Manufacturing and Design Theme - 2017

Kevin Potter.
NCC Professor in Composites Manufacturing
Our research centres around Design for Manufacture, from novel material forms that facilitate forming, through detailed process understanding and novel machines to factory operations.
Highlights of 2017

• IDC in Composites Manufacturing now stands at 31 students in 12 companies supervised from 4 universities
• First IDC EngD student just graduated
• 20 Journal papers published from the group
• 12 papers from the group at ICCM 21, plus other conference papers
• Future Composites Manufacturing Hub launched
• >£1M EPSRC programme to scale up the short fibre alignment technology – HiPerDif - lead in the collaboration passed to Materials Group
Highlights of 2017

• ATI/EPSRC pump-priming projects supporting ATI Future Aerostructures Targets completed and reported

• Collaborative Programme Grant proposal being developed based on one of those projects with other proposals under consideration

• Working with the ATI and the other university recipients of ATI/EPSRC pump-priming funding to map out a route forward on Hybrid/electric aircraft

• Eric Kim awarded EPSRC First Grant

• Increasing international links are being developed through visits and joint papers
In-Process visualisation

• We are increasingly focused on visualising the way in which the composite’s structure changes during cure.
• Much of this work is aimed at understanding the origins and development of voidage during cure.
• We have developed methods to identify both the area and volume of voids at the tool surface
• We have investigated the influence of prepreg surface topology
• We have developed a method to use CT scanning through cure to map void volume throughout the process
• We are looking at pressure mapping to give us additional information through manufacture
Prepreg Contact Against Glass

Currently capable of capturing/analysing surface void area, but not the behaviour of individual voids

8552-IM7

M21-IMA

1 min
1 h

After heating to 95°C

Images: 220 x 180 mm
Effect of Surface Roughness

HexPly 8552

Very Smooth

Hexply M21 – Interleaved

Blotchy
Optical Metrology Scanning

Developed a technique to observe prepreg surface against glass during vacuum bag processing

Experimental set-up
Void Volume Changes

Capture images (30s scan) through the process. Compare the results to a mass-pressure model. Initial pressure determines final void volume in the simulation.

In-Process Micro-CT

Opportunity to follow development of microstructural features through the manufacturing process. Investigated a gap between tow courses.

Fibre Placement Machine Deposited material Microstructure defects observed after cure

- Resin rich
- Voids
- Waviness
In-process Measurements

Pressure Mapping

Pressure distribution in nominally perfect material

Reclaimed fibre

Pristine UD fibre

Summary and Outlook

In-process measurement techniques can offer insights into material behaviour during processing and provide necessary input data and validation data for process modelling.

Up-scaling technologies to industrial processes is a challenge, but progress is being made on several fronts.

Close collaboration with modelling community and with the NCC Core Research Programme is important to accelerate adoption within industry.