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Query model

Function f(x,, ..., Xy), Xi€{0,1}.
X; given by a black box:

Complexity = number of queries



Quantum query model
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Reasons to study query model

® Encompasses many quantum
algorithms (Grover’s search, quantum
part of factoring, etc.).

® Provable quantum-vs-classical gaps.



1 query quantumly

How many queries
classically?




Period finding

X1, X5, ...y Xy - PeEriodic

| X

Find period r

1 query quantumly

Quantum part of Shor’s factoring algorithm



How many queries classically?

® Quantum algorithm works if N > r2.

@ T classical queries — can test T2
possible periods.

cA/ N queries classically



Our result [Aaronson, A]

Task that requires 1 query quantumly,
®(VN) classically.

® Method for simulating any 1 query
guantum algorithm by O(\N) query
probabilistic algorithm.



Fourier checking/Forrelation



Forrelation

® Input: (Xq, oy Xny Y1y -oor V) €9{-1, 1}V,
® Are vectors

/xl\ /yl\
X7 F, Vs
\*N \ Vv /

well correlated one with another?
0 Fy — Fourier transform over Zy.



More precisely...

@ Is the inner product
|
(%, Fy)=—2 F %,
N 5

at least 3/5 or at most 1/1007?



Quantum algorithm

1. Generate states

i [¥,) =2 nli
IN parallel (1 query).

2. Apply Fy to 2" state.
3. Test If states equal (SWAP test).
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Classical lower bound

® Theorem Any classical algorithm for
FORRELATION uses

A

log N
gueries.



REAL FORRELATION

® Real-valued vectors

/xl ) /yl |
- 4% _ Y
X = Yy =

N \JV'~ /

® Distinguish between
e X, ) random (x’s - Gaussian);
e x random, y = F,X.



Reduction

T query algorithm for FORRELATION

'

T query algorithm for REAL
FORRELATION

® Proof idea: achieve x.e{-1, 1} by
replacing x; — sgn(x).




Lower bound

® Claim Solving REAL FORRELATION on
most instances requires Q[ JN ] queries.

log N

® Intuition: if y = F, x, correlations
between x;'s and y;'s - weak.

® o(NN) values x; and y; look like
uncorrelated random variables.




Simulating 1 query guantum
algorithms



Simulation

® Theorem Any 1 query quantum
algorithm computing f(x,, ..., Xy) can be
simulated probabilistically using O(VN)
gueries.




Analyzing query algorithms
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oy 1 IS actually oy 1(Xq, ..., Xy)



Polynomials method

® Lemma [Beals et al., 1998] If

Zaiaj(xl,...,xN)i,ﬂ

. L) :
Is a state after k queries, then o (X, ..., Xy) are
polynomials in x4, ..., X of degree < k.

Measurement:

2
(i, j) w. probability |%i., (X5 Xy )|

b,

Polynomial of degree < 2k




Our task

® Pr[A outputs 1] = p(Xy, ..., Xy), deg p =2.
® 0 <p(Xq, -y Xy) < 1.

® Task: estimate p(X4, ..., X\) Within
precision .

Solution: random sampling



Pre-processing

® Problem: some x;'s in p(Xq, ..., Xp) May

be more influential than others.

® e
® &d
ﬂ variable-splitting




Sampling 1
p(xlaxza“ ) Z% g

@ Claim If we sample N out of N? terms

Yii=a, %X, then

Z Y., -good estimate

i, j—sampled

Problem: requires sampling N variables x..



Sampling 2
p(x],x;z,. ) Zau At

Sampling N terms Y; =a; xX;

Sampling VYN variables x; \/NO \/ﬁ — N




Extension to kK queries

® Theorem Any k query quantum
algorithm can be simulated
probabilistically with O(N1-12K) queries.

® Proof Describe algorithm by polynomial
of degree 2k, use random sampling.

® Question: Is this optimal?




K-fold forrelation



® Forrelation: given black box functions
f(x) and g(y), estimate

Y F  f(x)g(»)

® K-fold forrelation: given f,(x), ..., f,(X),
estimate

Zfl(xl)Fxl,xzfz(xz)Fx2,x3 S ()

X] 5eer X




k-query quantum algorithm

Generate ;ﬁ@
Apply black box for f,(x);
oly QFT,;

Apply black box for f,(x);
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Creates amplitude equal to

Zfl(xl)Fxl,xsz(XZ )sz,x3 o f e ()

.xl ..... xk



More results

® Theorem k-fold forrelation can be solved
with [ k/2 | guantum queries.

® Conjecture k-fold forrelation requires
Q(NI-K) queries classically.

® Q(NI-K) queries = estimating the sum
by classical sampling.




BQP-completeness

® Let k = poly(n) and f,(x), ..., f (X) -
poly-size quantum circuits.

® Theorem k-fold forrelation is BQP-
complete.

® Captures the power of BQP!

® No Jones polynomial or other advanced
notions!




BQP-completeness proof

® Need to show:

poly-size quantum circuits = k-fold
forrelation.

® Hadamard + sign (cc-Z) — universal.

® Transformation:
e Sign gates = f,(x), f5(x), ..., f (X);
e Hadamard — Fourier transform;



1 quantum query algorithms for
sampling problems



Fourier sampling

@ Black box for f(x), xe{0,1}".
® Probability distribution P[y|= (f(y))z,
. I
= F. :
f0=7= Z oS ()

® Task: sample from this distribution.




Quantum algorithm

1. Use 1 query to generate
I

‘T> = \/27 Zf(x)|x>’
2. Apply QFT to obtain
) =22 S W)y

\/;7 > FLf)

f() =



Classical lower bound

® Theorem Fourier sampling requires
Q(N/log N) queries, even for
approximate sampling




Summary

® 1 quantum query = ®(VN) classical
gueries.

® k quantum queries can be simulated
with O(N1-1/2K) classical queries.

® Sampling: at least QQ(N/log N) classical
gueries to simulate 1 quantum query.



Open problem 1

® Does k-fold FORRELATION require
Q(N1-12K) queries classically?

® Plausible but looks quite difficult
matematically.



Open problem 2

®@ Best quantum-classical gaps:
e 1 quantum query - Q(VN) classical queries;
e 2 quantum queries - Q(VN) classical queries;

¢ log N guantum queries -Q(\/NlogN)classical
gueries.

Any problem that requires O(log N) queries
quantumly, Q(N¢), c>1/2 classically?



Open problem 3

® What else iIs FORRELATION/k-fold
FORRELATION useful for?
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