

Numerical Modelling of 3D Woven Composite Preform Deformations

17/04/2012

Steve Green

Supervised by:

Stephen Hallett, Dmitry Ivanov (University of Bristol) Andrew Long (University of Nottingham) Victoria Coenen (Rolls Royce)

www.bris.ac.uk/composites

Introduction

- Project overview
- Textile deformation modelling:
 - Background
 - Results and comparisons
- Mechanical performance modelling:
 - Overview
- Future Work

10

Project Overview

3D woven composites:

- Fibres in all three principal directions
- Currently used in niche applications despite potential advantages over traditional 2D laminated composites

• Project aim:

- Previous work considers idealised geometry
- Develop a model for prediction of 3D woven composite properties considering realistic fibre architecture

¹ UoN Unit cell FE modelling, J. J. Crookston, 3DSIMCOMS Dissemination Meeting, 24/11/2009 ² Dynamic Direct Numerical Simulation of Woven Composites for Low Velocity impact, K. H. Ji et. al, 2005, Journal of Composite Materials

Modelling Preform Deformations

• `Multi-chain digital element' method:

- Each chain is comprised of short 1D cylindrical rod elements connected by frictionless pins
- Yarn is considered as an assembly of several digital chains
- Contact between digital chains in yarn and between each yarn assembly

- Implemented in commercial FE code LS-DYNA
 - Modelled with beam elements
 - Elastic-plastic material to allow flexural deformation of chains

³ Digital-element simulation of textile processes, Y. Wang and X. Sun, 2000, Composites Science and Technology, p 311-319

3D Woven Modelling: Overview

⁴ TexGen; Textile geometry pre-processor, University of Nottingham

Results: Video

Results: Experimental Validation

Top surface of fabric:

Cross-section through fabric:

7/10

⁵ CT scans carried out at μ -VIS, University of Southampton

Stiffness Modelling: Review

• Standard FE:

- Tow and matrix domains modelled explicitly
- Need fine mesh to model degenerated resin pockets

• Domain Superposition Technique (DST), 3DSIMCOMS:

- Superimposed matrix and tow meshes with coupling technique to ensure continuity of deformation
- Altered material properties for tows
 - [D]_{modelled tows} = [D]_{tows} [D]_{matrix}
- Advantages:
 - Simple meshing of matrix volume
 - Can tolerate some yarn interpenetration

Initial study using Abaqus and ANSYS suggested discrepancies between standard FE and DST in certain scenarios

Conclusions and Future Work

- Development of deformation models
- Model results validated against detailed CT scan data
- Preliminary study on DST
- Future work:
 - Parametric study
 - Validation against angle interlock 3D weave
 - Conversion back into TexGen
 - Revisit mechanical performance modelling:
 - DST and other methods

END

Any questions?

ADVANCED COMPOSITES CENTRE FOR INNOVATION & SCIENCE