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What is the biggest possible gap 
between quantum and classical 
computing?



Query model

 Function f(x1, ..., xN), xi∈{0,1}.
 xi given by a black box:

i xi

Complexity = number of queries



Quantum query model

 Q – queries:

 U0, U1, …, UT – independent of x1,  …, xN.

U0 Q QU1 UT…



Reasons to study query model

 Encompasses many quantum 
algorithms (Grover’s search, quantum 
part of factoring, etc.).

 Provable quantum-vs-classical gaps.



1 query quantumly

How many queries 
classically?



Period finding

x1, x2, ..., xN - periodic

i xi

Find period r

1 query quantumly

Quantum part of Shor’s factoring algorithm



How many queries classically?

Quantum algorithm works if N ≥ r2.
T classical queries – can test T2

possible periods.

queries classically

1, 2, 3, ..., 7, 1, 2, 3, ..., 7, ...

r r

N



Our result [Aaronson, A]

 Task that requires 1 query quantumly, 
Θ(√N) classically.

 Method for simulating any 1 query 
quantum algorithm by O(√N) query 
probabilistic algorithm.



Fourier checking/Forrelation



Forrelation
 Input: (x1, ..., xN, y1, ..., yN) ∈{-1, 1}2N.
 Are vectors

well correlated one with another?
FN – Fourier transform over ZN.



More precisely...

 Is the inner product

at least 3/5 or at most 1/100?



Quantum algorithm

1. Generate states

in parallel (1 query).
2. Apply FN to 2nd state.
3. Test if states equal (SWAP test).



Classical lower bound

 Theorem Any classical algorithm for 
FORRELATION uses

queries.  



REAL FORRELATION

 Distinguish between
 random (xi’s - Gaussian);
 random,  .

 Real-valued vectors



Reduction

 Proof idea: achieve xi∈{-1, 1} by 
replacing xi → sgn(xi).

T query algorithm for FORRELATION

T query algorithm for REAL 
FORRELATION



Lower bound

 Claim Solving REAL FORRELATION on 
most instances requires queries.

 Intuition: if , correlations 
between xi’s and yj’s - weak.

 o(√N) values xi and yj look like 
uncorrelated random variables. 



Simulating 1 query quantum 
algorithms



Simulation

 Theorem Any 1 query quantum 
algorithm computing f(x1, ..., xN) can be 
simulated probabilistically using O(√N) 
queries.



Analyzing query algorithms

Q QQ UT…U1

α1,1|1,1〉+ α1,2|1, 2〉+ … + αN, M|N, M〉

α1,1 is actually α1,1(x1, ..., xN)



Polynomials method

 Lemma [Beals et al., 1998] If

is a state after k queries, then αi,j(x1, ..., xN) are 
polynomials in x1, ..., xN of degree ≤ k.

Measurement: 
(i, j) w. probability

Polynomial of degree ≤ 2k



Our task
 Pr[A outputs 1] = p(x1, ..., xN), deg p =2.
 0 ≤ p(x1, ..., xN) ≤ 1.
 Task: estimate p(x1, ..., xN) within 

precision ε.

Solution: random sampling



Pre-processing

 Problem: some xi’s in p(x1, ..., xN) may 
be more influential than others.

variable-splitting



Sampling 1

- good estimate

Problem: requires sampling N variables xi.

 Claim If we sample N out of N2 terms 
Yi,j=ai,jxixj, then



Sampling 2

Sampling N terms Yi,j=ai,jxixj

Sampling √N variables xi

≡



Extension to k queries

 Theorem Any k query quantum 
algorithm can be simulated 
probabilistically with O(N1-1/2k) queries. 

 Proof Describe algorithm by polynomial 
of degree 2k, use random sampling.

 Question: Is this optimal?



K-fold forrelation



 Forrelation: given black box functions 
f(x) and g(y), estimate 

 K-fold forrelation: given f1(x), ..., fk(x), 
estimate



k-query quantum algorithm

1. Generate 
2. Apply black box for f1(x);
3. Apply QFT;
4. Apply black box for f2(x);
5. ....

Creates amplitude equal to



More results

 Theorem k-fold forrelation can be solved 
with k/2 quantum queries.

 Conjecture k-fold forrelation requires 
Ω(N1-1/k) queries classically.

 Ω(N1-1/k) queries = estimating the sum 
by classical sampling.



BQP-completeness

 Let k = poly(n) and f1(x), ..., fk(x) -
poly-size quantum circuits.

 Theorem k-fold forrelation is BQP-
complete.

 Captures the power of BQP!
 No Jones polynomial or other advanced 

notions!



BQP-completeness proof

 Need to show: 
poly-size quantum circuits ⇒ k-fold 
forrelation.

 Hadamard + sign (cc-Z) – universal.
 Transformation:

 Sign gates ⇒ f1(x), f2(x), ..., fk(x);
 Hadamard ⇒ Fourier transform;



1 quantum query algorithms for 
sampling problems



Fourier sampling

 Black box for f(x), x∈{0,1}N.
 Probability distribution ,

 Task: sample from this distribution. 



Quantum algorithm

1. Use 1 query to generate

2. Apply QFT to obtain



Classical lower bound

 Theorem Fourier sampling requires 
Ω(N/log N) queries, even for 
approximate sampling



Summary 

 1 quantum query = Θ(√N) classical 
queries.

 k quantum queries can be simulated 
with O(N1-1/2k) classical queries.

 Sampling: at least Ω(N/log N) classical 
queries to simulate 1 quantum query.



Open problem 1

 Does k-fold FORRELATION require 
Ω(N1-1/2k) queries classically?

 Plausible but looks quite difficult 
matematically.



Open problem 2
Best quantum-classical gaps:
 1 quantum query - Ω(√N) classical queries;
 2 quantum queries - Ω(√N) classical queries;
 ...
 log N quantum queries - classical 

queries. 

Any problem that requires O(log N) queries 
quantumly, Ω(Nc), c>1/2 classically?



Open problem 3

 What else is FORRELATION/k-fold 
FORRELATION useful for?
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