are readily studied by considering
the (R, z)-plane, where the lemniscate is traced out as φ varies. The geometry of
this twice mapped lemniscate, first in forming the Milnor polynomial and sec-
ondly in the creation of the paraxial function, has a profound effect on the nodal
knot in paraxial functions.

First, we look at the 63 knot. This knot has braid word created from a 2-
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lemniscate (β = 2), with five strands and two repeats. This is the next generali-
sation of the figure-8 knot family after considering additional repeats of the basic
braid word (section 4.2). As with the other paraxial functions, the paraxial func-
tion has the highest power of z half that of the Milnor polynomial. The range in
z is smaller in the paraxial knot than the Milnor polynomial as well. This com-
bines to give a very different geometric form of the lemniscate the zeroes follow
in the (R, z)-plane for the paraxial function.

In braid space, the parameter a does not change the topology of the braid.
For all a > 0, the braid word formed is identical. Under the braid closure by the
Milnor-like map, this parameter controls the success of the Milnor polynomial
containing the target knot. We cannot expect a paraxial function to contain this
knot if the Milnor polynomial does not, but it is possible that this could happen,
especially when close to critical values of a etc.

The (R, z)-plane projections of the curves can be used to rule out if for a
given a, the knot has correctly formed. In figure 5.1 we show a series of such
planes to illustrate the process of successful knot formation. For values of a too
low, a . 2, the knot does not correctly form. Such a case is shown in figure 5.1(a)
for when a = 1. In this figure additional components can be seen in the Milnor
polynomial case.

The case of a & 5.5 also does not contain the 63 knot. The curve of the Mil-
nor case in the (R, z)-plane contains many turning points, which as a increases,
forces parts of the curve towards the z-axis. This ultimately intersects and recon-
nects with the curve because the twisting is symmetric above and below z = 0
(in this projection). Additional components are once again formed, destroying
the target topology. The nodal set of the paraxial function exhibits this destruc-
tion as well.

The 63 knot appears to occur for the range of a as above, both in the Milnor-
and paraxial- functions. It is possible that for a range of a � 5.5 the required
lemniscate in the (R, z)-plane is once again formed. In a numerical investigation,
we have not be able to obtain such a value. It would be surprising if such a value
were to exist. In section 5.4 we discuss possible reasons for this restricted range
and suggest possible resolutions.

To finish our discussion of nodal knots in paraxial functions, we give the knot
77 as an example. This knot is the simplest example of a 3-lemniscate knot and
we will check if the mapping u → iu, discussed in section 4.5, can successfully
work paraxially. The obvious difference under this map is the number of zeroes
in the z = 0 plane. The standard case, θ = 0, gives rise to a complicated con-
stellation of zeroes, consisting of twelve zeroes. The parameter θ determines the
location of the axis around which the braid is closed, section 4.5. When θ = π

2 ,
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(a)

(b)

(c)

(d)

Figure 5.1: The (R, z)-planes for the 63 knot for values of a = 1, 3, 4.5, 6 in
parts (a) to (d) respectively. The black curve is the Milnor polynomial’s nodal set
and the blue represents that of the corresponding paraxial polynomial function.
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(a)

(b)

Figure 5.2: The z = 0 plane of 77 knot. (a) shows for θ = 0 and (b) shows for
θ = π

2 . The former case contains twelve zeroes in this plane compared to the
later exhibiting only four. The full three-dimensional curves for both these cases
are shown in figure 5.3.

hence u→ iu, this reduces to four. Both z = 0 planes are shown in figure 5.2.
This difference manifests itself in the three-dimensional curves of the knot.

However, as expected both curves are ambient isotopic to the 77 knot. Both
curves are shown in figure 5.3. This is an interesting feature of the paraxial
equation that both very different forms of the same knot can successfully occur
as solutions.

The ability to construct functions satisfying the paraxial equation that con-
tain nodal knots based on our construction appears robust. The parameters in-
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(a)

(b)

Figure 5.3: The three-dimensional curves of the 77 knot realised as the phase
singularities of a paraxial function shown for two values of θ : (a) θ = 0 and (b)
θ = π

2 .
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troduced in chapter 4 effect the geometric form the knot takes in a similar way
in both the paraxial functions and the Milnor polynomials. It is possible to con-
struct Laguerre-gaussian superpositions for all of the knots that we can construct
using the methods of chapter 3. If a polynomial function can be constructed for
an appropriate set of our parameters that successfully contains the desired knot,
then it is certainly reasonable to attempt a Laguerre-gaussian superposition. The
additional vortices that are present in such a superposition will obviously need
more careful control for more complex knots than those considered in chapter 3.
The parameters such as a and θ in the construction can be used in addition to
the superposition’s beam waist width w to provide this control.

5.2 Helmholtz Nodal Knots

The paraxial equation is an approximation to the Helmholtz wave equation. It
is a natural question to ask that, if a Milnor polynomial’s nodal topology can be
inherited by a function satisfying the paraxial equation, can the same knot or
link exist in a function satisfying the Helmholtz wave equation?

The work of Berry and Dennis [BD01a] has shown that threaded torus knots
and links are possible as the phase singularities of a function satisfying the
Helmholtz equation. We wish to apply our Lissajous construction to functions
satisfying the Helmholtz equation and attempt to construct the wide range of
knots and links available to us, as Helmholtz equation nodal sets. Also, we de-
sire that the knotted nodal set is isolated, not threaded or containing additional
components.

In this section we construct polynomials that satisfy the Helmholtz equation
using the same method of expanding a generating function, as explained for the
paraxial case in section 3.2. To construct the Helmholtz polynomials we use the
construction from [Den01]. This time the generating function for the expansion
is the Bessel beam solution for the Helmholtz equation :

Ψ = eimφeiz
√

1−κ2
Jm(κR). (5.1)

This expression has an eiz term and hence the coefficients of κ in a Taylor expan-
sion require multiplication of such a factor to satisfy the Helmholtz equation.
Without such a factor, a function satisfying the Helmholtz equation of the form
Ψ̃ = e−izΨ, satisfies

∇2
⊥Ψ̃ + ∂2

zΨ̃ + 2iΨ̃ = 0, (5.2)

the Helmholtz beam equation or reduced Helmholtz equation. With equiva-
lence up to a factor, we do not consider the e−ikz factor in our analysis here.
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Table 5.1 in appendix 5.A to this chapter lists the first few Helmholtz polynomi-
als. These polynomials require the φ and z terms as factors so the full solutions
of the Helmholtz equation are

Ψm,n(R, z, φ) = e−ikzeinφ pm(R, z), (5.3)

where pm is as in table 5.1 and is of order m in R.
The Helmholtz polynomials are related to the paraxial polynomials of corre-

sponding order. A Helmholtz polynomial, with labels m and n, is expressible in
terms of the equivalent paraxial polynomial plus a correction term Hm,n which
is a non-trivial function :

Ψm,n(R, z, φ) = ψm,n(R, z, φ) + Hm,n(R, z, φ). (5.4)

To make Helmholtz nodal knots, the Milnor polynomials are, as before in
the paraxial case, constructed and considered at z = 0. A unique function is
then created, coinciding exactly with the Milnor polynomial’s z = 0 plane and
satisfies the Helmholtz equation. The wave number k now exists as a parameter
in such a function which is explored in this section.

We now construct the Helmholtz trefoil knot and use it as our main example
of Helmholtz knotting. We begin with the Milnor polynomial of the trefoil knot
(with the standard homogenisation) and construct using the Helmholtz polyno-
mials

Ψtrefoil =
1
k5 e−ikz

(
{1 + R2 + 8e3iφR3 + R4 + R6}

+iz
(
−144 + 8k2 − 2k4 + (72k2 − 8k4)R2 − 18k4R4

)
+
(
144k− 8k3 − 72k3R2) z2

+48ik2z3

)
(5.5)

where the Helmholtz z-dependence shown outside of the curly {•} brackets.
The k-dependence of equation (5.5) affects both the topology and the geomet-

ric form the nodal curves take. As k tends to zero, the Helmholtz equation be-
comes the Laplace equation. The Helmholtz polynomials become invalid when
k = 0, they are not solutions of the Laplace equation and equation (5.5) explicitly
shows this, having every term attracting a factor of at least k−1.

For low k, k < 1.188, we find that the nodal topology of Ψtrefoil is not the
trefoil knot. There are five distinct, unlinked rings that are approximately planar,
which loop annihilate themselves as k → 0. As k increases, these disjoint loops
are perturbed and connect together to form the trefoil knot. This reconnection
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event occurs at a critical value kcrit ≈ 1.188, a value found numerically. The
trefoil knot exists for k > 1.188. This process of the knot formation is shown in
figure 5.4.

In chapter 4 we discussed the (5, 2)-form of the cinquefoil. We have shown
that the standard homogenisation of the Milnor-like map does not successfully
transfer the cinquefoil knot to a paraxial function’s nodal set. We next look at
what happens to this form of the cinquefoil when the Milnor polynomial is made
to satisfy the Helmholtz equation.

The function that satisfies the Helmholtz equation, constructed from the Mil-
nor polynomial of u5 − w3v2, is given in the following equation :

Ψ5,2-cinq =
1
k9 e−ikz

(
{1− 5R2 + 4e2iφR2 + 10R4 + 12e2iφR4 − 10R6

+12e2iφR6 + 5R8 + 4e2iφR8 − R10}

2i
(

201600 + 14400k2 + 720k4 + 40k6 + 5k8

−40k2(1800 + 144k2 + 9k4 + k6)R2

−36k4(80− 8k2 + k4)e2iφR2 + 90k4(80 + 8k2 + k4)R4

+96k6(5− k2)e2iφR4

−80k6(5 + k2)R6 − 60k8e2iφR6 + 25k8R8
)

z

16k
(
− 5(5040 + 360k2 + 18k4 + k6) + 45k2(200 + 16k2 + k4)R2

+36k4(10− k2)e2iφR2 − 90k4(10 + k2)R4 − 60k6e2iφR4 + 50k6R6
)

z2

+480ik2
(
− 360− 24k2 − k4 + 8k2(15 + k2)R2

+4k4e2iφR2 − 10k4R4
)

z3

1920k3
(

20 + k2 − 5R2
)

z4 + 3840ik4z5, (5.6)

shown with the z-independent terms in the {•} brackets.
Equation (5.6) does, for k > kcrit, contain the cinquefoil knot, in the desired

(5, 2)-geometric form, as its nodal set. This curve is shown in figure 5.5 for
k = 4. A numerical search for the critical value of k finds kcrit ≈ 2.445. Notice
how for this knot, kcrit is higher than the corresponding value for the trefoil
knot examined in this section. This appears to be a feature of more complicated
knots, in terms of a higher number of crossings, braid repeats and β loops in
the lemniscate, that their critical value of k for the topology to exist as desired
is higher. For values of k that are k < kcrit, small loops nucleate and reconnect
with the cinquefoil knot. This destroys the topology after the knot has become
un-isolated.



5.2 HELMHOLTZ NODAL KNOTS 129

(a) (b)

(c) (d)

(e) (f)

Figure 5.4: The nodal set of the Helmholtz equation satisfying equation (5.5).
For values of k < 1.188, which are shown in (a) and (b) for k = 1.050 and k =
1.180 respectively, the five rings can be seen. (c) shows the zero lines for the
value k = 1.188 ≈ kcrit, in which the reconnection of the nodal lines can be
seen. (d), (e), (f) show the nodal set for k = 1.195, 1.500, 4.000 respectively. As
k increases the trefoil knot persists as the nodal topology. The geometry of the
curve becomes simpler when k increases from kcrit. All six images are viewed
from the same viewpoint, on the y-axis, looking at the origin, with the positive
z-direction vertical.
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Figure 5.5: The (5, 2)-form of the cinquefoil knot, realised as the nodal set of
equation (5.6), satisfying the Helmholtz equation, with k = 4. The z-direction is
vertical.

This method of constructing the (5, 2)-form of the cinquefoil knot is realis-
able in both paraxial and Helmholtz functions. However in the former case of
the paraxial equation there is the need to over-homogenise the Milnor polyno-
mial. Given that the standard homogenised form works for the Helmholtz equa-
tion and the paraxial equation is an approximation to the Helmholtz equation,
the desired form may exist in the paraxial function, requiring a small perturba-
tion to form the correct knot. If this is the case, then the over-homogenisation
provides this perturbation in the paraxial case. In chapter 6, we investigate a
mechanism to examine how the nodal curves of a paraxial function can be ap-
proximated and the topology estimated. The “Steering of Optical Vortices” is an
attempt to quantitively show the difference between a paraxial function’s nodal
topology and geometry.

We conclude this section with an examination of non-torus fibred knots as
the nodal sets of solutions of the Helmholtz equation. The figure-8 knot is shown
in figure 5.6. In this figure, we plot the (R, z)-plane for the values of k = 3, 4, 5.
At k = 3 there are some very tight corners on the curve, like cusps. How these
parts of the curve interact affects what topology is formed, and is k-dependent.

The value of k once again plays an important role in the successful transfer of
the nodal knot from the Milnor polynomial. For low values of k, the nodal topol-
ogy of the function is, as with the trefoil knot, several disconnected components.
This transformation is shown in figure 5.7. The knot, as k decreases, first forms
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a single curve not ambient isotopic to the figure-8 knot, before smaller loops are
created.

5.3 Schrödinger Equation Based Systems

We have only considered optical PDEs to attempt an embedding of our nodal
topology into. In this section we generalise to physical systems based on the
Schrödinger equation. Although we have stated that the paraxial equation is
equivalent, up to constants, to the (2 + 1)-dimensional Schrödinger equation
with no potentials (section 1.5) we now explore the (3 + 1)-dimensional form of
the equation. That is three spatial dimensions and one time dimension. After a
brief introduction to the Schrödinger equation, we will consider using our knot
construction to build wavefunctions satisfying it, with knotted phase singulari-
ties as their nodal sets.

In quantum mechanics, the Schrödinger equation describes how a quantum
wave function evolves in time. It relates the time-derivatives of the wavefunc-
tion to the Hamiltonian of the system. The Hamiltonian corresponds to the to-
tal energy of the quantum system. However, we will be interested in specific
Hamiltonians and their solutions. Quantum mechanics textbooks provide a full
interpretation and details of the equation’s derivation, such as [Mes99].

The Schrödinger equation has the form

ih̄
∂Ψ(r, t)

∂t
= HΨ(r, t), (5.7)

where H is the Hamiltonian of the system and Ψ, in this section, is a time-
dependent quantum wavefunction. The systems we consider here have Hamil-
tonian of the form

H = − h̄2

2m
∇2 + V(r), (5.8)

where V is a potential and H is written in operator notation. In the subsequent
sections we look at the potential-less system, the 3D isotropic harmonic oscilla-
tor and the wavefunctions of the hydrogen atom, describing the specific V in the
appropriate section.

The Schrödinger Equation with no Potentials

The functions we have studied so far have been static in three dimensions. The
main result of the construction was the existence of a solution with the desired
nodal topology. We now consider knotted nodal lines in functions that satisfy
an equation where the three spatial dimensions are evolved in a fourth, time,
dimension.
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(a)

(b)

Figure 5.6: The nodal figure-8 knot in a Helmholtz equation satisfying func-
tion. All figures have a = 2. (a) The (R, z)-plane of the nodal curve for values
k = 3, 4, 5 corresponding to the red, green, blue curves respectively. The “cusp”
like nature of the curve at x ≈ 0.45, self-reconnecting for lower values of k, de-
stroying the knot. These cusps manifest into a detailed structure seen in (b), the
full three-dimensional curve.
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(a)

(b)

(c)

(d)

Figure 5.7: (R, z)-planes for the Helmholtz figure-8 knot with low k. (a)-(d)
show the projection for values of k = 0.5, 1, 1.5, 2 respectively. The required
lemniscate is not formed until k ≈ 2.
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The simplest such system is the Schrödinger equation with no potentials.
This has Hamiltonian, as an operator,

H = −∇2, (5.9)

with the constants normalised to unity. The Schrödinger equation of this form
becomes,

(∇2 + 2ik∂t)ψ = 0, (5.10)

where now the Laplacian is in three dimensions, ∇2 = ∂2
x + ∂2

y + ∂2
z , and t rep-

resents time. Equation (5.10) is equivalent to the (3 + 1)-dimensional form of
the paraxial equation, with the coefficient of the time-derivative set to match
the paraxial equation. The paraxial equation used throughout this thesis is the
(2 + 1)-dimensional form of the Schrödinger equation where z takes the role of
time. We now look at polynomial solutions of this equation in the same way we
did for the paraxial equation in section 3.2. The nodal curves are still codimen-
sion two because the fourth dimension is interpreted as a parameter describing
a dynamic change to the function.

To construct polynomials in Cartesian coordinates, a simple generalisation
to three space variables is made to the paraxial Cartesian polynomials. The
separation of variables generalises to a trial function of the form ψ(x, y, z, t) =
f (x, t)g(y, t)h(z, t). This leads to solutions of the form

ψl,m,n(r) = τ
l+m+n

2 Hl

(
x√
τ

)
Hm

(
y√
τ

)
Hn

(
z√
τ

)
, (5.11)

where τ = −2it
k and Hi is the ith Hermite polynomial for i = l, m, n.

The Laplacian is separable in spherical coordinates (r, θ, φ) and we now seek
polynomial based solutions of the Schrödinger equation in this coordinate sys-
tem. Writing the Schrödinger equation this way, it becomes

1
r2

∂

∂r

(
r2 ∂ψ

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1
r2 sin2 θ

∂2ψ

∂φ2 + 2ik
∂ψ

∂t
= 0. (5.12)

A separation of variables solution is now constructed with ψ = F(r, t)G(θ, φ).
Beginning by solving for g we find, after further separating such that G =
H(θ)I(φ), two differential equations to solve

d2 I(φ)
dφ2 + m2 I(φ) = 0, (5.13)

λ sin2 θ +
sin θ

H(θ)
d
dθ

(
sin θ

dH(θ)
dθ

)
−m2 = 0, (5.14)

where λ is the separation constant when solving for F and G, and m is the sepa-
ration constant for solving for H and I. Equation (5.13) solves to give

I(φ) = eimφ, (5.15)
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and to make I periodic we require m ∈ Z. To solve equation (5.14), a change
of variables θ → x = cos θ is made which transforms it to the general Legendre
equation [AS64]

(1− x2)
∂2 I(x)

∂x2 − 2x
∂I(x)

∂x
+
(

l(l + 1)− m2

1− x2

)
= 0, (5.16)

which has associated Legendre polynomials Pm
l (x) as its solutions, where λ =

l(l + 1) and l ∈ Z ensures that the solution exists. With x = cos θ, we combine I
and H into a single spherical harmonic

Yl,m(θ, φ) = Nl,meimφPm
l (cos θ), (5.17)

where Nl,m is an l and m dependent normalisation constant. We normalise the
solutions, combining all the constants of integration, such that the leading order
term in R has a coefficient of one.

The final function to solve for is F(r, t) :

r2 ∂2F(r, t)
∂r2 + 2r

∂F(r, t)
∂r

− l(l + 1)F(r, t) + 2ikr2 ∂ f (r, t)
∂t

= 0. (5.18)

We make a similar change of variables as in the case of the paraxial polynomials

r → ρ = r2 t→ τ = −2it
k ,

which allows us to solve the equation

4ρ2 ∂2F(ρ, τ)
∂ρ2 + 6ρ

∂F(ρ, τ)
∂ρ

− l(l + 1)F(ρ, τ) + 4ρ
∂F(ρ, τ)

∂τ
= 0. (5.19)

Our ansatz solution is a function of the form

F(ρ, τ) = τpΦ
( ρ

τ

)
, (5.20)

which upon removing a factor of τp−2, leaves the equation

4X2 d2Φ(X)
dX2 + 2X(3− 2X)

dΦ(X)
dX

− (l(l + 1) + 4pX)Φ(X) = 0, (5.21)

to solve, where X = ρ
τ . This is now an ordinary differential equation. Equa-

tion (5.21) has two solutions, one involving Laguerre polynomials

Φ(X) =
√

XLl+ 1
2

p− l
2
(X), (5.22)

and a confluent hypergeometric function occurring as the second linearly inde-
pendent solution. We neglect the second solution because for some values of l,
it becomes infinite at X = 0, although for some values of l and p it becomes a
Laguerre polynomial [AS64].
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The method for creating functions satisfying the Schrödinger equation is
to create the unique function at t = 0 that coincides with the Milnor polyno-
mial. The Milnor polynomial has no t-dependence, so at t = 0 the full three-
dimensional Milnor polynomial is used as the initial condition for the time evo-
lution. A paraxial function could also be used as an initial condition in this case.

We now look at the nodal trefoil knot, from the Milnor polynomial, under
Schrödinger time evolution. This has a Schrödinger polynomial, in Cartesian
coordinates,

ψ = {1− x2 − 8x3 − x4 + x6 − y2 + 24xy2 − 2x2y2 + 3x4y2 − y4 + 3x2y4

+y6 − 5z2 − 6x2z2 + 3x4z2 − 6y2z2 + 6x2y2z2 + 3y4z2 − 5z4

+3x2z4 + 3y2z4 + z6

+i(−24x2y + 8y3 − 4z + 4x4z + 8x2y2z + 4y4z + 8x2z3 + 8y2z3 + 4z5)}

−t(56(x2z + y2z + z3) + 7i(1 + 2x2 − 3x4 + 2y2

−6x2y2 − 3y4 + 6z2 − 6x2z2 − 6y2z2 − 3z4)

+35t2(1− 3x2 − 3y2 − 3z2 − 4iz)− 105it3. (5.23)

When t = 0, equation (5.23) reduces by construction to the Milnor polyno-
mial. The function evolves with t as a parameter and this changes the nodal set
topology under this evolution. For t close to zero, the nodal set is stable and
remains as the trefoil knot, in a geometric form similar to that of the t = 0 case.
As t → tcrit, a critical value, different parts of the curve approach a common
point. At the point t = tcrit, the nodal curve reconnects with itself. This process
destroys the knot and forms a single nodal loop in the function. As t continues
to increase, the loop contracts and annihilates itself, leaving the function with
no nodal set. This process is illustrated in figure 5.8.

The 3D Harmonic Oscillator

The quantum harmonic oscillator models the wavefunction of a particle trapped
in a potential. This is a time-independent system which can evolve with time
after the potential is switched off, but we do not consider that case here. We are
interested here in determining if knots and links, constructed as in chapter 4,
can be realised as phase singularities in superpositions of wavefunctions which
satisfy the conditions of the harmonic oscillator.

We derive the equation to solve from the general form of the Schrödinger
equation (5.7). We are interested in the 3D harmonic oscillator, with an isotropic
potential, which has Hamiltonian as in equation (5.8). The appropriate potential
is [Mes99],

V(r) =
1
2

mω2r2, (5.24)
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(a)

(b)

(c)

Figure 5.8: The evolution of the trefoil knot under Schrödinger evolution. (a)
Shows the curve at t = 0.175 < tcrit with several parts of the curve converging on
the point (x, y, z). (b) At t = tcrit ≈ 0.180, the self-reconnection takes place and
destroys the trefoil knot. (c) Shows t = 0.185 > tcrit where the single unknotted
loop has been formed.
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where ω is the angular frequency of the system. We desire a solution that is
equivalent to being a monochromatic optical wave, to remain consistent with
the rest of this thesis. This gives a solution that is time-independent. By letting
Ψ be written with the time and spatial variables separated in the form of

Ψ(r, t) = eiEtψ(r), (5.25)

where E is the energy level of the system, and substituting this into equation (5.7)
with the non-differentiating potential, as in equation (5.24), we get

− h̄Eψ(r) = − h̄2

2m
∇2ψ(r) +

1
2

mω2r2ψ(r), (5.26)

after cancelling the common eiEt factor from both sides and the zero valued t-
derivative of ψ(r). We use ψ to represent a time-independent wavefunction
throughout the rest of this section. This leads to the 3D harmonic oscillator sat-
isfying the equation

∇2ψ−
(

2m
h̄

E +
m2ω2

h̄2

)
ψ = 0, (5.27)

written with the sign of the Laplacian positive to remain consistent with the form
of equations used throughout this thesis. It is common in the physics literature
for equation (5.27) to be written with the Laplacian being negative.

By neglecting constants, unnormalised solutions of the 3D harmonic oscilla-
tor are, in spherical coordinates,

ψ(r, θ, φ) = rle−r2
Ll+ 1

2
n (2r2)Yl,m(θ, φ). (5.28)

We proceed as before and construct the harmonic oscillator solution from the
z = 0 plane of a Milnor map. In spherical coordinates this equivalent to the
θ = π

2 plane. When l −m ≡ 1 mod 2, Yl,m(π
2 , φ) = 0. This restricts our choice

of l because l −m must be an even number. Another restriction is given by the
order of the Laguerre polynomial being 1

2 (n− l). This further restricts n− l to
be even in order for the polynomial to be defined with integer order.

In order to satisfy the monochromatic criterion, by having solutions for fixed
E, this means that all solutions in the superposition must have the same value
of n. Let us begin by attempting to construct a harmonic oscillator solution with
the trefoil knot as its phase singularity. This requires us to be able to construct
all of the terms in the Milnor polynomial

1− r2 − 8e3iφr3 − r4 + r6. (5.29)

This requires the superposition to have a term with m = 3 and hence forces
all l to be odd. Our monochromatic criterion then forces us to fix an odd n
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to allow n − l to be even. On their own these conditions are not restrictive,
however we also require terms with m = 0. This requires l to be even and
hence n even, which cannot simultaneously occur with an odd n. A function
that coincides at z = 0 (θ = π

2 ) with the Milnor polynomial of the trefoil knot
cannot be constructed as a solution of the harmonic oscillator. This also means
that any Milnor polynomial that requires a mix of odd and even m, cannot be
constructed in this fashion.

We now attempt to construct a monochromatic harmonic oscillator solution
of a Milnor polynomial that does not mix odd and even m. The simplest such
example is the Hopf link, with Milnor polynomial

1− 2r2 − 4e2iφr2 + r4. (5.30)

By fixing n = 4 we can construct the following superposition, with “modes”
labelled ψn

l,m :

ψn=4
Hopf =

16
315
√

π
(

11ψ4
4,0 − 3

√
5ψ4

2,0 + 21ψ4
0,0

)
− 8

21

√
2π

5

(
7ψ4

4,2 −
√

3ψ4
2,2

)
. (5.31)

Despite coinciding exactly with the Milnor polynomial at z = 0, this harmonic
oscillator solution does not contain the Hopf link in its phase singularities. The
nodal set is a complicated mix of intersecting loops and lines. This is shown in
figure 5.9.

It can be seen that the nodal lines that pass through the z = 0 plane, in the
four locations, do not approach the plane from opposite directions. They are
mirrored in this plane. This contrasts to those of the Milnor polynomial which
mirror in a plane at 45 degrees to the x-axis.

The superposition to obtain the Milnor polynomial, equation (5.30), is not
unique. For a different energy level, n, a different superposition can be con-
structed. The higher the energy, the more redundant terms, at z = 0, need to be
cancelled to coincide with the Milnor polynomial. For example, when n = 6,

ψ6
0,0|θ= π

2
=

1
96
√

π

(
105− 420r2 + 336r4 − 64r6

)
. (5.32)

To be able to construct the required m = 0 terms, the mode ψ6
6,6 is required to

cancel the r6 term. However, this is at the cost of introducing more complicated
terms involving θ.

The n = 6 superposition is

ψn=6
Hopf =

32
45045

√
π
(
−92
√

13ψ6
6,0 + 39ψ6

4,0 − 286
√

5ψ6
2,0 + 1287ψ6

0,0

)
+

32
9009

√
2π

15

(
16
√

182ψ6
6,2 − 156

√
3ψ6

4,2 + 143ψ6
2,2

)
. (5.33)
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Figure 5.9: The nodal lines of the n = 4 harmonic oscillator wavefunction from
equation (5.33). Despite coinciding exactly with the Milnor polynomial in the
z = 0 plane, where its phase is shown as the opaque disk, it is clear that a Hopf
link has not formed.
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This function, like its lower energy counterpart, does not contain the Hopf link
as its nodal set. In addition to the many extra intersecting components, this
n = 6 superposition does not have the correct symmetry about the z = 0 plane.
This set of curves is shown in figure 5.10. In this case, the nodal lines exhibit
higher order crossings consisting of intersections with four nodal lines.

The fact that odd and even m modes cannot be mixed in our construction,
limits the knots and links that we can attempt to construct with these solutions
of the harmonic oscillator. This does not prevent us from forming monochro-
matic solutions that do not mix these terms. However, as we have seen for the
Hopf link, the symmetry of the superpositions in the z = 0 plane prevents the
desired topology being formed. This has to lead to the conclusion that this form
of harmonic oscillator solutions will not support knots from our construction
by using the z = 0 plane information only. We are not concluding that knotted
nodal sets are forbidden by the 3D isotropic harmonic oscillator, just they cannot
be constructed using the methods of this thesis.

The Hydrogen Atom

Under the right assumptions, hydrogen atom wavefunctions can be constructed
that are complex scalar fields in space and stationary in time. The phase singu-
larities of such a complex wave functions and their topology have been studied
by Berry [Ber01b]. This work adapts the techniques of [BD01a] and constructs
threaded torus knots, explicitly the Hopf link and trefoil knot, as phase singu-
larities of hydrogen atom wavefunctions. We now examine whether the knots
and links of our construction can be formed in such wavefunctions.

The hydrogen atom is usually considered with its time-reversal symmetry
which means that the stationary state wavefunctions are real. This contrasts to
our complex wavefunction approach. Restricting the problem to take advantage
of the degeneracies arising from the spherical symmetry of the problem, allows
a complex wavefunction solution to arise.

The Schrödinger equation is given a Hamiltonian of the form equation (5.8)
where the potential is now given by Coulomb’s law :

V(r) = − 1
4πε0

e2

r
, (5.34)

where ε0 is the permittivity of the vacuum, e is the charge of the electron and the
atomic nucleus contains only one proton, by definition.

As in the case of the harmonic oscillator, we consider the time-independent
“monochromatic” form of the Schrödinger equation. Neglecting the constants,
but keeping the correct form, the hydrogen atom wave function ψ, satisfies the
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Figure 5.10: The nodal lines of the n = 6 harmonic oscillator wavefunction
from equation (5.33). Despite coinciding exactly with the Milnor polynomial in
the z = 0 plane, where its phase is shown as the opaque disk, it is clear that the
Hopf link is not formed, like in the n = 4 case.
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equation

∇2ψ +
(

E +
1
r

)
ψ = 0, (5.35)

which is the Schrödinger equation with a Coulomb potential. This has time-
independent solutions, from [Ber01b], of unnormalised form

ψ = rle−
1
2 rL2l+1

n−l−1(r)Pm
l (cos θ)eimφ, (5.36)

where l, m, n ∈N.
The solutions of (5.36) are expressed in spherical coordinates so we need to

set θ = π
2 to replicate the z = 0 plane of our Milnor polynomials. Monochro-

matic superpositions require all modes to have the same fixed n. This condition
arises from the spherical harmonic part, expressed as exponential and Legendre
functions in equation (5.36), requires l −m to be even for a non-zero value of ψ

in this plane. It is also required that n− l be even for a non-zero solution.
The argument of the Laguerre polynomial in this case is in r not r2. The fact

that we cannot have n − l odd means that the odd powers of r present in low
l modes cannot be cancelled by the required odd l modes. For example, the r
polynomial part of ψ6

0,0 is proportional to

r6 − 42r5 + 630r4 − 4200r3 + 12600r2 − 15120r + 5040. (5.37)

The next non-zero term, with n = 7 fixed and m = 0 has l = 2. Hence, terms
of order r1 cannot be cancelled. This means that we cannot construct super-
positions to coincide with our Milnor polynomials with these hydrogen atom
wavefunctions.

Despite being a second negative result of this section, we know from [Ber01b]
that at least torus knots, though not necessary isolated, are possible in the wave-
function’s phase singularities. It is possible that unthreaded and non-torus knots
can be constructed in this system. Our construction requiring the coinciding of
z = 0 planes is not appropriate to these modes of the hydrogen atom, but knots
constructed by the Lissajous construction may be possible by other embedding
methods.

5.4 Discussion

The results of this chapter can be summarised as :

• We have given further examples of paraxial optical vortex knots, 63 and
77 in section 5.1. For the 63 knot we have shown that the parameter a
from equation (4.5) does have a limited range for which the knot is formed
both in the Milnor polynomial and paraxial polynomial. Changing the axis
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around which the braid is closed has large impact in the z = 0 plane for
the 77 knot.

• We have constructed polynomial solutions to the Helmholtz equation, sec-
tion 5.2. We have been able to construct knotted nodal lines in functions
satisfying the Helmholtz equation. This introduces an additional param-
eter into the function, k on which the topology depends. The case k = 0
means the Helmholtz equation becomes Laplace’s equation and our solu-
tions breakdown as k approaches zero.

• The Schrödinger equation has been less successful for constructing nodal
knots, section 5.3. When no potentials are present, our constructed knots
are unstable to evolving time. The harmonic oscillator does not appear to
support our nodal knots when evolved from a z = 0 plane and hydrogen
atom model solutions cannot be used as a basis for the Milnor polynomials
at z = 0.

We have been able to generate functions satisfying the paraxial equation with
knots from the Lisssajous construction. Although the parameter a plays a crucial
role in the successful formation of the desired knot, outside the successful range
other parameters could play a role in the process. Until now we have not varied
the radius of the 3-sphere in the Milnor-like mapping when forming the Milnor
polynomials and this is discussed in section 4.7.

Throughout this thesis we have referred to the “geometric form” of the knot.
Although it is often trivial to compare differences pictorially, it is more difficult
to quantify these differences. A geometric measure of a curve is the writhe.

Definition 5.1 (Writhe, for example [DH05]). The writhe, Wr, of a parameterised
closed curve γ(s), is

Wr =
1

4π

∫
γ

ds
∫

γ
ds′

(γ′(s)× γ′(s′)) · (γ(s)− γ(s′))
|γ(s)− γ(s′)|3 , (5.38)

which is the average crossing number over all possible viewing directions.

Future comparisons between knots from our construction and other forms
of the same knot, could be carried out by comparing the writhe of the curves.
Within the context of knot theory, the concept of writhe has been used to describe
ideal knots. Ideal knots were introduced by Katritch et al [KBM+96].

Definition 5.2 (Ideal Knot [KBM+96]). Let K be a knotted curve constructed from
a solid cylindrical tube of length L and constant diameter D. K is said to be in the
particular geometric form called ideal if the ratio L/D is a global minimum.



5.4 DISCUSSION 145

Are the knots we construct in ideal form? Or at some other local mini-
mum of L/D? The link between writhe and ideal knots is studied by Cerf and
Stasiak [CS00]. By visual inspection, using the images in [SKK98], it can be seen
that the knots we have constructed are not ideal.

The measure of writhe could be used to predict when the nodal curve of the
Milnor polynomial will fail to form the target topology as the parameters of the
Lissajous construction are varied. The writhe of a knot is used by Flammini and
Stasiak [FS07] to create a tabulation and classification of knots. Other geometric
measures exist, such as the energy of the knot [O’H91], which could also be
investigated near the critical values of the Lissajous construction.

The Helmholtz equation was our first example away from the paraxial equa-
tion. When the wave number k is sufficiently high, then for the cases studied,
the desired nodal knot exists as a solution of the Helmholtz equation. We expect
this to be the case for all of the knots and links that we can construct with the
Lissajous construction. Although the Helmholtz equation is homogeneous, it is
second order in all three axial directions, our solutions choose a propagation di-
rection z. This gives a similarity to the paraxial solutions where the propagation
direction is only first order compared to the second order transverse derivatives.

The additional terms in the Helmholtz polynomials, compared to the parax-
ial polynomials, correspond to the additional correction terms that the paraxial
approximation does not consider. The square root in equation (5.1) is expanded
to second order only in the paraxial approximation. The Helmholtz equation
is the exact propagation of this term. In Berry and Klein [BK96], another form
of propagator is considered. They give additional terms in the expansion, al-
lowing for a better approximation to the actual propagation. Should a knot that
we can construct fail for reasonable values of available parameters, in either the
paraxial or Helmholtz equation, then these post-paraxial terms could be used to
construct fields that coincide with the z = 0 plane of our Milnor polynomials.

The Schrödinger equation models a variety of quantum mechanical systems.
We have considered three possible Hamiltonians, two of which give rise to static
solutions. When no potentials are present we are able to study the evolution of
nodal knots in time. For a short time, the nodal topology is stable and is only
perturbing a small amount, equivalent to a small isotopy of the curve. As time
continues to progress, the small isotopy becomes a significant deviation from
the t = 0 curve. This causes self-reconnections and eventually the rings formed
annihilate themselves, leaving a function containing no zero structure. Similar
results are found by Bialynicki-Birula et al [BBBBS00], looking at constructing
exact solutions, different to our method, by considering local properties of the
wavefield close to the vortex lines. One case considered is the time-evolution of
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a vortex loop in a trap potential, similar to our static harmonic oscillator solu-
tions. The loop breaks and forms a parabola-like curve before reconnecting into
a loop. We could expect a similar behaviour under time-evolution of our vortex
knots if a successful embedding could be achieved into the harmonic oscillator.

It is possible that a static nodal knot is possible for other potentials V(r)
in equation (5.8). Solutions that give rise to a Laguerre polynomial of an odd
power of r will, in general, fail because of the inability to subtract odd powers of
r in the z = 0 plane. Other potentials of the form rn could give rise to solutions
that do support our knot construction.

It is an interesting question to ask what further physical, and non-physical,
partial differential equations, our construction can be applied to. We have ac-
knowledged optical vortices in non-linear paraxial propagation in section 1.7,
however these vortex knots cannot be controlled by a construction similar to
ours. Wavefunctions that contain a vortex structure, satisfying a non-linear
Schrödinger equation, have been considered by Bialynicki-Birula et al [BBBB01]
and Nazarenko and West [NW03] studying the properties of vortex line recon-
nections under non-linear Schrödinger evolution. This has applications in the
study of the Gross-Pitaevskii equation

ih̄
∂Ψ(r, t)

∂t
=

(
− h̄2

2m
∇2 + V(r) + K|Ψ(r, t)|2

)
Ψ(r, t), (5.39)

which models Bose-Einstein condensates (BECs) [Leg06], where V is a trapping
potential and K a constant dependent on the atoms being condensated. The
vortex structure of BECs has been studied by Ruostekoski and Dutton [RD05]
and the effects of time-evolution on vortex rings. A knotted vortex line in a BEC
provides a challenging theoretical and experimental project.

A further equation to consider is the Dirac equation. This equation describes
relativistically the wavefunction of a spin 1

2 particle such as an election [Mes99].
The Dirac equation, in three (Cartesian) space dimensions plus one time dimen-
sion, is

ih̄
∂Ψ(r, t)

∂t
= βmc2Ψ(r, t)− ih̄c

(
α1

∂Ψ(r, t)
∂x

+α2
∂Ψ(r, t)

∂y
+α3

∂Ψ(r, t)
∂z

)
,

(5.40)
where αi and β are the Dirac 4× 4 matrices. Non-trivial topology of the nodal
set of a solution of the Dirac equation based on our Lissajous construction would
certainly be an exciting theoretical insight.

Finally for this chapter, we present some ideas for future investigations of
physical systems that could have knotted lines constructed from the Lissajous
construction.
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• Our work has been concerned with solving linear differential equations.
Vortex knots in non-linear fields, as in the example in figure 1.8, do not
form from a direct mathematical knot construction. The knots of the Lis-
sajous construction can be applied to solutions of non-linear equations and
propagated, with the hope that the vortex structure is stable with respect
to the nonlinearity.

• Is there a significance to the geometric form of the knots as we construct
them? Are they the stationary values of a functional from the set of knots
in the same way being ideal or having minimum energy can be defined?

• We have only worked with complex scalar fields. Even within optics there
are a range of types of functions that we have not worked with. Can our
construction be applied to a vector field or fluid flows? Vector field singu-
larities exist optically as L and C lines; lines where the polarisation ellipse
is linear or circular respectively [Nye99]. Is it possible to make our knots
in the L and C lines? The Riemann-Silberstein vector [BBBB03], defined
as V = ReE(t) + i ReH(t) (notation as in section 1.5) gives access to a
relativistically invariant vector. Both the real and imaginary parts of V ·V
are the same for all relativistic observers [DOP09], in all inertial frames.
Singularities in this vector field V , the Riemann-Silberstein vortices, are
relativistic invariant singularities of the optical field [DOP09] and if we
could extend our construction to these singular structures, relativistically
invariant knots would be formed.
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5.A Helmholtz Polynomials

m = 0 1

m = 1 R2 − 2i
k (n + 1)z

m = 2 R4 − 4i
k3

(
(2 + 3n + n2)− k2R2(2 + n)

)
z− 4

k2

(
2 + 3n + n2) z2

m = 3 R6 − 6i
k5 (3 + n)

(
4(1 + n)(2 + n)− 2k2(2 + n)R2 + k4R4) z

+ 12
k4 (2 + n)(3 + n)

(
−2− 2n + k2R2) z2 + 8i

k3 (1 + n)(2 + n)(3 + n)z3

Table 5.1: The first four cylindrical Helmholtz polynomials

Table 5.1 shows the Helmholtz polynomials, introduced in section 5.2. For
each m listed, the Helmholtz polynomial pm,n,k(R, z, φ) satisfies the Helmholtz
equation when

Ψ(R, z, φ, k) = eikzRneinφ pm,n,k(R, z, φ). (5.41)



Steering of Optical Vortices 6
A full three-dimensional function that describes an optical vortex curve is in
general difficult to acquire exactly from an optical field. We now construct a
scheme to give an approximation for the loci of the vortex lines. This is based on
the function describing the z = 0 plane and evaluating derivatives of the field
there. This will take the idea of two-dimensional functions, using the lexicon
of point particle dynamics and their derivatives, to construct a Taylor expan-
sion for the actual three-dimensional vortex curve. Using just the values of the
derivatives, we investigate if changes in their directions can be used to predict
changes in the overall topology of the vortex lines. We finish with the curious
(5, 2)-form of the cinquefoil knot. This knot, in this geometric form, has been
shown to be constructible paraxially from the Lissajous construction but only
with an over-homogenised function.

6.1 2D Dynamics vs 3D Geometry

The knotted nodal lines of the previous chapters were considered as purely topo-
logical features. We did not describe or give functions for the exact space curve.
The exact function of a nodal line in three dimensions is in general complicated,
if it is at all available analytically. We now seek to approximate such a function
with a Taylor-like series in z, the propagation direction.

Until now, we have thought of the vortex curves as purely three-dimensional
objects. Optical vortices can also be thought as zero points in a plane, evolving
like point particles in progression from plane to plane. We now show the link
between these two complementary pictures of the optical vortex curves.

Optical vortex curves are the pre-images of zero of a wavefunction ψ. The
set ψ−1(0) is generically a one-dimensional manifold that can consist of more
than one component. Each component is realised as a parametrised curve,Q(z)

149
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whereQ(x(z), y(z)) gives the x- and y-positions as a function of z.
In the plane perpendicular to the beam’s propagation direction, the (x, y)-

plane, the vortices are points. These points have a motion in the plane that is
parametrised by propagation distance. A smooth curve in a transverse plane is
formed as the projection of the three-dimensional curve. The two-dimensional
motion we refer to as the dynamical picture and when referring to the three-
dimensional curve, the geometric picture.

The derivatives of the particle-like motion can be considered as if the param-
eter was time, not propagation distance. By considering the motion of the zeroes
as points in the plane, we can use the language of dynamics to describe the mo-
tion : velocity (Q̇ = V ), acceleration (Q̈ = A), etc. . . where •̇ = ∂•

∂z . These
derivatives of Q with respect to z are used to build the series expansion for the
nodal curves,

Q(x(z), y(z)) = Q0 + V z +A
z2

2
+ J

z3

6
+ . . . , (6.1)

where Q0 is the location of the nodal point at z = 0 and J is the jerk, the third
time derivative of motion, in this case third z derivative1. We now consider how
to these derivatives can be calculated in general.

Velocity

The first derivative of motion is velocity, V . We now derive the velocity of a
nodal point in the plane transverse to the beam propagation and arrive at a
similar form as given by Berry and Dennis [BD00], although the context there is
time-dependent fields, we replace the time dependence with the z-dependence
to remain in our context of paraxial monochromatic waves. Velocity is a two-
dimensional vector, in the (x, y)-plane defined at a vortex point.

We introduce the following notation for this chapter. We use numeric sub-
scripts to represent components of vectors : a two-dimensional vector Q has
components Q1 and Q2 corresponding to the x and y components respectively.
The wedge product of two, two-dimensional vectors,A andB is defined as(

a1

a2

)
∧
(

b1

b2

)
= a1b2 − a2b1. (6.2)

We also define the perpendicular to a two dimensional vector as

A⊥ =

(
0 −1
1 0

)
A. (6.3)

1The fourth, fifth and sixth time derivatives are often referred to as the snap, crackle and pop
respectively.
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The complex optical field ψ can be written as ψ = ξ + iη. An optical vortex
occurs where ξ = 0 and η = 0. It is this zero contour in ψ we wish to follow.
Taking the total derivative at a zero gives the direction of this contour. This gives

Dψ|vortex = 0. (6.4)

This could be taken with respect to any parameter

∂Q

∂σ
· ∇ψ +

∂z
∂σ

ψz. (6.5)

We choose to let the parameter σ be the propagation direction z and hence

ψz + (V · ∇⊥)ψ = 0, (6.6)

the velocity here being formed of

Q̇(x(z), y(z)) = V (x(z), y(z)) =

(
dx(z)

dz
dy(z)

dz

)
. (6.7)

This allows us to write

− ψz =

(
ψx

ψy

)
· V , (6.8)

and rearranging, considering the real and imaginary parts gives

V =
−1

ξxηy − ηxξy

(
ηy −ξy

−ηx ξx

)(
ξz

ηz

)
, (6.9)

provided ξxηy − ηxξy 6= 0. Finally we take the form

V =
(ψ̇∗∇⊥ψ− ψ̇∇⊥ψ∗)⊥

∇⊥ψ∗ ∧∇⊥ψ
, (6.10)

=
2i Im(ψ̇∗∇⊥ψ)⊥

∇⊥ψ∗ ∧∇⊥ψ
, (6.11)

which is a ratio of two purely imaginary quantities and gives a real value. This
vector is the projection of the three-dimensional tangent vector into the trans-
verse plane.

Acceleration

To build a series expansion we require the higher derivatives of the function
Q and hence of the velocity. We can write for a general optical field, ψ(r), the
vortex position functionQ(z), where

ψ(Q(z), z)) = 0, (6.12)
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is used to define the function Q. We can define a general function F (ψ(Q, z))
which describes the transverse motion, parametrised by z, of any local property
of the field ψ. Q in such a general case is the locus of that point. The local
property we use is the velocity or acceleration of an optical vortex but other
properties, such as the location of a phase saddle point, could also be used. The
rate of change with respect to z of such a quantity is then

dF
dz

=
∂F

∂z
+
(

∂Q

∂z
· ∇⊥

)
F , (6.13)

which can be written as

DF =
∂F
∂z

+ (V · ∇⊥)F , (6.14)

which is the convective derivative of F , and V is the velocity of the quantity in
question. For ourQ representing the locus of the vortex we have

A =
∂V

∂z
+ (V · ∇⊥)V . (6.15)

This means that the jerk of the vortex motion is the convective derivative of its
acceleration

J =
∂A

∂z
+ (V · ∇⊥)A (6.16)

and similarly for all higher derivatives.

6.2 Curvature and Torsion of Nodal Lines

The two-dimensional vectors, V ,A,J etc. also allow us to obtain various three-
dimensional quantities describing the nodal curve. Spaces curves, curves in
three dimensions, like our optical vortex lines can be defined by a set of fram-
ing vectors and their associated scalar quantities. We shall now assume that our
nodal space curves are differentiable. The notation for this section is general.

A generic three-dimensional space curve γ(s), parameterised by s, has speed
|γ ′(s)| =

√
γ ′(s) · γ ′(s). A curve with unit speed everywhere is said to have arc-

length parametrisation [Str50]. Here we only consider this class of curves. We
denote derivatives with respect to s as

γ ′ =
dγ
ds

. (6.17)

The first derivative of γ is the tangent to the curve, γ ′ = t, and is a unit vector
because of the arc-length parametrisation. Orthogonal to the tangent vector is
the normal vector n = γ ′′/|γ ′′|. A third vector, completing an orthonormal
triad of vectors is the binormal, b = n× t. These three vectors, {t,n, b}, form
the Frenet frame for the curve and are defined at all points where κ 6= 0.
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Associated with these vectors are two scalar quantities, the curvature κ and
the torsion τ. The curvature is a measure of how much the curve deviates from
being a straight line. A curve with zero curvature is locally straight, while a
large curvature represents a curve with a small radius of curvature. The torsion
is a measure of how flat the curve is. When τ = 0 the curve is locally planar and
as the torsion increases the curve bends more out of the plane. The curvature
and torsion have definitions [Str50]

κ =
|γ ′ × γ ′′|
|γ ′|3 , (6.18)

τ =
γ ′ × γ ′′ · γ ′′′
|γ ′ × γ ′′|2 , (6.19)

respectively. The fundamental theorem of space curves states that given κ and τ as
functions of s, the curve γ is defined uniquely up to translation and rotation.

The Frenet frame vectors are linked by their derivatives and the curvature
and torsion at each point by the Frenet-Serret formula [Str50], t′

n′

b′

 =

 0 κ 0
−κ 0 τ

0 −τ 0


 t

n

b

 . (6.20)

This framing becomes undefined at inflection points where the normal vector
cannot be assigned a unique direction .

We now use the connection between the transverse motion of the optical vor-
tices and the differential geometric quantities defined above to move between
the 2D and 3D descriptions. This allows for a curve representing the vortex tra-
jectory γ(s) = (x(s), y(s), z(s)), with z′(s) = dz

ds = w. This w is not a beam waist
width and for this chapter takes this definition. The velocity can therefore be
written in terms of the arc-length derivatives and the chain rule

V = (ẋ(z), ẏ(z)) =
1
w

(x′(s), y′(s)). (6.21)

With the z-direction in three dimensions being considered as time, we form

Γ̇ = w(ẋ(t), ẏ(t)) = w(V1, V2), (6.22)

where Γ is the (2 + 1)-dimensional trajectory of the vortex in the transverse
plane. The higher derivatives of Γ are formed as Γ ′

Γ ′′

Γ ′′′

 =

 w 0 0
wẇ w2 0

wẇ2 + w2ẅ 3w2ẇ w3


 V

A

J

 . (6.23)
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The inverse of these relations gives the two-dimensional motion in terms of
the derivatives of the projected three-dimensional motion V

A

J

 =

 w−1 0 0
−ẇw−2 w−2 0

Λ −3ẇw−3 w−3


 Γ ′

Γ ′′

Γ ′′′

 , (6.24)

where Λ = w−6(2w3ẇ2 − w4ẅ).
With the higher s-derivatives of the three-dimensional curve written in terms

of the transverse motion of the vortex, equation (6.23), we can define the curva-
ture and the torsion of the curve as it passes through our initial plane. From
equations (6.18) and (6.19) we derive using velocity, acceleration and jerk,

κ2 =
A2 + (V ∧A)2

(1 + V 2)3 , (6.25)

and

τ =
(A∧ J)(1 + V 2)3

A2 + (V ∧A)2 . (6.26)

6.3 Paraxially Evolving Dynamics

Our interest here is in functions specified at an initial plane, z = 0, that satisfy
the paraxial equation on propagation with their z-dependence restored. We can
modify the initial plane that in general affects the propagation and hence the
value of the z-derivatives in the expressions for V , A, J . . . The paraxial equa-
tion (1.19) of page 14, can be rearranged to write the z-derivative in terms of the
transverse Laplacian:

∂zψ =
i

2k
∇2
⊥ψ. (6.27)

The evolution in z of a given (x, y)-transverse plane means we can consider the
propagation of an optical field in this case, as an initial value problem. This
means that for a given transverse plane, we will choose the z = 0 plane for
simplicity, we can have a function in only x and y and still be able to evaluate
the z-derivatives. This weighted Laplacian, equation (6.27), is substituted for
all occurrences of ∂zψ, but only after all z-derivatives are taken for the specific
kinematic quantity. We also require that when the conjugate ψ∗ is differentiated
the conjugate paraxial equation is used in its substitution:

∂zψ∗ =
−i
2k
∇2
⊥ψ∗. (6.28)

This means that we can express the velocity of an optical vortex in a given
z = 0 plane constellation in terms of the transverse Laplacian. The paraxial
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equation allows us to consider the propagation of the vortices as an initial value
problem. We can re-write equation (6.10), the velocity of a vortex in a paraxial
beam as

V = Im
i

2k

(
(∇2
⊥ψ∗)∇⊥ψ− ((∇2

⊥ψ)∇⊥ψ∗
)⊥

(∇⊥ψ∗ ∧∇⊥ψ)
. (6.29)

This is not the same as taking the z-derivative of the velocity; this substitu-
tion is only made after all necessary arithmetic is complete. This means that a
non-paraxial acceleration expression is first arrived at with terms of the form
∂2

zψ which does not become ∂z
i

2k∇2
⊥ψ. The second z-derivative is substituted

with −1
4k2∇2

⊥(∇2
⊥ψ) = −1

4k2 (∂4
x + 2∂2

x∂2
y + ∂4

y)ψ, the transverse biharmonic opera-
tor. When evaluating the higher derivatives ofQ, for a ψ propagating under the
paraxial equation, the higher z-derivatives required are substituted such that ∂n

z

becomes the Laplacian applied n times: ( i
2k )

n∇2
⊥(∇2

⊥(. . .

6.4 Paraxial Steering Examples

To illustrate this method we now give some examples of increasing complexity.
The simplest example is a vortex constellation consisting of isotropic vortices,
all of the same sign, embedded in a Gaussian beam. This is the first example of
Indebetouw [Ind93].

Indebetouw shows that such an initial configuration propagates very simply.
The vortex constellation is invariant except for the beam spread and a rotation of
π
2 into the far-field. This constellation is factorisable in the z = 0 plane. This re-
mains the case after applying the paraxial propagator to obtain the z-dependent
form. The resulting function, up to a common Gaussian factor and non-zero
z-dependent term, remains factorised upon propagation.

This concept is extended to complex analytic functions, not just polynomials
by Abramochkin and Volostnikov [AV96], the so-called spiral-type beams. The
zeroes of the analytic function are used to construct arbitary patterns in the in-
tensity of the beam. The zeroes all being of the same sign propagate distinctly
and the whole beam structure remains constant, up to rotation and scaling.

We compute the velocities and accelerations of the vortices in the field

ψ|z=0 = e−(x2+y2)/w(x + 1 + iy)(x− 1 + iy)(x + i(y + 1))(x + i(y− 1)), (6.30)

which has four positive unit charge vortices located at (±1, 0) and (0,±1). We
find that the velocities are all tangential to the unit circle pointing in an anti-
clockwise sense. The accelerations are all zero. This is shown in figure 6.1.

Although the accelerations work out to be zero in this case, this does match
the exact forms of the vortex curves Indebetouw gives. Expanding the terms of
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Figure 6.1: The phase of z = 0 of the function in equation (6.30). The velocity
directions are shown with the black arrows. They can be seen to point anti-
clockwise, as tangents to the circle passing though all four vortices.

Indebetow’s solution [Ind93, eq. 27a,b] that contain zeroes, shows there are no
second order or higher terms

Reiφ − Ri

√
1 + z2ei(φi−arctan z) ≈ Reiφ − Rieiφi + (iRieiφk)z, (6.31)

written in cylindrical coordinates where (Ri, φi) gives the vortex location. We
have set the Rayleigh range [Sie86] to be unity in equation (6.31). The vortex
trajectories are straight lines and indeed zero acceleration is a correct result. De-
spite the simple trajectories, they remain consistent with the work of Indebe-
touw. The vortex lines can be computed exactly in this case. This is one of only a
few examples where the vortex curve can be explicitly calculated. Our next ex-
amples contain vortices of both signs and hence more complicated interactions
occur between them.

Initial planes with vortices of opposite sign present give rise to a different
set of vortex trajectories. Pairs of oppositely signed vortices can come together
to annihilate each other. Along the full three-dimensional curve, this represents
a point where the vortex curve tangent becomes perpendicular to the z prop-
agation direction, at a hairpin or inflection point as in figure 1.4, page 8. A
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Vortex Velocity Acceleration
(−a, 0) (0, 2a

w2 − 1
a ) ( 1

a3 (1− 4a2

w2 ), 0)
(a, 0) (0, 2a

w2 − 1
a ) (− 1

a3 (1− 4a2

w2 ), 0)

Table 6.1: The values of velocity and acceleration for the vortex dipole, with
vortices at initial positions (±a, 0). The field is given by equation (6.32) where w
is the waist width of the Gaussian at z = 0.

well-studied case is that of an initial constellation consisting of a single posi-
tive and a single negative vortex, a vortex dipole. Both Indebetouw [Ind93] and
Roux [Rou04] have studied the vortex dipole and given conditions on whether,
when embedded in a Gaussian beam, the pair will annihilate or not.

We place the zeroes, symmetrically on the x-axis and calculate the deriva-
tives and compare to the known curves. The system is simple enough that the
exact nodal curve can be computed and compared to our Taylor expansion. Con-
sider a positive isotropic vortex at x = +a and a negative isotropic vortex at
x = −a. This is embedded in a Gaussian and gives, at z = 0,

ψ = e−
x2+y2

w2 (x− a + iy)(x + a− iy). (6.32)

This gives velocities and accelerations shown in table 6.1.
The vortices in the dipole have the same velocities in the y-direction and have

accelerations with the same magnitude but opposite directions. The acceleration
directions are particularly sensitive to the beam waist width w. At a critical
value, w > 2a, the sign of the acceleration changes. This means that either
the accelerations are pointing away from the beam centre, when the beam is
narrow, or point towards the beam centre when the beam is wide. This can be
extrapolated into the vortices either moving away from each other, or towards
each other and annihilating.

The two cases of vortex behaviour matches the analysis of Indebetouw and
Roux. Indebetouw also shows that w = 2a is the transition between the two
cases of vortex annihilation or not. Roux’s work gives the same conclusions.

Optical vortices are not always desirable in a beam and need to be removed.
This is the emphasis of Chen and Roux [CR08], studying the vortex dipole, the
aim of their work is to reduce the propagation distance to dipole annihilation,
whilst maintaining the background intensity as much as possible. We now ex-
amine if the vortex steering derivatives can be used to justify their observed
”accelerated vortex dipole annihilation.”

Our example is a vortex dipole in a Gaussian beam of width one. The vor-
tices are located at (± 1

2 , 0) in the z = 0 plane. This can be constructed as a su-
perposition of Laguerre-gaussian modes and propagated. The Roux and Chen
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Vortex location Velocity Acceleration
Standard dipole (0.5, 0) (0, 1.72) (−7.99, 0)

(−0.5, 0) (0, 1.71) (7.99, 0)
Accelerated dipole (0.5, 0) (−2.43,−8.24) (−683.16, 451.42)

(−0.5, 0) (2.43,−8.24) (683.16, 451.42)

Table 6.2: A comparison between the steering values of a vortex dipole and its
accelerated version using the scheme of [CR08].

Vortex location Velocity Acceleration
(0.4559, 0) (0,−0.5784) (−1.2120, 0)
(2.1936, 0) (0, 3.2581) (−11.8481, 0)

(−0.2279, 0.3948) (0.5009, 0.2892) (0.6060,−1.0496)
(−1.0968, 1.8997) (−2.8216,−1.6291) (5.9240,−10.2607)

(−0.2279,−0.3948) (−0.5009, 0.2892) (0.6050, 1.0496)
(−1.0968,−1.8997) (2.8216,−1.6291) (5.9240, 10.2607)

Table 6.3: The steering derivative values for the trefoil knot. The values for V
andA are given for the six vortices in the z = 0 plane of the paraxial polynomial
function.

method needs the background phase, exp(iΦ), at a small distance beyond the
annihilation point in the unmodified beam. Translating this function to the cen-
ter of the dipole, in this example the origin, the modified beam, ψ′ is defined
as

ψ′ = ψeiΦ′ , (6.33)

where Φ′ is the translated background phase function. We find the velocity
and acceleration of the vortices at z = 0 is substantially different as shown in
table 6.2. This method of Chen and Roux is therefore detectable by our steering
method and steering concludes the vortex propagation is very different to the
un-accelerated vortex dipole of above.

Our final example is from our knot construction. The Hopf link is studied in
the next section, so we look at the trefoil knot here. The values of the velocity
and acceleration for the (2, 3)-form of the trefoil knot are shown in table 6.3. We
use the paraxial polynomial of the trefoil, equation (3.25), to obtain the three-
dimensional curve. Figure 6.2 shows the directions and a comparison between
the steering Taylor expansion and the actual nodal curves.

The directions of the velocity and acceleration are consistent with how the
vortices move in the transverse plane. The comparison of the approximation
and real curves shows that for the outer three vortices the approximation is very
good for a long distance. For the inner three vortices, the fit is not as good. It
is possible that the main geometric features of the curve there are dominated by
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(a) (b)

Figure 6.2: Plots to show the steering of the trefoil knot. Both plots show the
phase of the polynomial trefoil knot in the z − 0 plane. (a) The velocity and
acceleration directions, the black and white arrows respectively, at each of the
six vortices in the z = 0 plane. (b) The curves from both the Taylor expansion
with the steering derivatives, black lines, and the actual curve shown in white.
Both curves are the projection into the z = 0 plane.

effects due to higher order terms which we have not included in our Taylor ex-
pansion. This is a general issue for the two term Taylor expansion we construct.
The next section examines how this manifests itself in the simpler curves of the
Hopf link.

6.5 Steering of Vortex Topology

The vortex topology in paraxial beams has been seen in previous sections to
be robust to perturbations to our constructed optical fields containing knotted
nodal sets. These effects can come from parameters such as a in equation (4.5) or
from an experimental optimisation algorithm, section 3.5. Here we study how
the directions of velocity and acceleration describe, not only the curve geometry,
but also their limitations when other events occur in propagation. These topol-
ogy changing events can be explored in the superposition space of the Hopf
link.

From the Lissajous construction the Hopf link has the form, equation (3.24),
at z = 0,

ψ = (1 + A)R4 − 2(1 + B)R2 + (1 + C)− 4R2e2iφ, (6.34)

where A, B, C are parameters in superposition space such that A = B = C = 0
gives the unperturbed function, the origin of superposition space. We choose
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this three-dimensional space rather than introduce a fourth parameter multi-
plying the exponential term because this term does not contribute to the z-
dependence acquired by paraxial propagation.

We enforce the z = 0 plane to have a similar vortex constellation to that of
the A = B = C = 0 case, namely only four real zeroes existing on the y = 0
line symmetrically. The imaginary part of equation (6.34) is proportional to xy,
hence the zeroes of ψ lie on x = 0 or y = 0. Equation (6.34) has a real part that
can be split into two Cartesian expressions to solve for the nodal points at y = 0
and x = 0 respectively :

(1 + A)x4 − 2(B + 3)x2 + (1 + C) = 0, (6.35)

(1 + A)y4 − 2(B− 1)y2 + (1 + C) = 0. (6.36)

This means that we require four unique real solutions in x, and all solutions in
y to have a non-zero imaginary part. This gives a set of complicated conditions
on the valid (A, B, C)-space. Solving for x leads to a simple set of conditions, all
three of which much be true :

(B + 3)2 − (A + 1)(C + 1) > 0, (6.37)

(B + 3)±
√

(B + 3)2 − (A + 1)(C + 1)
(A + 1)

> 0, (6.38)

the first arising from x2 > 0 and the second ensures that there are four solutions.
Similar conditions are placed on the region of validity by solving for y, however
these are a series of logical OR expressions, either one of which must be true:

(B− 1)2 − (A + 1)(C + 1) ≤ 0, (6.39)

(B− 1)±
√

(B− 1)2 − (A + 1)(C + 1)
(A + 1)

< 0. (6.40)

In this region, there are four vortices on the x-axis, at z = 0. We label these
xi where i = 1, 2, 3, 4, and the labelling is ordered such that x1 < x2 < x3 < x4.
The symmetry requires that x1 = −x4 and x2 = −x3.

Despite this restriction, a rich structure exists topologically within this su-
perposition space. The directions of velocity and acceleration are now compared
within this region. The velocities and accelerations of the vortices in the Hopf
link are given by

V =
(

0,−1 + B− 2(1 + A)x2

2x

)
, (6.41)
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Figure 6.3: The phase of the z = 0 for ψ as in equation (6.34) with A = B =
C = 0, with the vortices lying on the y = 0 line symmetric about the origin. The
velocity directions are shown by the black arrows, pointing alternately in the
−y and the +y directions. The acceleration directions are shown by the white
arrows, parallel to the x-direction.

Velocity V (0,−1) (0, 1) (0,−1) (0, 1)
AccelerationA (−1, 0) (−1, 0) (1, 0) (1, 0)

x position (ordered) x1 x2 x3 x4

Table 6.4: The values of velocity and acceleration have directions as in this table
for the case A = B = C = 0, as shown in figure 6.3. The x-positions are orders
such that xi < xi+1.

and

A =(
(B2 − 1)2 − (1 + A)(−19 + B(2 + 5B))x2 + 8B(1 + A)2x4 − 4(1 + A)3x6

4x3 (−3− B + (1 + A)x2)
, 0
)

,

(6.42)

where x = xi for i = 1, 2, 3, 4.
The velocity and acceleration directions are shown in figure 6.3 for the origin

of superposition space. These directions are those that we compare to those
explicitly shown in table 6.4. Within this region of matching steering directions,
a number of topological and geometric features can be acquired by the nodal
curves. The number of zeroes in a transverse plane at a given z value can be used
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Figure 6.4: Two vortex curves exhibiting complex geometry. The lower plane
is z = 0 and contains four vortices similar to the superposition space origin.
In propagation, two pairs of vortices nucleate and reconnect with the vortices
from the z = 0 plane. This nucleation occurs just before the upper plane, which
shows eight zeroes, four for each of the two components. This gives the curve
two additional turning points above z = 0 (as well as below). These curves are
from A = 2, B = 8, C = 16 in equation (6.34).

to identify the specific features of the full three-dimensional curves. A Hopf
link formed at the origin of superposition space contains four zeroes in every
z-plane, except at the values of z where the vortices nucleate, corresponding
to the tangent of the three-dimensional curve lying in the plane perpendicular
to the z-direction. Vortex nucleation and annihilation, in two dimensions, is
characterised by w = ∇⊥ξ ∧∇⊥η = 0 at the point of creation / death where the
wedge product is as defined in equation (6.2).

Away from the origin in superposition space, the nodal curve’s topology can
remain fixed, as a Hopf link, but for a given range of z, the number of zeroes is
greater than four. This means that additional vortices have nucleated in a plane
z > 0. These cases we refer to as having complex geometry but they still form
an isolated Hopf link. We illustrate such a case in figure 6.4. At the nucleation
points in two dimensions, just turning points of the three-dimensional curve,
a new Taylor series could be constructed from derivatives recalculated at these
points. In cases where there are more than four vortices in the plane, this could
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Figure 6.5: The permitted region of (A, B, C)-space, defined by equations (6.35)
and (6.36) allowing four vortices to occur on the x-axis. Within this region, equa-
tion (6.34) has, at z = 0, only four vortices exist and they lie on the x-axis.

also mean that the linked vortex topology has been destroyed, in which case
the linked topology becomes unisolated, intersected by other vortex lines or an
unknown topology.

We now numerically investigate (A, B, C)-space (superposition space) to ex-
amine if the steering directions can predict the breakdown of simple geometry,
or a change of topology. It is the restricted subset of superposition space that
matches the vortex constellation with four vortices symmetrically on the x-axis,
as in the case of figure 6.3. We shall refer to this as the permitted region of super-
position space. Matching the conditions of equations (6.37)-(6.40), this allows
for the permitted region to be plotted in figure 6.5. To numerically investigate
this space, we work in the region 0 ≤ a, b, c ≤ 20 and increase in steps of 1

2 . This
gives rise in the permitted region, to 13269 points to consider.

The first check with the permitted region is to test the directions of the steer-
ing velocity and acceleration. These are tested and compared to the values in
table 6.4. We desire to determine if, when in the permitted region, the steering
directions are a good indicator of whether the Hopf link forms or not. Figure 6.6
shows the cases of the steering directions matching the desired values and re-
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Figure 6.6: Within the permitted region, the directions of velocity and acceler-
ation of the vortices at z = 0 are compared to the correct case. The colouring
is: green is both velocity and acceleration are in the correct direction, blue is just
velocity correct, cyan is just acceleration correct and red is where both vectors
point in the wrong direction.

ferred to herein as the correct values.
Where the steering derivatives are in the correct directions, we can examine

the topology of the nodal curves formed on propagation. A three-dimensional
vortex tracking, appendix A, can be used to aid the determining of the topology,
however this is expensive computationally. The polynomial nature of the equa-
tion (6.34) means that numerical integrals on this function are fast to compute.
We also employ a numerical algorithm to determine the number of zeroes in a
given (x, y)-plane to determine the geometry type - simple or complex.

To determine if the vortex loops are linked, we calculate the integrated phase
change around a closed contour :

I =
∮

C
∂χdχ, (6.43)

where C is the closed contour. This contour must pass through the inside of both
vortex loops. This has the value of 2πLk, where Lk is the linking number of the
contour with the vortex curves. This contour needs to be chosen such that it
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does not intersect any of the vortex lines.
The obvious contour consists of an infinite line on the z-axis closed with a

semi-circular path. The phase is defined as χ = arg(Im ψ/ Re ψ). This choice of
contour has a singularity in the semi-circular part of the curve. The contour we
choose is a rectangular curve, chosen such that equation (6.43) becomes

I =
∫ zmax

−zmax

∂χ

∂z

∣∣∣∣x=0
y=0

dz +
∫ 100

0

∂χ

∂x

∣∣∣∣y=0
z=zmax

dx

+
∫ −zmax

zmax

∂χ

∂z

∣∣∣∣x=100
y=0

dz +
∫ 0

100

∂χ

∂x

∣∣∣∣y=0
z=−zmax

dx. (6.44)

When I
2π = ±2, then the contour is linked with both loops. We are assuming

there are no large sections of the vortex loops that look locally like that of a
crossing that can be removed by a Reidemeister move type one, see figure 2.2.
This set of integrals is also evaluated exchanging x with y to provide a check
that the value is well-behaved.

The value zmax needs to be chosen carefully. A vortex topology that is sup-
ported by our paraxial Hopf link function, is two unlinked loops, that pass
though the z = 0 plane at the four points on the x-axis, but with an additional
pair of loops that are approximately planar (transversely), beyond (and below)
the hairpins of the aforementioned loops. This topology is illustrated in fig-
ure 6.7. The method of vortex steering does not directly have information of
these planar loops and hence we do not check to see if the global topology is
two unlinked loops or a set of four unlinked loops. What is important is to en-
sure the contour chosen in equation (6.44) does not pass through these loops or
intersect with them.

We count the number of zeroes in a given (x, y)-plane. Normally, this is four.
If the number is greater than four, then this represents complex geometry due
to additional nucleation events occurring. This can also represent additional
vortex components being formed, although this has not been observed with the
range of parameters this investigation is taken over. We step though z in steps
of 1

500 . Once a z-plane with no zeroes in is found, we step forward a further
three planes checking these also contain no zeroes. This third plane above the
vortex loops, which by symmetry have the same extent in −z, is taken as the
value zmax. If additional components are in this “neutral zone” then the process
will fail. Within the permitted region, and with our discretisation of it, no such
cases were observed, which would manifest in the contour integral returning an
unexpected value.

Despite the several steps and logic required, this method presents a im-
provement in computation time compared to a full three-dimensional vortex



166 STEERING OF OPTICAL VORTICES

Figure 6.7: Four unlinked loops. The two loops passing through the z = 0
plane, the opaque disk coloured by phase, are unlinked. Two additional loops,
at higher and lower values of z exist. It is these additional loops that the steer-
ing directions do not give any information about and must be avoided by the
contour used in the integration to detect linked vortex loops.

line tracking, such as what we describe in appendix A. At no point in this
method do we need to know which zero points belong to a particular com-
ponent of the link. This may not be the case for more complicated knots and
links undergoing a similar analysis, or when considering Gaussian beam super-
positions. Outside of the permitted region, this analysis of simple vs complex
geometry and linked vs unlinked can be carried out, but with additional vor-
tices in the z = 0 plane means the number of topologies that exist increases. An
example is a pair of rings that intersect each other.

We now present the results of this investigation in the range specified. The
data we compare is whether linked vortex loops are formed on propagation for
given (A, B, C) in the permitted region, and the geometry type, simple or com-
plex. It turns out that within our data set, no unlinked vortex loops exhibiting
complex geometry were observed, although for the small subset further tested,
the vortex topology was the four loops as in figure 6.7. Table 6.5 gives the ob-
served values for these phenomenon, separated by whether the steering deriva-
tive directions match the correct values.

Within our data set the majority of the points, 64.6%, do not have the cor-
rect steering directions. Yet within these cases, there are still a large number of
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V andA correct V andA incorrect
Linked (Simple) 3090 4553
Linked (Complex) 1323 1518
Unlinked 290 2495
Total 4703 8566

Table 6.5: The results of the topology and geometry tests within the permit-
ted region of (A, B, C)-space, sorted by whether the vortices satisfy the correct
steering direction in the z = 0 plane. Figures 6.8 and 6.9 illustrate these results.

Figure 6.8: The points in the permitted region that do satisfy the correct steer-
ing directions, coloured by topology and geometry type. The green points are
simple links, blue points correspond to complex links and the red points are the
unlinked loops.

simply linked cases. From figure 6.6, the cases of the steering directions being
correct tend to be below a critical strip, the red region. There is a transitional
zone of where only one of the velocity or accelerations are incorrect.

The results do not show a clear majority of simple links only occurring with
the correct steering directions, only 23.3% of our data set. This does show that
the topology the vortices form depends on more than the velocity and accelera-
tion directions. When the steering directions are correct, 94% of these cases are
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Figure 6.9: The points in the permitted region that do not satisfy the correct
steering directions, coloured by topology and geometry type. The green points
are simple links, blue points correspond to complex links and the red points are
the unlinked loops.

linked. This is a success for the steering method. Of the cases where the steer-
ing directions are incorrect, 46% of the results are not simple links. This result
shows that additional vortices created away from the z = 0 plane can have a
strong influence on the three-dimensional vortex curves propagating from the
z = 0 plane.

Outside the permitted region we have studied, other topologies are possible.
This is a similar situation to the Laguerre-gaussian superposition of the Hopf
link, with the beam width as a parameter, section 3.4. Although that function is
more complicated than we studied here, it showed how unexpected topological
events, such as loop nucleation, can occur as intermediate steps between two
distinct topologies. Due to the possibility of further creation points on propaga-
tion, using a change in steering directions as measure of topology is not a good
method. The geometric changes that the vortex curves undergo, from simple
to complex, also provide a challenge to this measure. However, when a three-
dimensional curve Q is constructed with just V and A, a difference in z values
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for the actual and predicted annihilation event can occur, with even the (x, y)-
locations being different. These differences are an indicator of additional vortex
creations.

6.6 Steering of the Cinquefoil Knot

We have mentioned several times, the curiosity of the (5, 2)-form of the cinque-
foil knot and how, under standard homogenisation, it fails to transfer to a parax-
ial function. Yet for over-homogenisation, and under the Helmholtz equation,
the correct knot does form. To finish our discussion of vortex steering, we look
at if the steering method can explain this phenomena in the paraxial equation.

The various homogenisations of the cinquefoil knot are

q0 = u5 − v2w3 (6.45)

q1 = wu5 − v2w4 (6.46)

q2 = w2u5 − v2w5, (6.47)

also given in chapter 4, and we label the paraxial functions ψs where s = 0, 1, 2
is the level of homogenisation. These all have four zeroes at z = 0 at the same
locations, additional factors of 1 + R2 + z2 do not introduce any additional ze-
roes. The locations are given, to three decimal places, as part of table 6.6. We
now compare the values of velocity and acceleration for the three levels of ho-
mogenisation.

The velocities and accelerations are in the same direction for all three func-
tions. These are given in table 6.6 and shown in figure 6.10. The magnitudes of
both V andA increase with additional homogenisation.

From the calculated steering derivatives, we can construct the Taylor series
for each s and compare it to the actual nodal curve of the Milnor polynomials.
These are plotted in figure 6.11. It is apparent that there is not a big differ-
ence between the three curves. The actual curve, shown as the dotted curve, is
close to all three constructed curves initially but diverges quickly as z increases.
However, the differences are even smaller for the outer vortices that start on the
x-axis.

The curve for the s = 2 paraxial function does ultimately have the small-
est radius of curvature, which is what the actual real curve possesses. Due to
these small differences, we reserve making a quantitative statement regarding
over-homogenisation and steering. There is however a definite qualitative ob-
servation that can be made. Projected into a transverse plane, the required curve
to form the (5, 2)-form of the cinquefoil knot is tight and must wind around the
origin completely. This compares to the similar, geometrically, (3, 2)-form of
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Figure 6.10: The phase of the z = 0 plane of the (5, 2)-form of the cinquefoil
knot, shown with the directions of the velocities (black arrows) and accelerations
(white arrows). The directions are the same for the homogenisation levels s =
0, 1, 2.

Vortex location (3.075, 0) (−3.075, 0) (0, 0.325) (0,−0.325)
s = 0 : V (0, 5.709) (0,−5.709) (3.774, 0) (−3.774, 0)
A (−21.119, 0) (21.119, 0) (0,−50.812) (0, 50.812)
s = 1 : V (0, 6.813) (0,−6.813) (4.878, 0) (−4.878, 0)
A (−30.197, 0) (30.197, 0) (0,−80.262) (0, 80.262)
s = 2 : V (0, 7.918) (0,−7.918) (5.983, 0) (−5.983, 0)
A (−40.878, 0) (40.878, 0) (0,−133.817) (0, 133.817)

Table 6.6: A comparison between the velocities V and accelerations A for the
four vortices in the z = 0 plane of the (5, 2)-form of the cinquefoil knot, shown
for three levels of homogenisation s = 0, 1, 2.
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Figure 6.11: A comparison between the steering predictions for various levels
of homogenisation to that of the actual standard homogenised nodal curve. The
plot is a zoom in around the two zeroes that occur on the y-axis. The curves
from the steering Taylor expansion for s = 0, 1, 2 are given in blue, white and
black respectively. The dotted curve is the actual nodal curve of the standard
homogenised curve under paraxial propagation.

the trefoil knot requiring only a half turn. A zero following a tighter curve has
the potential to make these extra winds before interacting with the appropriate
outer zero, which takes a much shallower curve. The higher levels of homogeni-
sations produce nodal curves with these tighter curving inner vortices given by
the steering derivatives. Analysis of these curves with higher derivatives may
provide more insight into why the standard homogenisation does not paraxially
form the expected knot.

Creating a steering-method based Taylor expansion with more terms is ex-
pected to provide more insight into the behaviour of the vortex lines in paraxial
functions. The inclusion of the jerk, and higher derivatives, should allow for the
effects of additionally created vortices away from the z = 0 plane to be taken
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into account. We have found that usable forms of these higher derivatives have
been difficult to construct and verify.

6.7 Discussion

The main results of this chapter are

• We have constructed a method for describing the three-dimensional opti-
cal vortex curve based on the derivatives evaluated at the vortex points in
the z = 0 plane. This works for paraxially propagating fields because the
propagation is an initial value problem from the z = 0 plane. This method
has been shown to be consistent with known cases of vortex propagation
(section 6.4).

• We have used steering to understand if it can be used to detect whether
a vortex constellation known to propagate to a Hopf link still forms this
topology when parameters are varied in the z = 0 plane. For the cases
where the directions of velocity and acceleration are as in the prescribed
case, 96% of the values tested did form a Hopf link. This is a successful
application of vortex steering.

• We applied the steering method to the cinquefoil knot to determine how
the level of homogenisation (section 4.6) affects the vortex topology. How-
ever, the curves formed by the Taylor expansion for the three levels inves-
tigated did not vary by a quantitative amount. We conclude that steering
does not help us understand why paraxial polynomial functions need the
homogenisation level varied to successfully contain certain knots as their
nodal set, when constructed from the corresponding Milnor polynomial.

Throughout this thesis we have constructed functions, that satisfy the parax-
ial equation, with knotted vortex topology. Despite the correct topology being
present in the nodal set of the Milnor polynomial, not every case initially suc-
ceeds when the equivalent paraxial function is constructed. Yet additional pa-
rameters, such as the homogenisation level, or moving to the Helmholtz equa-
tion, make the construction work. Furthermore, in cases when the desired knot
is formed paraxially, it is not clear why as an initial value problem the z = 0
plane holds all the required information to give a working z-dependence.

We are not in a position to prove whether a specific case will succeed paraxi-
ally, or ultimately what nodal knots can exist, isolated, as nodal sets of solutions
of the paraxial equation. Vortex steering is a method that justifies that it is rea-
sonable to expect a given vortex constellation to propagate into the curve we
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desire. The steering derivatives give the same results and predictions as several
known vortex propagation works, see section 6.4. Also we used the trefoil knot
as an example of how the predicted curves match closely, initially, the actual
curves formed.

Steering has its limitations. These have been shown in section 6.5. When a
vortex under paraxial propagation has a hairpin bend or inflection point in the
cases of complex geometry, the steering derivatives fail to pick this up. This is
due to, in the (2 + 1)-dimensional dynamical picture, additional vortices being
created and annihilated. In these cases, it is possible that the desired vortex knot
or link is formed, but in a more complicated fashion than anticipated.

The case of all the vortices in z = 0 plane of Indebetouw [Ind93] appears
to be the only case of a function we have studied being factorisable in the z =
0 plane and remaining factorisable on propagation. Furthermore, the zeroes
of each factor correspond to the individual zero lines that remain distinct on
propagation. We have an observation of how the polynomial function at z = 0
of the Hopf link, equation (6.34), factors (when A = B = C = 0 corresponding
also to both the Milnor and paraxial polynomials). If the quartic equation (6.34)
factorises into two irreducible quadratics, A and B, with zeroes A1, A2 and B1

and B2 respectively, then on paraxial propagation, the locus of A1 will annihilate
with that of A2, similarly for B1 and B2. The zeroes of each factor appear to
only annihilate with a zero from the same irreducible factor. In the cases of this
chapter where the vortex topology is the four unlinked loops, the function does
not factorise at z = 0, remaining an irreducible quartic expression. This is not
inconsistent with the quadratic factors observation.

The zeroes of sets of polynomials are varieties. In our work, this is a set of
two polynomials: one for the real part and one for the imaginary part. Un-
derstanding the geometry, and how varieties transform when the governing
polynomial’s coefficients are varied, is a part of the subject of algebraic geom-
etry [Has07]. Framing our questions in the language of algebraic geometry, on
factors (above) or with a parameter such as Gaussian width (section 3.4), could
prove enlightening.

We have only used the velocity and acceleration in our analysis of steering.
The higher derivatives are, in general, extremely difficult to compute paraxi-
ally. With access to these higher derivatives, a more accurate curve Q(z) can be
constructed. This would provide more insight into the case of the (5, 2)-form
of the cinquefoil, section 6.6. It is surprising that there is not a more profound
difference between the steering curves for the levels of homogenisation studied.
We would anticipate that including the jerk, at least, into this calculation would
begin to differentiate between the three cases.
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Our final set of questions, based on this chapter are:

• Would a similar analysis as we performed for the Hopf link (section 6.5)
carried out on other knots or links, yield similar results? We have not
explored fully the superposition space of other knots. More complicated
knots require a higher dimensional superposition space, the trefoil four-
dimensional, which means it is more difficult to study.

• Does the Taylor series we construct have a finite radius of convergence?
Such a radius would coincide with an annihilation event/hairpin or in-
flection point on the curve. This distance could be used to predict the
propagation distance to these events on the curve.

• Can the Taylor series we construct for the vortex curves be used to prove
why we can construct our knots in functions satisfying the paraxial equa-
tion? The nodal lines in Milnor polynomial have prescribed directions in
the z = 0 plane. We have seen at least with the Hopf link, that when
the directions match in both the Milnor and paraxial cases, then this is a
good indicator that the link will form. We have the counter-example of the
(5, 2)-form of the cinquefoil knot. The inclusion of the higher derivatives
beyond acceleration might lead to an answer to this question.



Tracking Three
Dimensional Nodal Lines A
In this thesis, we have presented three-dimensional figures representing the
nodal lines we have studied. Several of the methods and calculations performed
require us to know, at least point-wise, a set of three-dimensional positions on
the line. Here we describe the method used to determine the three-dimensional
nodal line locations.

A.1 Locating Nodal Points in 2D

We begin by describing the technique used to find the points at which a planar
complex scalar function is zero and extend this to three dimensions in the next
section.

A complex function is zero when both the real part and imaginary are zero.
This occurs in two dimensions at the intersection of the contours Re f = 0 and
Im f = 0. Either side of such a contour the real (respectively imaginary) part
of the value of the function has opposite sign. It is this fact of the intermediate
value theorem that we use to locate the zeroes’ locations.

A choice is required as to where to sample the continuous function to use
the above facts. The continuous function is sampled on a square lattice, with
side length dx, with an additional point at the centre. This splits the square
into four triangles, each of which have an edge on square’s edge and a vertex
at the square’s centre. We shall test to determine if a zero is present in one of
these four triangles. Between each pair of adjacent vertices of a triangle. the
sign of the real and imaginary parts of the function at those points is tested to
determine if there is a change. If both the real part and imaginary part change
sign on one, not necessary the same, edge then the triangle may contain a zero
of the function.

This information cannot alone determine if both contours intersect creating
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f1 f2

f3f4

f0

1

2

3

4

Figure A.1: The square lattice we sample the data on is split into four triangles.
The centre point is labelled f0 and is the average value of the four corner values.

a zero. We use the value of the function at the vertices of the triangle to create
an affine transformation,

Aw+ t = z, (A.1)

to an arbitrary triangle in the complex plane, where A is a 2× 2 matrix, and the
vector components are the real and imaginary parts of the point in the respective
Argand planes. The actual function values lie in the z-plane and the triangle
formed from the affine map lies in the w-plane. This affine mapping allows us
to numerically approximate the position of a zero point as well as determining
if a zero is present inside the z-plane triangle.

We test whether the pre-image of zero under this map is contained in the
equivalent triangle in the w-plane. The matrix A and vector t can be determined
uniquely by choosing an appropriate triangle in the w-plane. The choice we
make is to position the vertices at 0, 1 and i. The z-plane vertices are the square
centre point, f0, and the two corresponding vertices on the edge, f1 and f2 and
write

fi =

(
Re fi

Im fi

)
. (A.2)

We set
A+ t = f0, (A.3)

giving t = f0. The elements a11 and a21 become the real and imaginary parts of
f1 respectively and a12 and a22 similarly from f2.

The pre-image of zero is therefore

w0 = −A−1f0. (A.4)

The final check is to determine ifw0 lies inside the triangle (0, 1, i). The location
is tested to see if it is present in the upper half plane, the right half plane and
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finally tested with Rew0 + Imw0 < 0. This ordering and method allows an
algorithm to exit at two stages to save computing time. A w0 failing any of
these conditions is rejected and no nodal point exists inside the z-plane triangle.
Matrices A with det A = 0 are tested for and the triangle is rejected if this occurs.

For triangles successfully determined to contain a nodal point, the location
z0 within the original test square is required. The position within the z-plane
square is located by a combination of scaling, rotating and translating the posi-
tionw0. The hypotenuse of the triangle in the w plane is of length

√
2 and needs

scaling to the length dx of the square edge length. The w-plane is rotated by π/4
then the appropriate factor of π/2 to orientate the triangle correctly, followed by
a final translation of (dx/2, dx/2) + f1. The origin of the w-plane is mapped to
the centre of the square, f0. The value z0 is used as the approximation of the
location of the zero in the square.

This method of testing if a zero lies inside a square is chosen over the follow-
ing discretation of the contour integral,

arg f1 f ∗2 + arg f2 f ∗3 + arg f3 f ∗4 + arg f4 f ∗1 (A.5)

which takes the value 2π when a zero (of multiplicity one) is contained inside
the square. Although this can be be generalised to test round triangles, compu-
tationally this method is expensive in time.

A.2 3D Extension

The three-dimensional nodal lines are tracked by considering a cubic lattice for
the function to be sampled on. Additionally, the face centre points are also calcu-
lated when required. Each face of the cube is tested for a zero passing through it
as if it were a two-dimensional plane using the above method. To avoid double
counting, only three faces of each cube need to checked. These are the faces that
share a common vertex nearest to the origin (assuming a translation so that the
origin of the sampled volume lies in such a fashion). For a line to pass through
a cube, the overall charge on the six faces must be neutral.

The topological charge of the zero determines the direction the nodal line
is passes through the face: a positive zero gives the line entering the cube; a
negative zero represents a line leaving the cube.

We join each line segment by following the line into a cube though a positive
zero. In order to form the whole line, we consider two types of curve, those that
start on a face of the volume, boundary lines, and the closed loops contained
within the volume. The lattice locations in Z3 are used to form the first of two
lists that represent each line. From this integer list, a second list is created retro-
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spectively with the R3 locations of the entry points into the cube. Each exit point
corresponds to an entry point in another cube hence only one vector is required
to be returned for each cube along the line.

The coordinates of the lines are stored in two ways. The first is the lattice
location in Z3. For many calculations, such as determining the topology, some
scaling properties, this is sufficient. The second list contains the positions in
R3 and can be used for fine three-dimensional drawing and calculating fractal
properties.

In both the two- and three-dimensional cases, it is possible that more than
one vortex line passes through the square face, and there is even the possibil-
ity that a vortex loop is entirely contained with a sample cube. Obviously the
sample size can be increased to try and locate such features but at the expense
of computation time and increased amount of output data. When two lines pass
through a cube, the cube can be further split into tetrahedrons with a common
point at the cube centre. Both lines can then be traced through the additional
triangular faces.



Tables of Knots and Links
Constructed B
These tables show the knots that the Lissajous construction creates for values of
β up to five. The tables have as rows the number of strands in the basic braid
word and columns representing the number of repeats. The format for each cell
of the tables is :

Rolfsen / Hoste Notation
Common Name

Conway Notation

The Conway notation is given for the knots and links when n = 2.
The following tables are given :

• Table B.1 β = 1

• Table B.2 β = 2 and B.3 for the n = 2 row.

• Table B.4 β = 3

• Table B.5 β = 4

• Table B.6 β = 5

We give some notes on two unidentified links in table B.6 here. The link
formed by β = 5, n = 2, strands= 6, has braid word (1352̄4̄)2 which computing
the Jones polynomial using [BNM10], we get

V(q) = −q
7
2 (1− 3q + 6q2 − 9q3 + 11q4 − 12q5 + 11q6 − 8q7 + 6q8 − 2q9 + q10),

(B.1)
which is up to factors of q, is the Jones polynomial given by [BNM10] for L10a87.
Other invariants do not match which may be due to choices of orientation.
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The second unidentified value is for β = 5, n = 2, strands= 8, which has
braid word (13̄5̄72̄46̄)2. This is a two component link and should have a min-
imum crossing number of twelve but the unavailability of data for such links
and no Conway notation being found means we cannot confirm the minimum
crossing number.

n = 2 3 4 5

Strands =2
L2a1 31 L4a1 51
Hopf Trefoil 2 Twist Link Cinquefoil

[2] [3] [4] [5]

3
31 T3,3 T3,4 T3,5

Trefoil Link 819 10124
[ 3 ]

4
T2,4 T3,4 T4,4 T4,5

2 Twist Link 819 Link
[4]

5
51 T3,5 T4,5 T5,5

Cinquefoil 10124 Link
[5]

Table B.1: The torus knots or 1-lemniscate knots and links.

n = 2

Strands =3
41

Figure-8
[2 2]

5
63

[2 1 1 2]

7
89

[3 1 1 3]

9
1017

[4 1 1 4]

11
12a1273

[5 1 1 5]

11
K14a19298

[6 1 1 6]

Table B.2: The 2-lemniscate knots with n = 2.
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n = 2 3 4 5 6
41 L6a4 818 10123

Figure-8 Borromean Rings Turk’s Head A Brunnian Link

Table B.3: The 2-lemniscate knots with three strands, shown with increasing n,
the number of repeats of the basic braid word 12̄.

n = 2

Strands = 4
L6a1

[ 2 2 2 ]

5
77

[ 2 1 1 1 2 ]

7
931

[ 2 1 1 1 1 1 2 ]

8
L10a91

[ 2 1 1 2 1 1 2 ]

10
A 12 crossing

two component link
[ 3 1 1 2 1 1 3 ]

11
K13a4296

[ 3 1 1 3 1 1 3 ]

13
K15a75986

[ 4 1 1 3 1 1 4 ]

Table B.4: The 3-lemniscate knots and links with n = 2.
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n = 2

Strands = 3
41

Figure-8 Knot
[ 2 2 ]

5
812

[ 2 2 2 2 ]

7
1045

[ 2 1 1 1 1 1 1 2 ]

9
K12a499

[ 2 1 1 1 1 1 1 1 1 2 ]

11
K14a10074

[ 2 1 1 2 1 1 2 1 1 2 ]

13
A 16

crossing Knot
[ 3 1 1 2 1 1 2 1 1 3 ]

15
An 18

crossing knot
[ 3 1 1 3 1 1 3 1 1 3 ]

Table B.5: The 4-lemniscate knots with n = 2.
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n = 2

Strands =2
L2a1

Hopf Link
[ 2 ]

3
31

Trefoil
[ 3 ]

4
L6a1

[ 2 2 2 ]

6 Unidentified
(See page 179)

7
K11a121

[ 2 2 1 1 1 2 2 ]

8 Unidentified
(See page 180)

9
K13a1739

[ 2 1 1 1 1 1 1 1 1 1 2 ]

11
K15a5180

[ 2 1 1 1 1 1 1 1 1 1 1 1 2 ]

12
A 16 crossing

2 component link
[ 2 1 1 1 1 1 2 1 1 1 1 1 2 ]

13
A 17 crossing Knot

[ 2 1 1 2 1 1 1 1 1 2 1 1 2 ]

14
An 18 crossing

2 component link
[ 2 1 1 2 1 1 2 1 1 2 1 1 2 ]

16
A 20 crossing

2 component link
[ 3 1 1 2 1 1 2 1 1 2 1 1 3 ]

Table B.6: The 5-lemniscate knots with n = 2. The Conway notation is shown
through to sixteen strands to show the pattern in this notation being formed.
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[Rañ89] A F Rañada, A topological theory of the electromagnetic field, Letters in
mathematical physics 18 (1989), 97–106.

[RD05] J Ruostekoski and Z Dutton, Engineering vortex rings and systems
for controlled studies of vortex interactions in Bose-Einstein condensates,
Physical Review A 72 (2005), no. 6.

[Rea53] W T Read, Dislocations in crystals, McGraw-Hill Education, 1953.

[Rei26] K Reidemeister, Elementare begründung der knotentheorie, Abhand-
lungen aus dem Mathematischen Seminar der Hamburgischen Uni-
versität 5 (1926), 24–32.

[RF04] S Rankin and O Flint, Enumerating the prime alternating knots, Journal
of Knot Theory and its Ramifications 13 (2004), no. 1, 151–173.

[RFS04a] S Rankin, O Flint, and J Schermann, Enumerating the prime alternat-
ing knots, part 1, Journal of Knot Theory and its Ramifications 13
(2004), no. 1, 57–100.

[RFS04b] , Enumerating the prime alternating knots, part 2, Journal of
Knot Theory and its Ramifications 13 (2004), no. 1, 101–149.

[Rol76] D Rolfsen, Knots and links, Publish or Perish, 1976.

[Rou04] F S Roux, Canonical vortex dipole dynamics, Journal of the Optical
Society of America B 21 (2004), no. 3, 655–663.

[RS07] D M Raymer and D E Smith, Spontaneous knotting of an agitated
string, Proceedings of the National Academy of Sciences 104 (2007),
no. 42, 16432–16437.

[Rud87] L Rudolph, Isolated critical-points of mappings from R4 to R2 and a
natural splitting of the Milnor number of classical fibred link : 1. Basic
theory and examples, Commentarii Mathematici Helvetici 62 (1987),
no. 4, 630–645.

[SAM93] D Stauffer, A Aharony, and B B Mandelbrot, Self-similarity and cov-
ered neighbourhoods of fractals: A random walk test, Physica A 196
(1993), 1–5.



194 BIBLIOGRAPHY
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