

Extended Research Project Presentations

Dtc10 Cohort

Damage Model for Fatigue Delamination Growth

Jamie Blanchfield

Damage Model for Fatigue Delamination Growth

Numerical Modelling of Fatigue

- Cycle-jump approach
- Damage per time step via a damage model

Ref. Kawashita L et al. (2009)

The Damage Model

$$\frac{dD}{dN} = \frac{(1-D)^{-p}}{(p+1)} \left[\frac{\tau_{\text{max}}}{\tau_u} \right]^{\frac{b}{(1-R)^{\kappa}}}$$

LEFM and Damage Mechanics

Formation of tension microcracks

Ref. O'Brien TK, 1998

Non-singular stress field Coalescence of microcracks forming hackles

Numerical Solution

$$N_f = egin{cases} \left(rac{G_{IIC}}{G_{II ext{max}}}
ight)^{rac{b}{2(1-R)^{\kappa}}} & r \leq r_c \ \left(rac{ au_u}{ au_{ ext{max}}}
ight)^{rac{b}{(1-R)^{\kappa}}} & r > r_c \end{cases}$$

Numerical Implementation

FE Model

- Quarter model of CCP specimen
- Spring elements representing adhesive layer
- Elements deleted when damage = 1
- G₁₁ obtained from the VCCT

Future Work

- Generating fatigue initiation data for mode I
- Extension of model to mixed mode conditions
- Commercial FE implementation

An experimental study of representative wrinkling defects

Dominic Bloom

Wrinkling: a common problem

Formation: Mismatch in area between ply and tool surface

 Can a very localised defect have an effect on overall laminate performance?

Characterisation

- Tensile test
 - Digital Image Correlation
 - Video Gauge
- Crack initiation
- Crack propagation
- Delamination growth
- 40% Knockdown

Multistable Orthotropic Shell Structures

Broderick Coburn

Bistability of the Venus Flytrap

- Snap-buckling instability captures rapid closure.
 - Bistability is due to doubly curved structure and is governed by interplay between bending and stretching energies.
 - Orthotropy is also key.

- Six orthotropic layers within shell structure.
- Actuation by differential turgor pressure in hydraulic layers.
 - Consisting of anisotropic pressure vessels.

- Curvature-time results correlate well with flytrap data.
- Loss of bistabiltiy results in slower capture.

Upper Layer

Lower Layer

Tristable Shell

Analytical Model

- Multistability due to doubly curved structure.
- Carbon fibre prepreg layup identified to achieve tristability.
- Assumptions: constant curvature, negligible bending boundary layer.

Finite Element

- Boundary layer length found to be significant »
 Ø500mm required.
- SS2 energy minimum very shallow

Demonstrator

- Shell tristability shown for the first time.
- Sensitive to manufacturing imperfections.

Novel Mid Span Joints

Michael Elkington

NOVEL MID SPAN JOINTS

•Bigger blades = More economic Turbines!

Too big to transport on roads

Build them in 2 pieces

Requires Mid span Joints

•Stress dominated by bending moments

Edgewise Bending stiffness

Skin Stiffness (EI)

Flapwise Bending stiffness

Keep the loads separate across the joint

NOVEL MID SPAN JOINTS

•Thick
•Highly Anisotropic

Novel Design needed

•Small moments/ Tall section

•Thin
•Less Anisotropic

Conventional bolting

Microwave Attenuation of Ferromagnetic Microwire Composites

Jonathan Fuller

Microwave attenuation of ferromagnetic microwire composites

Aim:

 Characterise the microwave responses of different concentrations of ferromagnetic glass-coated microwires in polymer composites, and evaluate the applicability of their integration with structural materials.

Experimental

- 0.02 wt%, 0.05 wt% $Fe_{74}Si_{11}B_{13}C_2$ wires
- Dispersed in epoxy, UD CFRP and GFRP
- Vertically polarised X-band horn antennas
- Two-port scattering parameter measurements
 - Reflection, S₁₁
 - Transmission, S₂₁
- Absorption, in dB, defined as:
 - $A = 10*log_{10}(1 |S_{21}|^2 |S_{11}|^2)$

Microwave attenuation of ferromagnetic microwire composites

Microwire effects

- Absorption in excess of 10 dB
- Shift in matching frequency
 - Increase in dielectric loss

Anisotropic absorbing characteristics

- Fibre direction relative to microwave polarisation affects skin depth, δ
- Parallel to fibres \rightarrow high conductivity
- Across fibres + matrix → low conductivity

Biologically Inspired Body Armour

Mark Gilbert

A Novel Ballistic Resistant Armour Based Upon Damage Tolerant Mechanisms In Nacre

- Nacre (red abalone), 95% CaCO₃, exhibits a unique damage tolerant mechanism against impact.
 - Brick and mortar layered structure
 - Quasi-hexagonal CaCO₃ tiles with variable thickness
 - Chitin crystals in a proteinaceous compliant matrix
- Engineering Synthesis
 - Designed within Msc Patran and impact model analysed within LS Dyna[®].
 - Hexagonal tiles with varying thickness creating an interlocking pattern
 - Offset layering forms a brickwork style plate
 - Adhesive interface between layers creates the mortar

A Novel Ballistic Resistant Armour Based Upon Damage Tolerant Mechanisms In Nacre

Results

Projectile is based on a 9mm FMJ round with a velocity of 398 m/s, impacted perpendicular to plate surface (21mm thick)

- Offset layers created a delocalisation of the impact energy with platelet interaction seen over the complete layer
- Reduction of the shockwave through adhesive bonded platelet layers
- Projectile was stopped.

Simple Numerical Tools for Impact Assessment

Salah Muflahi

Overview

Problem: Being able to accurately model the extent of damage due to impact in a short time-frame using closed-loop analytical methods and simple finite-element tools

Closed-Loop Methods

Large-mass

- Intermediate mass
 - Superposition of large and small mass responses
- Energy Balance Models describe behaviour at point of impact

Finite Element Methods

- Using MSC Patran and LS-DYNA
- Shell elements to reduce CPU-time
- Cohesive elements to model initiation and propagation of delaminations

Results

Closed-Loop Methods

- Assumes Hertzian Contact $(F=K_c\alpha^{3/2})$
- Non-linear Differential
 Equations describe deflection
 at point of impact

$$\begin{cases} \ddot{\alpha} + \frac{3\,K_c}{16\sqrt{mD^*}}\,\sqrt{\alpha}\,\dot{\alpha} + \frac{K_c}{M_{_{\rm I}}}\,\alpha^{\frac{3}{2}} = 0 \\ \alpha(0) = 0, \dot{\alpha}(0) = V \end{cases} \begin{cases} M_{_{\rm I}}\ddot{x}_{_1} + \delta K_c \big| x_1 - x_2 \big|^{1.5} = 0, \\ M_{_{\rm P}}\ddot{x}_{_2} + K_{_{bs}}x_2 + K_{_{m}}x_2^3 - \delta K_c \big| x_1 - x_2 \big|^{1.5} = 0. \\ x_1(0) = 0, \dot{x}_1(0) = V, x_2(0) = 0, \dot{x}_2(0) = 0 \end{cases}$$

Finite Element Methods

- LS-DYNA in-built load functions used to model soft-body impact
- Single delamination modelled using offset shell elements with a layer of cohesive elements between

Cohesive Zone Model for Delamination and Matrix Cracks Interaction

Maria Francesca Pernice

Cohesive Zone Model for delamination and matrix cracks interaction

Maria Francesca Pernice

- Finite Element Models
- Experimental tests
- Damage mechanism:
 - Matrix crack inside a ply
 - Delamination at interface
 - Crack "jump"
- Test case:
 - Double Cantilever Beam test
 - Interface between plies with different fibres orientation

Damage interaction

Methods and Results

Cohesive Zone Model

- Cohesive surfaces for **delamination**
- Bands of cohesive elements for matrix cracks

Numerical and Experimental Results

Differential Damage Detection in Composite Materials

Steven Rae

Outline

Problem

- BVID Little surface damage
 - Significant internal damage
- Detection difficult/time consuming/expensive

Proposal

 Microcapsules - varied response to load - pressure required to burst scales with decrease in diameter

Testing

Fluorescence

- Each size range different fluorescent signature
- Fluorescence detected indication of impact severity

Results

- Microcapsules embedded into polymer skin
- Impacted, released dye highlights where impact has occured

Short Fibre Composites Via Rapid Prototyping Manufacture

Marc Scholz

Theoretical ideas

Fibre architecture

Fratzl / Current Opinion in Colloid and Interface Science 8 (2003) 32-39

Hierarchical design features:

$$\epsilon_{Tendon} > \epsilon_{Fibril} > \epsilon_{Molecule}$$

 Improvements in mechanical performance

Ultrasonic trapping

- Traps are formed through ultrasonic standing waves
- Particles accumulate at nodes
- Frequency determines fibre separation
- Patterns form solution to the wave equation

Experimental method

Experimental setup

 Fibres are expected to align along the traps' longitudinal direction

- Self-assembly time depends on viscosity
- Self-assembly capabilities are limited by maximum available trapping force
- Experimental results match theoretical predictions

Composites

Composite samples have already been manufactured on the basis of

- simple fibre architectures
- low viscosity resin systems

Carbon Nanotube Sheets for Multifunctional Aerospace Composites

James Trevarthen

Carbon Nanotube Sheets for Multifunctional Aerospace Composites

1. AIMS

- Combine aligned carbon nanotube sheets (CNTS) with composite laminates
- Improve electrical functionality
- Simple, scalable manufacture

2. MOTIVATION

- CNT: excellent molecular-scale properties
 - Electrical
 - Thermal
 - Mechanical
- Desirable for engineering-scale for aerospace composites
- Progress limited by processing
- CNT sheets and fibres produced at Cambridge
 - Large-scale production
 - Good properties

Carbon Nanotube Sheets for Multifunctional Aerospace Composites

3. RESULTS

- Surface-coated laminates showed 400% improvement in surface conductivity
- Charge dissipation, EMI shielding and lightning strike
- Simple, industrial manufacture

Surface conductivity of laminates with

varying CNTS coating thicknesses

4. FUTURE WORK

- Further explore hybrid composite functionality
- Improve CNT/matrix interface
- Harness ductility of CNT fibres

Bend-Free Shells Structures

Simon White

Bend-free shells under internal pressure

S.C. White and P.M. Weaver

Under internal pressure, shells with a variable radius of curvature bend and develop bending moments:

Revolved shell under internal pressure (1/8 model)

Elliptic cylinder under internal pressure (1/4 model)

Problem:

Is it possible to remove this effect by tailoring the shells properties?

Variable fibre angle cylinder, optimised for bending [Delft]

Variable fibre angle plate, optimised for buckling [Virginia Tech]

Results and Conclusions

• In developable shells, such as the elliptic cylinder, bending moments are not affected by material properties – the problem is **statically determinate.**

- Doubly-curved shells are amenable to the technique.
- •The ellipsoid of revolution (spheroid) may be tailored to have no bending moments or bending deformation.

