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6. Rule models

Example 6.3, p.167 Learning a rule set for class ⊕

The first rule learned for the positive class is

·if Length = 3 then Class=⊕·

The two examples covered by this rule are removed, and a new rule is learned.

We now encounter a new situation, as none of the candidates is pure. We thus

start a second-level search, from which the following pure rule emerges:

·ifGills =no ∧ Length=5 then Class=⊕·

To cover the remaining positive, we again need a rule with two conditions:

·if Gills=no ∧ Teeth=many then Class=⊕·
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7. Linear models

What’s next?

7 Linear models

The least-squares method

The perceptron: a heuristic learning algorithm for linear classifiers 

Support vector machines
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7. Linear models 7.1 The least-squares method

Example 7.1, p.197 Univariate linear regression

Suppose we want to investigate the relationship between people’s height and  

weight. We collect n height and weight measurements (hi , wi ),1 ≤ i ≤n.

Univariate linear regression assumes a linear equation w =a +bh , with

parameters a  and b chosen such that the sum of squared residuals
. n

i=1
(wi −(a +bh i ))2 is minimised.

In order to find the parameters we take partial derivatives of this expression, set  

the partial derivatives to 0 and solve for a  and b:

∂ n.

∂a i =1
i i

2(w − (a + b h  )) = −
n.

i=1
i i2 (w − (a + b h  )) = 0 ⇒ â =w −b̂ h

∂ n.

∂b i =1

n.

i=1

ˆ(wi −(a +bh i ))2 =−2 (wi −(a +bh i ))hi =0 ⇒ b =

. n
i=1

(hi −h)(wi −w )

. n  i
=1

(hi −h)2

So the solution found by linear regression is w = â  +b̂ h =w +b̂ (h−h); see  

Figure 7.1for an example.
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7. Linear models 7.1 The least-squares method

Figure 7.1, p.197 Univariate linear regression
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Thered solid lineindicates the result of applying linear regression to 10 measurements  

of body weight (on the y -axis, in kilograms) against body height (on the x-axis, in  

centimetres). Theorange dotted linesindicate the average height h  = 181 and the  

average weight w = 74.5; the regression coefficient b̂  = 0.78. The measurements were  

simulated by adding normally distributed noise with mean 0 and variance 5 to the true  

model indicated by theblue dashed line( b  =0.83).
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7. Linear models 7.2 The perceptron: a heuristic learning algorithm for linear classifiers

The perceptron

A linear classifier that will achieve perfect separation on linearly separable data is  

the perceptron, originally proposed as a simple neural network. The perceptron  

iterates over the training set, updating the weight vector every time it encounters  

an incorrectly classified example.

t  For example, let xi be a misclassified positive example, then we have yi = +1 and

w·xi < t . We therefore want to find wf such that wf ·xi >w·xi , which moves the decision  

boundary towards and hopefully past xi .

t This can be achieved by calculating the new weight vector as wf =w+ηxi , where 0<η ≤1   

is the learning rate (often set to 1). We then have wf ·xi = w ·xi + ηxi ·xi > w ·xi as  

required.

t Similarly, if x j is a misclassified negative example, then we have y j = −1 and w ·x j > t . In

this case we calculate the new weight vector as wf =w−ηx j , and thus

wf ·xj =w·xj −ηx j ·xj <w·xj .

t The two cases can be combined in a single update rule:

wf =w+ηyi xi
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7. Linear models 7.2 The perceptron: a heuristic learning algorithm for linear classifiers

Linear classifiers in dual form

Every time an example xi is misclassified, we add yi xi to the weight vector.

t After training has completed, each example has been misclassified zero or more times.

Denoting this number as α i  for example xi , the weight vector can be expressed as

n.
w = α  y xi i i

i =1

t In the dual, instance-based view of linear classification we are learning instance weights αi

rather than feature weights w j . An instance x is classified as

ŷ =sign
n.

αi  yixi ·

. Σ

x
i =1

t  During training, the only information needed about the training data is all pairwise dot  

products: the n-by-n matrix G = XXT containing these dot products is called the Gram  

matrix.
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7. Linear models 7.3 Support vector machines

Figure 7.7, p.212 Support vector machine
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The geometry of a support vector classifier. The circled data points are the support  

vectors, which are the training examples nearest to the decision boundary. The support  

vector machine finds the decision boundary that maximises the margin m/||w||.
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7. Linear models 7.3 Support vector machines

Maximising the margin

Since we are free to rescale t , ||w|| and m , it is customary to choose m =1.  

Maximising the margin then corresponds to minimising ||w|| or, more

2
conveniently, ||w1 2|| , provided of course that none of the training points fall

inside the margin.

This leads to a quadratic, constrained optimisation problem:

∗∗

w,t

1

2
w , t = arg min ||w 2|| subject to yi (w·xi −t) ≥1, 1 ≤ i ≤n

Using the method of Lagrange multipliers, the dual form of this problem can be  

derived (seeBackground 7.3).
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7. Linear models 7.3 Support vector machines

SVM in dual form

The dual optimisation problem for support vector machines is to maximise the  

dual Lagrangian under positivity constraints and one equality constraint:

∗
1

∗
n

α ,...,α1 n

α , . . . ,α =argmax−
1

2

n    n n. . .

i =1 j =1 i=1

α α y y x ·x + αi    j i j i j i

n.

i=1
i i isubject to α ≥ 0, 1 ≤ i ≤ n and α y =0
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7. Linear models 7.3 Support vector machines

Figure 7.8, p.215 Two maximum-margin classifiers

+

–

3

12

w

–

+

–

3

+
4

12

w

–

(left) A maximum-margin classifier built from three examples, with w = (0, −1/2) and  

margin 2. The circled examples are the support vectors: they receive non-zero Lagrange  

multipliers and define the decision boundary. (right) By adding a second positive the  

decision boundary is rotated to w= (3/5, −4/5) and the margin decreases to 1.
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7. Linear models 7.3 Support vector machines

Figure 7.9, p.218 Soft margins
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(left) The soft margin classifier learned with C = 5/16, at which point x2 is about to  

become a support vector. (right) The soft margin classifier learned with C = 1/10: all  

examples contribute equally to the weight vector. The asterisks denote the class means,  

and the decision boundary is parallel to the one learned by the basic linear classifier.
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8. Distance-based models

What’s next?

8 Distance-based models 

Neighbours and exemplars 

Distance-based clustering 

Hierarchical clustering
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8. Distance-based models 8.1 Neighbours and exemplars

Figure 8.6, p.240 Two-exemplar decision boundaries

(left) For two exemplars the nearest-exemplar decision rule with Euclidean distance  

results in a linear decision boundary coinciding with the perpendicular bisector of the line  

connecting the two exemplars. (right) Using Manhattan distance the circles are  replaced 

by diamonds.
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8. Distance-based models 8.1 Neighbours and exemplars

Figure 8.7, p.240 Three-exemplar decision boundaries

(left) Decision regions defined by the 2-norm nearest-exemplar decision rule for three  

exemplars. (right) With Manhattan distance the decision regions become non-convex.
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8. Distance-based models 8.1 Neighbours and exemplars

Figure 8.8, p.241 One vs two nearest neighbours

(left) Voronoi tesselation for five exemplars. (middle) Taking the two nearest exemplars  

into account leads to a further subdivision of each Voronoi cell. (right) The shading  

indicates which exemplars contribute to which cell.
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8. Distance-based models 8.1 Neighbours and exemplars

Distance-based models

To summarise, the main ingredients of distance-based models are

t distance metrics, which can be Euclidean, Manhattan, Minkowski or Mahalanobis,  

among many others;

t exemplars: centroids that find a centre of mass according to a chosen distance  

metric, or medoids that find the most centrally located data point; and

t distance-based decision rules, which take a vote among the k nearest exemplars.

In the next subsections these ingredients are combined in various ways to obtain  

supervised and unsupervised learning algorithms.
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8. Distance-based models 8.2 Distance-based clustering

Figure 8.11, p.248 K -means clustering
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(left) First iteration of 3-means on Gaussian mixture data. The dotted lines are the  

Voronoi boundaries resulting from randomly initialised centroids; theviolet solid linesare  

the result of the recalculated means. (middle) Second iteration, taking the previous  

partition as starting point (dotted line). (right) Third iteration with stable clustering.
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8. Distance-based models 8.2 Distance-based clustering

Figure 8.12, p.249 Sub-optimality of K -means
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(left) First iteration of 3-means on the same data asFigure 8.11with differently initialised  

centroids. (right) 3-means has converged to a sub-optimal clustering.
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8. Distance-based models 8.2 Distance-based clustering

Figure 8.13, p.251 Scale-sensitivity of K -means

−1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−2

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1.5 −1 −0.5 0 0.5 1 1.5 2
−5

−2

−4

−3

−2

−1

0

1

2

3

4

5

(left) On this data 2-means detects the right clusters. (right) After rescaling the y -axis,  

this configuration has a higher between-cluster scatter than the intended one.
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8. Distance-based models 8.3 Hierarchical clustering

Figure 8.15, p.253 Hierarchical clustering example

510152025

Associations

Rules

Trees

GMM

naive Bayes  

Linear Regression  

Linear Classifier  

Kmeans

kNN  

SVM

Logistic Regression

A dendrogram (printed left to right to improve readability) constructed by hierarchical  

clustering from the data inTable 1.4.
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8. Distance-based models 8.3 Hierarchical clustering

Figure 8.18, p.258 A spurious clustering
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(left) 20 data points, generated by uniform random sampling. (middle) The dendrogram  

generated from complete linkage. The three clusters suggested by the dendrogram are  

spurious as they cannot be observed in the data. (right) The rapidly decreasing  

silhouette values in each cluster confirm the absence of a strong cluster structure. Point  

18 has a negative silhouette value as it is on average closer to thegreen pointsthan to  

the otherred points.
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9. Probabilistic models

What’s next?

9 Probabilistic models
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9. Probabilistic models

Discriminative and generative probabilistic models

t Discriminative models model the posterior probability distribution P (Y |X ), where  

Y is the target variable and X are the features. That is, given X they return a  

probability distribution over Y .

t  Generative models model the joint distribution P (Y , X ) of the target Y and the  

feature vector X . Once we have access to this joint distribution we can derive any  

conditional or marginal distribution involving the same variables.

P(Y |X)= P(Y,X).
y P(Y=y,X ) .

t  Alternatively, generative models can be described by the likelihood function  P(X

|Y ), since P(Y , X) =P(X |Y )P(Y ) and the target or prior distribution (usually  

abbreviated to ‘prior’) can be easily estimated or postulated.
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9. Probabilistic models

Categorical random variables

Categorical variables or features (also called discrete or nominal) are ubiquitous  

in machine learning.

t Perhaps the most common form of the Bernoulli distribution models whether or not a word  

occurs in a document. That is, for the i -th word in our vocabulary we have arandom

variable Xi governed by a Bernoulli distribution. The joint distribution over the bit vector

1 k
. Σ

X  =  X , . . . , X is called a multivariate Bernoulli distribution.

t Variables with more than two outcomes are also common: for example, every word position  

in an e-mail corresponds to a categorical variable with k  outcomes, where k  is the size of  

the vocabulary. The multinomial distribution manifests itself as a count vector: a histogram  of 

the number of occurrences of all vocabulary words in a document.

Both these document models are in common use. Despite their differences, they

both assume independence between word occurrences, generally referred to as

the naive Bayes assumption.
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9. Probabilistic models

Probabilistic decision rules

We have chosen one of the possible distributions to model our data X as coming  

from either class.

t The more different P (X |Y = spam) and P (X |Y = ham) are, the more useful the  

features X are for classification.

t  Thus, for a specific e-mail x we calculate both P (X = x|Y =spam) and

P (X = x|Y = ham), and apply one of several possible decision rules:

maximum likelihood (ML)– predict arg maxy P (X = x|Y = y);

argmaxy P(X =x|Y = y)P(Y = y);maximum a posteriori (MAP)– predict

recalibrated likelihood– predict argmaxy wy P(X =x|Y = y).

The relation between the first two decision rules is that ML classification is  

equivalent to MAP classification with a uniform class distribution. The third  

decision rule generalises the first two in that it replaces the class distribution with  

a set of weights learned from the data.
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9. Probabilistic models

Example 9.4, p.276 Prediction using a naive Bayes modelI

Suppose our vocabulary contains three words a ,  b and c, and we usea  

multivariate Bernoulli model for our e-mails, with parameters

θ⊕ = (0.5,0.67,0.33) θ8 =(0.67,0.33,0.33)

This means, for example, that the presence of b is twice as likely in spam (+),  

compared with ham.

The e-mail to be classified contains words a  and b but not c, and hence is  

described by the bit vector x = (1, 1, 0). We obtain likelihoods

P (x|⊕) =0.5·0.67·(1−0.33) =0.222 P(x|8) =0.67·0.33·(1−0.33) =0.148

The ML classification of x is thus spam.
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9. Probabilistic models

Example 9.4, p.276 Prediction using a naive Bayes modelII

In the case of two classes it is often convenient to work with likelihood ratios and  

odds.

t The likelihood ratio can be calculated as

P (x|⊕)
=

0.5 0.67 1 − 0.33
= 3/2 > 1

P(x|8) 0.67 0.33 1 − 0.33

t This means that the MAP classification of x is also spam if the prior odds are more  

than 2/3, but ham if they are less than that.

P (⊕) 0.33
P (8) 0.67

t For example, with 33% spam and 67% ham the prior odds are = =1/2,

resulting in a posterior odds of

P(⊕|x)
=

P(x|⊕) P(⊕)
=3/2·1/2 =3/4 <1

P(8|x) P(x|8) P(8)

In this case the likelihood ratio for x is not strong enough to push the decision away  

from the prior.
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9. Probabilistic models

Table 9.1, p.280 Training data for naive Bayes

E-mail #a #b #c Class

+

+

+

+

−

−

e 1

e2

e3

e4

e5

e6

e7

0 3 0

0 3 3

3 0 0

2 3 0

4 3 0

4 0 3

3 0 0 −

E-mail a ? b ? c? Class

+

+

+

+

−

−

e 1

e2

e3

e4

e5

e6

e7

0 1 0

0 1 1

1 0 0

1 1 0

1 1 0

1 0 1

1 0 0 −

e8 0 0 0 − e8 0 0 0 −

(left) A small e-mail data set described by count vectors. (right) The same data set  

described by bit vectors.
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9. Probabilistic models

Example 9.5, p.279 Training a naive Bayes modelI

Consider the following e-mails consisting of five words a , b, c, d , e:

e1: b d e b b d e

e2: b c e b b d d e c c  

e3: a  d a  d e a  e e

e4: b a  d b e d a b

e5: a b a b a b a e d

e6: a c a c a c a e d

e7: e a e d a e a

e8: d e d e d

We are told that the e-mails on the left are spam and those on the right are ham,  

and so we use them as a small training set to train our Bayesian classifier.

t First, we decide that d and e are so-called stop words that are too common to  

convey class information.

t The remaining words, a ,  b  and c, constitute our vocabulary.
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9. Probabilistic models

Example 9.5, p.279 Training a naive Bayes modelII

In the multivariate Bernoulli model e-mails are represented by bit vectors, as in  

Table 9.1 (right).

t Adding the bit vectors for each class results in (2,3,1) for spam and (3,1, 1) for  

ham.

t Each count is to be divided by the number of documents in a class, in order to get  

an estimate of the probability of a document containing a particular vocabulary  

word.

t Probability smoothing now means adding two pseudo-documents, one containing  

each word and one containing none of them.

t This results in the estimated parameter vectors

θ̂⊕= (3/6,4/6,2/6) = (0.5,0.67,0.33) for spam and

θ̂ 8= (4/6,2/6,2/6) = (0.67,0.33,0.33) for ham.
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10. Features

What’s next?

10 Features

Kinds of feature 

Feature transformations
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10. Features 10.1 Kinds of feature

Feature statistics

Three main categories are statistics of central tendency, statistics of dispersion  

and shape statistics. Each of these can be interpreted either as a theoretical  

property of an unknown population or a concrete property of a given sample –

here we will concentrate on sample statistics.

Starting with statistics of central tendency, the most important ones are

t the mean or average value;

t the median, which is the middle value if we order the instances from lowest to  

highest feature value; and

t the mode, which is the majority value or values.
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10. Features 10.1 Kinds of feature

Categorical, ordinal and quantitative features

Given these various statistics we can distinguish three main kinds of feature:  

those with a meaningful numerical scale, those without a scale but with an  

ordering, and those without either.

t We will call features of the first type quantitative; they most often involve a mapping  

into the reals (another term in common use is ‘continuous’).

t Features with an ordering but without scale are called ordinal features. The domain  

of an ordinal feature is some totally ordered set, such as the set of characters or  

strings. Another common example are features that express a rank order: first,  

second, third, and so on. Ordinal features allow the mode and median as central  

tendency statistics, and quantiles as dispersion statistics.

t  Features without ordering or scale are called categorical features (or sometimes  

‘nominal’ features). They do not allow any statistical summary except the mode.  

One subspecies of the categorical features is the Boolean feature, which maps into  

the truth values true and false.
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10. Features 10.1 Kinds of feature

Table 10.1, p.304 Kinds of feature

Kind Order Scale Tendency Dispersion Shape

Categorical  

Ordinal  

Quantitative

×̧

¸

×

×̧

mode  

median  

mean

n/a  

quantiles

range, interquartile range,

variance, standard devia-

tion

n/a  

n/a

skewness, kurtosis

Kinds of feature, their properties and allowable statistics. Each kind inherits the statistics  

from the kinds above it in the table. For instance, the mode is a statistic of central  

tendency that can be computed for any kind of feature.
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10. Features 10.2 Feature transformations

Table 10.2, p.307 Feature transformations

↓ to, from → Boolean

Quantitative  

Ordinal  

Categorical  

Boolean

Quantitative Ordinal Categorical

normalisationcalibrationcalibrationcalibration  

discretisationorderingorderingordering  

discretisationunorderinggrouping  

thresholdingthresholdingbinarisation

An overview of possible feature transformations. Normalisation and calibration adapt  

the scale of quantitative features, or add a scale to features that don’t have one.

Ordering adds or adapts the order of feature values without reference to a scale. The  

other operations abstract away from unnecessary detail, either in a deductive way  

(unordering, binarisation) or by introducing new information (thresholding,  

discretisation).

mlbook.cs.bris.ac.uk Demystifying Machine Learning December 5, 2017 76 /86

http://mlbook.cs.bris.ac.uk/


11. Model ensembles

What’s next?

11 Model ensembles

Bagging and random forests 

Boosting
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11. Model ensembles

Ensemble methods

In essence, ensemble methods in machine learning have the following two things  

in common:

t they construct multiple, diverse predictive models from adapted versions of the  

training data (most often reweighted or resampled);

t they combine the predictions of these models in some way, often by simple  

averaging or voting (possibly weighted).
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11. Model ensembles 11.1 Bagging and random forests

Figure 11.1, p.332 Bagging
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(left) An ensemble of five basic linear classifiers built from bootstrap samples with  

bagging. The decision rule is majority vote, leading to a piecewise linear decision  

boundary. (right) If we turn the votes into probabilities, we see the ensemble is  

effectively a grouping model: each instance space segment obtains a slightly different  

probability.
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11. Model ensembles 11.1 Bagging and random forests

Algorithm 11.2, p.333 Random forests

Algorithm RandomForest(D, T, d )– train an ensemble of tree models from  

bootstrap samples and random subspaces.

Input : data set D; ensemble size T ; subspace dimension d .

Output : ensemble of tree models whose predictions are to be combined by  

voting or averaging.

1 for t = 1 to T do

2 build a bootstrap sample Dt from D by sampling |D| data pointswith

3

4

replacement;

select d features at random and reduce dimensionality of Dt accordingly;  

train a tree model Mt on Dt without pruning;

5 end

6 return {Mt |1 ≤ t ≤ T}
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11. Model ensembles 11.2 Boosting

Figure 11.2, p.336 Boosting
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(left) An ensemble of five boosted basic linear classifiers with majority vote. The linear  

classifiers were learned frombluetored; none of them achieves zero training error, but  

the ensemble does. (right) Applying bagging results in a much more homogeneous  

ensemble, indicating that there is little diversity in the bootstrap samples.
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12. Machine learning experiments

What’s next?

12 Machine learning experiments 

What to measure

How to measure it
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12. Machine learning experiments

Machine learning experiments

Machine learning experiments pose questions about models that we try to  

answer by means of measurements on data.

The following are common examples of the types of question we are interested  

in:

t How does model m  perform on data from domain D?

t Which of these models has the best performance on data from domain D?

t How do models produced by learning algorithm A perform on data from domain

D?

t Which of these learning algorithms gives the best model on data from domain D?

Assuming we have access to data from domain D, we perform measurements  

on our models using this data in order to answer these questions.
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12. Machine learning experiments 12.1 What to measure

What to measure

Your choice of evaluation measures should reflect the assumptions you are  

making about your experimental objective as well as possible contexts in which  

your models operate. We have looked at the following cases:

t Accuracy is a good evaluation measure if the class distribution in your test set is  

representative for the operating context.

t Average recall is the evaluation measure of choice if all class distributions are  

equally likely.

t Precision and recall shift the focus from classification accuracy to a performance  

analysis ignoring the true negatives.

t Predicted positive rate and AUC are relevant measures in a ranking context.
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12. Machine learning experiments 12.2 How to measure it

Example 12.4, p.350 Cross-validation

The following table gives a possible result of evaluating three learning algorithms  

on a data set with 10-fold cross-validation:

Fold Naive Bayes Decision tree Nearest neighbour

1 0.6809 0.7524 0.7164

2 0.7017 0.8964 0.8883

3 0.7012 0.6803 0.8410

4 0.6913 0.9102 0.6825

5 0.6333 0.7758 0.7599

6 0.6415 0.8154 0.8479

7 0.7216 0.6224 0.7012

8 0.7214 0.7585 0.4959

9 0.6578 0.9380 0.9279

10 0.7865 0.7524 0.7455

avg 0.6937 0.7902 0.7606

stdev 0.0448 0.1014 0.1248

The last two lines give the average and standard deviation over all ten folds.

Clearly the decision tree achieves the best result, but should we completely

discard nearest neighbour?
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13.Outlook

Current topics in machine learning

t Deep learning, big data, structured data

t Ethics, privacy and trustworthiness

t Fairness, accountability and transparency

t Multi-label and preference learning; structured outputs

t Multi-task and transfer learning

t Online learning, data streams, active learning

t Reinforcement learning
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