Our objective is to drive the collaboration needed for local estimates of future SLR by bringing together leaders and new talent in: 1. ice-sheet response to climate change; 2. local GIA responses and: 3. coastal engineering/management.

During earlier phases of the PALSEA (co-funded by WUN), initiatives have been incorporated into large consortium grants (NERC, iGGLASS, 1.5 million GBP; FP7, PAST4FUTURE, 8 million EU). However, the potential to combine this study of sea level with understanding social pressures and managing coastal responses to climate change has not yet been realised.

Grants to date did not cover ongoing networking for the broader PALSEA group. This synthesis stage of PALSEA will incorporate ice sheet and climate interactions with implications for local SLR and presents, as yet unexplored potential for spawning new projects. From previous successes, we consider it likely that this workshop will spawn a number of ongoing funded multi-disciplinary collaborations.

Mark Siddall completed his PhD at the National Oceanography Centre, Southampton where he worked on sea level reconstructions based on modelling Red Sea sediment core oxygen isotopes. His first postdoctorate position was in the Climate and Environmental Physics Group at the University of Bern working on the development of paleo-proxies for use in ocean models. He then took up a research fellowship with Lamont-Doherty Earth Observatory, working on ocean-circulation proxies in the Geochemistry group.

He now holds an RCUK fellowship with the University of Bristol in the Department of Earth Sciences where he works on broad aspects of climate change.

WUN Members

- **Australia**
 - The University of Sydney
 - The University of Western Australia

- **Canada**
 - The University of Alberta

- **China**
 - Nanjing University
 - Zhejiang University

- **Hong Kong**
 - The Chinese University of Hong Kong

- **Norway**
 - The University of Bergen

- **South Africa**
 - The University of Cape Town

- **New Zealand**
 - The University of Auckland

- **UK**
 - The University of Bristol
 - The University of Leeds
 - The University of Sheffield
 - The University of Southampton
 - The University of York

- **USA**
 - The Pennsylvania State University
 - The University of Rochester
 - The University of Washington, Seattle
 - The University of Wisconsin-Madison

WUN@Bristol

Professor Eric Thomas, Vice-Chancellor, Partnership Board
Professor Guy Orpen, Pro Vice-Chancellor, AAG Board

Please direct all enquiries to:

Dr Susan Jim, IAS/WUN Development Manager
email: Susan.Jim@bris.ac.uk
web: bris.ac.uk/wun
wun.ac.uk

The **Worldwide Universities Network** comprises 18 research-intensive institutions spanning 5 continents. Our mission is to be one of the leading international Higher Education networks, collaborating to accelerate the creation of knowledge and to develop leaders who will be prepared to address the significant challenges, and opportunities, of our rapidly changing world.

The WUN creates new, multilateral opportunities for international collaboration in research and graduate education. It is a flexible, dynamic organisation that uses the combined resources and intellectual power of its membership to achieve collective international objectives and to stretch international ambitions.
I studied at Durham University for a combined master's degree in Physics, graduating in 2008. I started my PhD at the University of Bristol in January 2009 and I aim to complete the PhD within a few months. My research focuses on the climatic effects of geoengineering, an idea to reflect sunlight from the earth and cool the planet.

I took part in a Worldwide Universities Network RMP funded study at Pennsylvania State University for 3 months in 2010, studying the effects of geoengineering on sea-level and global temperature.

We investigated whether both sea-level and temperature change could be addressed by a range of different geoengineering scenarios. We found that due the very different responses of global temperatures and sea-levels to geoengineering, it would be hard to find a course of action that would benefit everyone. The work was published earlier this month as an article in Nature Climate Change.

The research carried in Bristol investigated new characterisation methods for high power amplifiers based on Gallium Nitride (GaN) transistors, a very novel and useful semiconductor material. The joint research project aimed at improving the understanding of experimental results, creating suitable models for Bristol's leading-edge amplifiers and helping Sydney understand how their device models fitted in the amplifier design arena.

The development of knowledge in GaN transistors characterisation by Dr Fornetti has helped to correctly interpret the experimental results of amplifier level tests and has enabled Bristol to improve device selection procedures and optimise amplifier implementations. The development of knowledge of GaN amplifiers by Sydney and Macquarie Universities has helped them streamline their device models and improve design and simulation times.

The acquisition of free licenses for state-of-the-art simulation software, has been a valuable and useful asset for both postgraduate and undergraduate teaching at Sydney. These licences are now regularly renewed. The interesting and stimulating collaboration with Professor Lucas has also inspired Dr Fornetti to produce internationally recognised audio-video training material in RF and Microwave Engineering. Joint publications have also raised the profiles of both research teams.

Dr Francesco Fornetti received his MEng Degree in Electrical & Electronic Engineering from the University of Bristol in 2003. He subsequently worked as a control systems engineer at Rolls-Royce Plc civil aviation division and at Motorola Networks as a Radio Frequency Engineer. He returned to the University of Bristol in October 2006 to begin a CASE award PhD partially funded by MBDA Missile Systems.

He has recently started as a Research Assistant on a Knowledge transfer secondment with MBDA.