What is the biggest possible gap between quantum and classical computing?

> Scott Aaronson (MIT) Andris Ambainis (U. of Latvia)

Query model

Function $f(x_1, ..., x_N), x_i \in \{0, 1\}.$ x_i given by a black box:

Complexity = number of queries

Quantum query model

Reasons to study query model

 Encompasses many quantum algorithms (Grover's search, quantum part of factoring, etc.).

• Provable quantum-vs-classical gaps.

1 query quantumly

How many queries classically?

Find period r 1 query quantumly Quantum part of Shor's factoring algorithm

Xi

 X_1, X_2, \dots, X_N - periodic

Period finding

How many queries classically?

Quantum algorithm works if N ≥ r².
 T classical queries – can test T² possible periods.

 $c\sqrt[4]{N}$ queries classically

Our result [Aaronson, A]

- Task that requires 1 query quantumly, $\Theta(\sqrt{N})$ classically.
- Method for simulating any 1 query quantum algorithm by O(√N) query probabilistic algorithm.

Fourier checking/Forrelation

Forrelation

○ Input: $(x_1, ..., x_N, y_1, ..., y_N) \in \{-1, 1\}^{2N}$. ○ Are vectors

well correlated one with another? $\Box F_N$ – Fourier transform over Z_N .

More precisely...

• Is the inner product $(\vec{x}, F\vec{y}) = \frac{1}{N} \sum_{i,j} F_{i,j} x_i y_j$ at least 3/5 or at most 1/100?

Quantum algorithm

1. Generate states $|\Psi_x\rangle = \sum_{i=1}^N x_i |i\rangle, \ |\Psi_y\rangle = \sum_{i=1}^N y_i |i\rangle$ in parallel (1 query). 2. Apply F_N to 2nd state. 3. Test if states equal (SWAP test).

Classical lower bound

<u>Theorem</u> Any classical algorithm for FORRELATION uses

queries.

REAL FORRELATION

• Real-valued vectors

 $\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_N \end{pmatrix} \qquad \vec{y} = \begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_N \end{pmatrix}$

O Distinguish between *x*, *y* random (x_i's - Gaussian); *x* random, *y* = F_N*x*.

Reduction

T query algorithm for REAL FORRELATION

• Proof idea: achieve $x_i \in \{-1, 1\}$ by replacing $x_i \rightarrow sgn(x_i)$.

Lower bound

• <u>Claim</u> Solving REAL FORRELATION on most instances requires $\Omega\left(\frac{\sqrt{N}}{\log N}\right)$ queries.

Intuition: if y = F_N x, correlations between x_i's and y_j's - weak.
 o(√N) values x_i and y_j look like uncorrelated random variables.

Simulating 1 query quantum algorithms

Simulation

• <u>Theorem</u> Any 1 query quantum algorithm computing $f(x_1, ..., x_N)$ can be simulated probabilistically using $O(\sqrt{N})$ queries.

Analyzing query algorithms

 $\alpha_{1,1}$ is actually $\alpha_{1,1}(x_1, ..., x_N)$

Polynomials method

o Lemma [Beals et al., 1998] If

 $\sum_{i,j} \alpha_{i,j}(x_1,...,x_N) | i,j \rangle$ is a state after k queries, then $\alpha_{i,j}(x_1,...,x_N)$ are polynomials in $x_1,...,x_N$ of degree $\leq k$.

> Measurement: (i, j) w. probability $|\alpha_{i,j}(x_1,...,x_N)|^2$

Polynomial of degree $\leq 2k$

Our task

Pr[A outputs 1] = p(x₁, ..., x_N), deg p =2.
 0 ≤ p(x₁, ..., x_N) ≤ 1.
 Task: estimate p(x₁, ..., x_N) within precision ε.

Solution: random sampling

Pre-processing

• <u>Problem</u>: some x_i 's in $p(x_1, ..., x_N)$ may be more influential than others.

Sampling 1

$$p(x_1, x_2, \dots, x_N) = \sum_{i,j} a_{i,j} x_i x_j$$

• <u>Claim</u> If we sample N out of N² terms $Y_{i,j} = a_{i,j} x_i x_j$, then $\sum_{i,j=sampled} Y_{i,j}$ - good estimate

Problem: requires sampling N variables x_i.

Sampling 2

$$p(x_1, x_2, \dots, x_N) = \sum_{i,j} a_{i,j} x_i x_j$$

Sampling N terms $Y_{i,j} = a_{i,j} x_i x_j$

Sampling \sqrt{N} variables $x_i \sqrt{N} \bullet \sqrt{N} = N$

Extension to k queries

- <u>Theorem</u> Any k query quantum algorithm can be simulated probabilistically with O(N^{1-1/2k}) queries.
- <u>Proof</u> Describe algorithm by polynomial of degree 2k, use random sampling.
- Question: Is this optimal?

K-fold forrelation

Forrelation: given black box functions
 f(x) and g(y), estimate

$$\sum F_{x,y} f(x) g(y)$$

<u>K-fold forrelation</u>: given f₁(x), ..., f_k(x), estimate

x, y

$$\sum_{x_1,...,x_k} f_1(x_1) F_{x_1,x_2} f_2(x_2) F_{x_2,x_3} \dots f_k(x_k)$$

k-query quantum algorithm

- 1. Generate $\sum_{x} \frac{1}{\sqrt{N}} |x\rangle$
- 2. Apply black box for $f_1(x)$;
- 3. Apply QFT;

 X_1, \ldots, X_k

- 4. Apply black box for $f_2(x)$;
- 5.

Creates amplitude equal to

$$\sum f_1(x_1) F_{x_1, x_2} f_2(x_2) F_{x_2, x_3} \dots f_k(x_k)$$

More results

- <u>Theorem</u> k-fold forrelation can be solved with k/2 quantum queries.
- <u>Conjecture</u> k-fold forrelation requires
 Ω(N^{1-1/k}) queries classically.
- Ω(N^{1-1/k}) queries = estimating the sum by classical sampling.

BQP-completeness

- Let k = poly(n) and $f_1(x), ..., f_k(x)$ poly-size quantum circuits.
- <u>Theorem</u> k-fold forrelation is BQPcomplete.
- Captures the power of BQP!
- o No Jones polynomial or other advanced notions!

BQP-completeness proof

• Need to show:

poly-size quantum circuits \Rightarrow k-fold forrelation.

- Hadamard + sign (cc-Z) universal.
- Transformation:
 - Sign gates \Rightarrow f₁(x), f₂(x), ..., f_k(x);
 - Hadamard \Rightarrow Fourier transform;

1 quantum query algorithms for sampling problems

Fourier sampling

• Black box for f(x), $x \in \{0,1\}^N$. • Probability distribution $P[y] = (\hat{f}(y))^2$,

$$\hat{f}(y) = \frac{1}{\sqrt{2^N}} \sum_{x} F_{x,y} f(x).$$

• Task: sample from this distribution.

Quantum algorithm

1. Use 1 query to generate

$$|\Psi\rangle = \frac{1}{\sqrt{2^N}} \sum_{x} f(x) |x\rangle,$$

2. Apply QFT to obtain

$$|\Psi'\rangle = \sum_{y} \hat{f}(y) |y\rangle,$$
$$\hat{f}(y) = \frac{1}{\sqrt{2^{N}}} \sum_{x} F_{x,y} f(x)$$

Classical lower bound

<u>Theorem</u> Fourier sampling requires
 Ω(N/log N) queries, even for
 approximate sampling

Summary

- 1 quantum query = $\Theta(\sqrt{N})$ classical queries.
- k quantum queries can be simulated with O(N^{1-1/2k}) classical queries.
- Sampling: at least Ω(N/log N) classical queries to simulate 1 quantum query.

Open problem 1

 Does k-fold FORRELATION require Ω(N^{1-1/2k}) queries classically?

 Plausible but looks quite difficult matematically.

Open problem 2

• Best quantum-classical gaps:

- 1 quantum query $\Omega(\sqrt{N})$ classical queries;
- 2 quantum queries $\Omega(\sqrt{N})$ classical queries;
- log N quantum queries $\Omega(\sqrt{N \log N})$ classical queries.

Any problem that requires O(log N) queries quantumly, $\Omega(N^c)$, c>1/2 classically?

Open problem 3

• What else is FORRELATION/k-fold FORRELATION useful for?