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What can we compute with it?
What can we compute about it?

This talk 1s about the computational difficulty of computing the ground energy.

To assess computational difficulty, we use complexity theory...
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Efficient P Problems which can be solved efficiently with
algorithm a classical computer.
to solve ~
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Efficient NP Problems whose solutions can be verified
algorithm efficiently with a classical computer.

to verify

solution

“QMA-complete” problems are the hardest problems in QMA.

The computational difficulty of computing the ground energy has been studied for
many types of Hamiltonians...



Class of Hamiltonians

Ground energy problem

Complexity

T.ocal

k-local Hamiltonian problem

QMA-complete for k = 2

[Kempe, Kitaev, Regev 2000]

Frustration-free

Quantum k-SAT

(testing frustration-freeness)

Contained in P fork = 2
QMA ,-complete for k = 3

[Bravyi 2006] [G. , Nagaj 2013 |

Stoquastic
(no “sign problem”)

Stoquastic k-local Hamiltonian problem

Contained in AM
MA-hard

[Bravyi et. al. 2000]

Fermions or Bosons

QMA-complete
[Liu, Christandl, Verstraete 2007]
[Wei, Mosca, Nayak 2010]



Class of Hamiltonians Ground energy problem Complexity

Local k—lOCﬂl Hamﬂtonian problem QMA_(I)mplete for k 2 2

[Kempe, Kitaev, Regev 2000]

Contained in P for k = 2
QMA -complete for k = 3

[Bravyi 2006] [G. , Nagaj 2013 |

Frustration-free Quantum k-SAT
(testing frustration-freeness)

Stoquastic Stoquastic k-local Hamiltonian problem Contained in AM

MA-hard

(no “sign problem”)

[Bravyi et. al. 2000]

QMA-complete
[Liu, Christandl, Verstraete 2007]
[Wei, Mosca, Nayak 2010]

Fermions or Bosons

Even very simple systems have QMA-complete ground energy problems...
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.What have we learned from all of this?

QMA-completeness places fundamental limits on algorithms (and
guides us in where to look for new algorithms)

QMA-completeness implies ground states are unlikely to have short
classical descriptions

Hamiltonians with no sign problem for Quantum Monte Carlo have a
special status

Systems with QMA-complete ground energy problems can be
deceptively simple!

What is there left to do?

The complexity of many simple models from condensed matter physics remains
unknown.

Many of the previous QMA-completeness results allow the coefficients in the
Hamiltonian to grow with the system size. This is an undesirable feature (and 1s
related to the use of perturbation theory in the analysis).
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Our work

Bose-Hubbard model: bosons move and interact on the vertices of a graph.

e

The system 1s defined by a graph and a number of particles (no adjustable coetficients).

We don’t use perturbation theory in our analysis.
p y y

Our result holds for any repulsive interaction strength.
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Bose-Hubbard model on a graph

Graph: described by its adjacency matrix A(G), a symmetric 0-1 matrix.

Hamiltonian

H; = Z | A(G)ijazraj + Z ng(n, — 1)
L,LJEV kev

\ }
\ Y J V

Movement On-site interaction

Write HY for the Hamiltonian within the N-particle sector.



ﬂSose-Hubbard Hamiltonian problem

Input:

* Graph G

* Number of particles N

* Energy threshold ¢

* Precision parameter €

Problem: Is the ground energy of HY at most ¢, or at least ¢ + € ?
(promised that one of these conditions holds)

o

/

Our main result: Bose-Hubbard Hamiltonian is QMA-complete
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Other choices

We fixed the coefficients in front of the movement and interaction terms

iz A(G)ijajaj + Uz ne(n, — 1)
LjEV kev

What if we choose other (fixed) coefficients? Is the problem the same difficulty for

all such choices?

_I_ Contained in QMA-complete
QMA (our results)

“Stoquastic’: o
No sign problem | Contained in AMNQMA

for quantum
Monte Carlo -
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Why does our proof apply to the problem with any repulsive interaction strength?

z_ ' A(G)ijajaj + Uz n,(n, — 1)
L,JEV kev

\ J | /
pu(G)= smallest f |

cigenvalue of A(G) > Nu(G) >0

If the ground energy is Nu(G) we say the groundspace is frustration-free.

I I 1) Each particle is in a groundstate of A(G)

2) Each vertex is occupied by < 1 particles

Any state with these properties is a ground state forall U > 0

The main step in our QMA-hardness proof: we design a graph so that the frustration-
free ground states encode the history of a computation (works for all U > 0)

When U — oo the Hamiltonian is equivalent to a spin model...
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A related spin model

Graph G with vertex set V > |V'|-qubit Hamiltonian Og
. . (I01)(10] + [10)(01]),.
L
N - 1l
Example
1 3

2
b ) 01)(10[12 + [10){0T]12 + [01) (10|23 + [10) (01|23 + |1)(1]2
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Write @ for the smallest eigenvalue of O within the sector with magnetization N.
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A related spin model

Oc=>_ ([01){10] + [10){01])

A(G)=1
iF]

Z (O.;Ug?;_a;lagl)_'_ Z

A(G) =1
i#]

A(G)ii=1

it

A(G) =1

(

1l -0

)

D{1];

Conserves total
— magnetization
(Hamming weight)

—

Write @ for the smallest eigenvalue of O within the sector with magnetization N.

/ XY Hamiltonian problem

Input:

* Graph G

* Magnetization N

* Energy threshold ¢

o

Precision parameter €

Problem: Is OF at most ¢, or at least ¢ + € ? (promised one of these conditions holds)

~
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A related spin model

Oc= > (jo1)(10[+[10)(01]), + > |11 |
A(Gy)éij':l A(G)ii=1 Conserves total
i#£]
olol +olol | _ o — magnetization
~ Z ( 5 ) y) + Z ( 202) (Hamming weight)
A(G)ij=1 A(G)ii=1
i _

Write O for the smallest eicenvalue of O within the sector with maenetization N.
G g G g

/ XY Hamiltonian problem \

Input:

* Graph G

* Magnetization N

* Energy threshold ¢

* Precision parameter €

Problem: Is OF at most ¢, or at least ¢ + € ? (promised one of these conditions holds)

- /

We prove XY Hamiltonian 1s QMA-complete.
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How can one prove QMA-completeness for these types of problems?

/ A generic ground energy problem \

Input:

A Hamiltonian H from some allowed set

* Energy threshold ¢

* Precision parameter €

Problem: Is the ground energy of H at most ¢, or at least ¢ + € ?
k(promised that one of these conditions holds) /
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QMA

An instance x of a problem in QMA has an efficiently computable verification circuit

0)8"a

V)

—

Circuit
“accepts” |Y)
itt output s 1.

If x is a yes instance there exists |Y)) (a witness) which is accepted with high probability.

If x is a no instance every state has low acceptance probability.
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Ground energy problems are usually contained in QMA.
The witness 1s the ground state and the verification circuit 1s a measurement of the

energy.

To prove QMA-completeness one must also show the problem is QMA-hard.
i.e., an instance of any problem in QMA can be efficiently mapped into an instance of
the ground energy problem.
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One way to prove QMA-hardness

e

0)87a

V)

Circuit-to-Hamiltonian

mapping

X is a yes instance: the ground energy of H is less than c.
X is a no instance: the ground energy of H is greater than ¢ + €.

Computing the ground energy of H lets you solve the instance x of the QMA problem.
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Example: Feynman/Kitaev

0)8"a

V)

Step 1: A Hamiltonian with
ground states which encode the
computational history.

H; has ground states:

[Hist()) = (16)10) + Wol@)|1) + WiTWo[6)[2) + ... + Wit Win—2...Wo| &) |m))

1

3

Step 2: Add a term H, which penalizes
states where |¢) has low acceptance
probability or where the ancillas are not

initialized correctly.

H = H, + H,
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Our strategy for the Bose-Hubbard model
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of the n-particle Bose-Hubbard model on a graph with poly(n, g) vertices.



Challenge: encode the history of an n-qubit, g-gate computation in the groundspace
of the n-particle Bose-Hubbard model on a graph with poly(n, g) vertices.

When n = 1 the Hamiltonian is just the adjacency matrix of the graph...



Encoding one qubit with one particle (n = 1)

We use a variant of the Feynman-Kitaev circuit-to-Hamiltonian mapping where the
Hamiltonian is a symmetric 0-1 matrix.



Encoding one qubit with one particle (n = 1)

We use a variant of the Feynman-Kitaev circuit-to-Hamiltonian mapping where the
Hamiltonian is a symmetric 0-1 matrix.

Example:



Encoding one qubit with one particle (n = 1)

We use a variant of the Feynman-Kitaev circuit-to-Hamiltonian mapping where the
Hamiltonian is a symmetric 0-1 matrix.

Example: I

.'-It
t=8 - THIN t=2
Hﬁ/“ﬂ" \\‘_\“ =
NS 7 PN ;
NS N S
KA SN
S AT s e X {\
‘. X /1 \ \
PEEEE NN
/ kv;iﬁ&.&g}g“\
P ) '}F?- t—3
o

| 2

s

2SS\
S
=

“f“n‘.

(L2
-;-;cn‘\‘



Encoding one qubit with one particle (n = 1)

We use a variant of the Feynman-Kitaev circuit-to-Hamiltonian mapping where the
Hamiltonian is a symmetric 0-1 matrix.

Example: I
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Encoding one qubit with one particle (n = 1)

We use a variant of the Feynman-Kitaev circuit-to-Hamiltonian mapping where the
Hamiltonian is a symmetric 0-1 matrix.

Example:

RN\
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AN Ny arier
NN

: : \
Groundstates of the adjacency matrix: ~ \v"
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i
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a specific state

V20) = % (I2)(11) +13) +15) + 7)) + H[2)(|2) + [8)) + HT|2)(|4) +6))) |)

[V21) = [¥20)"
for z € {0,1}. encodes the computation where the circuit is complex-conjugated

™
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With more than one particle, the interaction term plays a role.

H; = Z . A(G)l-ja;raj + 2 n,(n, — 1)
LJEV kev

We use a class of graphs where we can analyze the frustration-free n-particle ground
states.

The graphs we use are built from multiple copies of
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Connecting them together

4 N [ N

Ul UZ ﬁ E

Subgraphs for Uy and U,

are connected (in some way)

Good news: there are two-particle ground states which encode computations

LLo)+IL uve +ITL v
+H 1L vy +| L v+ L v,v.0)




Bad news: there are also two-particle eround states which don’t encode computations
p g p

IT.s> |LLe
IT+> |ILe>

We develop a general method for enforcing constraints on the locations of particles.
We use this “Occupancy Constraints Lemma” to get rid of the bad states.
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Occupancy Constraints Lemma

Occupancy constraints graph G,

Graph G (from the class we consider)

M .

Each edge indicates two copies of the basic
subgraph that we don’t want simultaneously
occupied.

Good states: The frustration-free states of G which live in the subspace where the occupancy
constraints are satisfied.

Occupancy
(G, GOCC) Constraints
Lemma

The frustration-free states of G’ are in
L 1-1 correspondence with the “good
states”.
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Overview of our strategy

—{H ¢ T HT fJ¢— ]

n qubits, g gates

-

fd nY
\V
fd nY
\V

0(g + n) vertices

L—

Some n-particle ground states

encode computations, others
- don’t

Then we apply the Occupancy Constraints Lemma with constraints designed to eliminate
groundstates that do not encode computations. This outputs a graph with 0((g + n)? )
vertices where every n-particle groundstate encodes a computation.

To prove our result we establish spectral bounds without using perturbation theory.



Extensions and open questions

Using our circuit-to-graph mapping, we prove that the problem of approximating
the smallest eigenvalue of a sparse, efficiently row computable graph 1s QMA-
complete.

In arXiv 1503.07083 we strengthen the QMA-completeness results for the Bose-
Hubbard model and the XY model, and prove that they hold for simple graphs
(without self-loops).

Can we remove restriction to fixed particle number?

Other models of indistinguishable particles

— bosons or fermions with nearest-neighbor
interactions

— Attractive interactions

— Negative hopping strength
Other spin models defined by graphs, e.g., the antiferromagnetic Heisenberg
model?



