

Smart Chemistries for Advanced Composite Materials

ACCIS DTC Conference 2012

<u>Tim Coope</u>, Ian Bond, Richard Trask & Duncan Wass

17th April 2012

Outline

- 1. Self-Healing for FRP Composites
- 2. Microcapsule Systems
- 3. Project Summary
- 4. Microencapsulated Epoxy/Catalyst Selection
- 5. Microencapsulated System: Mechanical Testing
- 6. Future Work
- 7. Conclusions
- 8. Acknowledgements

Aerospace materials

Changing planes

A new breed of aircraft built from lightweight carbon composites is taking flight. But are these materials all they're cracked up to be, asks Hayley Birch

60 | Chemistry World | October 2011

www.chemistryworld.org

Self-Healing for FRP Composites

Barely Visible Impact Damage (BVID)

- Difficult, time consuming and expensive to detect
- Predominantly caused by matrix cracking
- Microcracking and hidden damage <u>Potentially Fatal</u>

Self-Healing

- Damaged structure repaired by reagents contained within the composite material
- Maintaining structural integrity and material performance
- Adding to the designed structure

Norris et al., Adv. Funct. Mat. **2011**, 21, 3624-3633

Autonomous Systems

- Respond to damage; triggering the 'healing' process
- No external action required

Project Summary

- AIM: <u>Development of novel self-healing agents for composite materials</u>
 - Relatively cheap, stable and applicable to industry applications (AUTOHEAL Team MAST)
 - Compatible with existing material
 - Quantify healing performance (mechanically)
 - Further development (PhD to date)

Potential applications

- Maintain integrity in personal protective equipment
- Self-healing adhesives for military hardware
- Anti-corrosion coatings

Microcapsule Systems

- **2001**: S. R. White *et al*. "Autonomic healing of polymer composites", *Nature*, **409**, 794-797
 - Ruthenium initiated ring-opening metathesis polymerisation (ROMP) of dicyclopentadiene (DCPD)

Limitations

- Expensive reagents; >£250/g
- Air and moisture sensitive catalyst; requires wax coating
- Poor adhesion between poly(DCPD) and epoxy resin matrix
- Unable to withstand conventional autoclave composite processing techniques

Microencapsulated Epoxy / Catalyst Selection

In-situ microencapsulation

- DGEBA/ethyl phenylacetate (EPA) solution within a poly(urea-formaldehyde) shell
- Emulsion in H₂O with surfactant stirred at ~50 °C for 4 hours, cooled and filtered

Analogues

DGEBA:EPA ratios; 75:25, 50:50, 25:75, confirmed by NMR to within 1%

Size

Optical microscopy: 150-250 μm in diameter

B. J. Blaiszik et al. Polymer, 2009, **50**, 794-797

Active catalyst based on metal salt with weakly coordinating anions

- Lewis acid
- Scandium triflate [Sc(OTf)₃]
- Air and moisture stable
- Solid fine white powder
- Melting point >200 °C
- Relatively non-toxic
- Catalyst soluble in EPA
- Non-stoichiometric mixing;

Diglycidyl ether bisphenol A (DGEBA) polymer

Microencapsulated System: Mechanical Testing

Tapered Double Cantilever Beam (TDCB)

- Principally to demonstrate proof of concept
- Self-healing agents (SHAs) embedded in an epoxy resin
- Crack propagation region along a central trench (CT) section
- Actively optimise 'healing' performance and efficiency

Coope et al., Adv. Funct. Mat. **2011**, 21, 4624-4631

Healing efficiency

Significantly increased at a higher temperature over the same time period

Conclusions

- Development and implementation of a novel microcapsule and solid catalyst based selfhealing system
- Conclusive quantitative analysis from TDCB testing
 - >80 % fracture strength recovery for a pure epoxy resin
- A stable and tailorable self-healing DGEBA-based material system towards the application, operating conditions and required healing cycle

Acknowledgements

