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What is the biggest possible gap 
between quantum and classical 
computing?



Query model

 Function f(x1, ..., xN), xi∈{0,1}.
 xi given by a black box:

i xi

Complexity = number of queries



Quantum query model

 Q – queries:

 U0, U1, …, UT – independent of x1,  …, xN.

U0 Q QU1 UT…



Reasons to study query model

 Encompasses many quantum 
algorithms (Grover’s search, quantum 
part of factoring, etc.).

 Provable quantum-vs-classical gaps.



1 query quantumly

How many queries 
classically?



Period finding

x1, x2, ..., xN - periodic

i xi

Find period r

1 query quantumly

Quantum part of Shor’s factoring algorithm



How many queries classically?

Quantum algorithm works if N ≥ r2.
T classical queries – can test T2

possible periods.

queries classically

1, 2, 3, ..., 7, 1, 2, 3, ..., 7, ...

r r

N



Our result [Aaronson, A]

 Task that requires 1 query quantumly, 
Θ(√N) classically.

 Method for simulating any 1 query 
quantum algorithm by O(√N) query 
probabilistic algorithm.



Fourier checking/Forrelation



Forrelation
 Input: (x1, ..., xN, y1, ..., yN) ∈{-1, 1}2N.
 Are vectors

well correlated one with another?
FN – Fourier transform over ZN.



More precisely...

 Is the inner product

at least 3/5 or at most 1/100?



Quantum algorithm

1. Generate states

in parallel (1 query).
2. Apply FN to 2nd state.
3. Test if states equal (SWAP test).



Classical lower bound

 Theorem Any classical algorithm for 
FORRELATION uses

queries.  



REAL FORRELATION

 Distinguish between
 random (xi’s - Gaussian);
 random,  .

 Real-valued vectors



Reduction

 Proof idea: achieve xi∈{-1, 1} by 
replacing xi → sgn(xi).

T query algorithm for FORRELATION

T query algorithm for REAL 
FORRELATION



Lower bound

 Claim Solving REAL FORRELATION on 
most instances requires queries.

 Intuition: if , correlations 
between xi’s and yj’s - weak.

 o(√N) values xi and yj look like 
uncorrelated random variables. 



Simulating 1 query quantum 
algorithms



Simulation

 Theorem Any 1 query quantum 
algorithm computing f(x1, ..., xN) can be 
simulated probabilistically using O(√N) 
queries.



Analyzing query algorithms

Q QQ UT…U1

α1,1|1,1〉+ α1,2|1, 2〉+ … + αN, M|N, M〉

α1,1 is actually α1,1(x1, ..., xN)



Polynomials method

 Lemma [Beals et al., 1998] If

is a state after k queries, then αi,j(x1, ..., xN) are 
polynomials in x1, ..., xN of degree ≤ k.

Measurement: 
(i, j) w. probability

Polynomial of degree ≤ 2k



Our task
 Pr[A outputs 1] = p(x1, ..., xN), deg p =2.
 0 ≤ p(x1, ..., xN) ≤ 1.
 Task: estimate p(x1, ..., xN) within 

precision ε.

Solution: random sampling



Pre-processing

 Problem: some xi’s in p(x1, ..., xN) may 
be more influential than others.

variable-splitting



Sampling 1

- good estimate

Problem: requires sampling N variables xi.

 Claim If we sample N out of N2 terms 
Yi,j=ai,jxixj, then



Sampling 2

Sampling N terms Yi,j=ai,jxixj

Sampling √N variables xi

≡



Extension to k queries

 Theorem Any k query quantum 
algorithm can be simulated 
probabilistically with O(N1-1/2k) queries. 

 Proof Describe algorithm by polynomial 
of degree 2k, use random sampling.

 Question: Is this optimal?



K-fold forrelation



 Forrelation: given black box functions 
f(x) and g(y), estimate 

 K-fold forrelation: given f1(x), ..., fk(x), 
estimate



k-query quantum algorithm

1. Generate 
2. Apply black box for f1(x);
3. Apply QFT;
4. Apply black box for f2(x);
5. ....

Creates amplitude equal to



More results

 Theorem k-fold forrelation can be solved 
with k/2 quantum queries.

 Conjecture k-fold forrelation requires 
Ω(N1-1/k) queries classically.

 Ω(N1-1/k) queries = estimating the sum 
by classical sampling.



BQP-completeness

 Let k = poly(n) and f1(x), ..., fk(x) -
poly-size quantum circuits.

 Theorem k-fold forrelation is BQP-
complete.

 Captures the power of BQP!
 No Jones polynomial or other advanced 

notions!



BQP-completeness proof

 Need to show: 
poly-size quantum circuits ⇒ k-fold 
forrelation.

 Hadamard + sign (cc-Z) – universal.
 Transformation:

 Sign gates ⇒ f1(x), f2(x), ..., fk(x);
 Hadamard ⇒ Fourier transform;



1 quantum query algorithms for 
sampling problems



Fourier sampling

 Black box for f(x), x∈{0,1}N.
 Probability distribution ,

 Task: sample from this distribution. 



Quantum algorithm

1. Use 1 query to generate

2. Apply QFT to obtain



Classical lower bound

 Theorem Fourier sampling requires 
Ω(N/log N) queries, even for 
approximate sampling



Summary 

 1 quantum query = Θ(√N) classical 
queries.

 k quantum queries can be simulated 
with O(N1-1/2k) classical queries.

 Sampling: at least Ω(N/log N) classical 
queries to simulate 1 quantum query.



Open problem 1

 Does k-fold FORRELATION require 
Ω(N1-1/2k) queries classically?

 Plausible but looks quite difficult 
matematically.



Open problem 2
Best quantum-classical gaps:
 1 quantum query - Ω(√N) classical queries;
 2 quantum queries - Ω(√N) classical queries;
 ...
 log N quantum queries - classical 

queries. 

Any problem that requires O(log N) queries 
quantumly, Ω(Nc), c>1/2 classically?



Open problem 3

 What else is FORRELATION/k-fold 
FORRELATION useful for?
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