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To assess computational difficulty, we use complexity theory… 
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“QMA-complete” problems are the hardest problems in QMA. 

The computational difficulty of  computing the ground energy has been studied for 

many types of  Hamiltonians… 
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Even very simple systems have QMA-complete ground energy problems… 
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2-local Hamiltonian on a 2D grid  [Oliveira Terhal 2008] 

  
 

2-local Hamiltonian on a line with qudits 

[Aharonov et. al 2009] [Gottesman Irani 2009]  
 

Hubbard model on a 2D grid with site-dependent magnetic field  

[Schuch Verstraete 2009]. 
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other models with adjustable coefficients 

[Cubitt Montanaro 2013] 
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• The complexity of  many simple models from condensed matter physics remains 

unknown. 

 

• Many of  the previous QMA-completeness results allow the coefficients in the 

Hamiltonian to grow with the system size. This is an undesirable feature (and is 

related to the use of  perturbation theory in the analysis). 
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Bose-Hubbard Hamiltonian problem 

Input: 

• Graph 𝐺  

• Number of  particles 𝑁  

• Energy threshold 𝑐  
• Precision parameter 𝜖 
Problem: Is the ground energy of  𝐻 𝐺

𝑁  at most 𝑐, or at least 𝑐 + 𝜖 ? 
(promised that one of  these conditions holds) 

Our main result: Bose-Hubbard Hamiltonian is QMA-complete 
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When 𝑼 → ∞  the Hamiltonian is equivalent to a spin model… 
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𝑁  for the smallest eigenvalue of  𝑂𝐺  within the sector with magnetization N. 

XY Hamiltonian problem 

Input: 

• Graph 𝐺  

• Magnetization 𝑁  

• Energy threshold 𝑐  
• Precision parameter 𝜖 
Problem: Is Θ𝐺

𝑁 at most 𝑐, or at least 𝑐 + 𝜖 ? (promised one of  these conditions holds) 

We prove XY Hamiltonian is QMA-complete. 
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A generic ground energy problem 

Input: 

• A Hamiltonian 𝐻 from some allowed set 

• Energy threshold 𝑐  
• Precision parameter 𝜖 
Problem: Is the ground energy of  𝐻 at most 𝑐, or at least 𝑐 + 𝜖 ? 
(promised that one of  these conditions holds) 
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Computing the ground energy of  𝐻 lets you solve the instance x of  the QMA problem. 
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Example: 

Encoding one qubit with one particle (𝑛 = 1) 

a specific state  

encodes the computation where the circuit is complex-conjugated    for 𝑧 ∈ 0,1 . 



More particles (𝑛 > 1) 

𝐻𝐺 = 𝐴(𝐺)𝑖𝑗𝑎𝑖
†𝑎𝑗

𝑖,𝑗∈𝑉
+ 𝑛𝑘 𝑛𝑘 − 1

𝑘∈𝑉
 

We use a class of  graphs where we can analyze the frustration-free 𝑛-particle ground 

states.  

 

With more than one particle, the interaction term plays a role. 
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Subgraphs for 𝑈1 and 𝑈2  
are connected (in some way) 

Connecting them together 

𝑈1 𝑈2 
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Good news: there are two-particle ground states which encode computations 
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We develop a general method for enforcing constraints on the locations of  particles. 

We use this “Occupancy Constraints Lemma” to get rid of  the bad states. 

 

Bad news: there are also two-particle ground states which don’t encode computations 



Each edge indicates two copies of  the basic 

subgraph that we don’t want simultaneously 

occupied. 

Occupancy constraints graph 𝑮𝒐𝒄𝒄 Graph 𝑮 (from the class we consider) 

Occupancy Constraints Lemma 
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Occupancy constraints graph 𝑮𝒐𝒄𝒄 

Each edge indicates two copies of  the basic 

subgraph that we don’t want simultaneously 

occupied. 

Good states: The frustration-free states of  𝐺 which live in the subspace where the occupancy 

constraints are satisfied. 

The frustration-free states of  𝐺′ are in 

1-1 correspondence with the “good 

states”. 

Occupancy 
Constraints 

Lemma 
(𝐺, 𝐺𝑜𝑐𝑐) 𝐺′ 

Occupancy Constraints Lemma 
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Then we apply the Occupancy Constraints Lemma with constraints designed to eliminate 

groundstates that do not encode computations. This outputs a graph with 𝑂 𝑔 + 𝑛 2  

vertices where every 𝑛-particle groundstate encodes a computation. 

 

To prove our result we establish spectral bounds without using perturbation theory. 
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• Using our circuit-to-graph mapping, we prove that the problem of  approximating 
the smallest eigenvalue of  a sparse, efficiently row computable graph is QMA-
complete. 

 

• In arXiv 1503.07083 we strengthen the QMA-completeness results for the Bose-
Hubbard model and the XY model, and prove that they hold for simple graphs 
(without self-loops). 

 

• Can we remove restriction to fixed particle number? 

• Other models of  indistinguishable particles 
– bosons or fermions with nearest-neighbor  

interactions 

– Attractive interactions 

– Negative hopping strength 

• Other spin models defined by graphs, e.g., the antiferromagnetic Heisenberg 
model? 

 
 

 
 

 

Extensions and open questions 


