

Fibre Waviness: Drivers and Mechanisms

James Lightfoot

Kevin Potter, Michael Wisnom

Tanya Sabine (GE Aviation)

Outline

- Why study fibre waviness?
- Drivers and Mechanisms
 - Resin volume changes
 - Tool-part interaction
 - Laminate Design
 - Tool geometry and drape
- Future Work

Why study fibre waviness?

- Significant reduction in compressive strength
- Detrimental effect on fatigue response of a composite

Mandell 2003

Hsiao 1996

Effects of resin volume change

Tool-Part Interaction

Tool-Part Interaction

Laminate Design

Drape-Induced Misalignment

Future Work

- Further quantify effects of tool-part interaction
- Use CT scanning to elucidate the formation of wrinkles during the manufacture of propeller blades
- Investigate the link between laminate design and tool geometry

Acknowledgements

- ACCIS Supervisors
 - Kevin Potter
 - Michael Wisnom
- ACCIS Post Docs
 - Julie Etches
 - Greg McCombe
 - Carwyn Ward
- GE Supervisor
 - Tanya Sabine

Dowty Propellers-Part of GE Aviation

