

Pseudo-bistable morphing composites

Alex Brinkmeyer

Supervisors: Matthew Santer, Paul Weaver

1st DTC Conference April 17, 2012

Outline

- Pseudo-bistability in a truss structure
- Isotropic pseudo-bistable behaviour
- Application to composites
 - Volume fraction limit
 - Influence of layup
- Future work

A discrete model of pseudo-bistability

- Consider following truss structure to illustrate pseudo-bistability
- Linear and torsional viscoelastic springs with stiffnesses k_L and k_T
 - $-k_L = stretching stiffness$
 - $-k_T$ = bending stiffness
- Structure is loaded until buckling occurs and allowed to relax
- Finally strain is removed and structure freely recovers

A discrete model of pseudo-bistability

- During loading, structure follows A-B path
- During relaxation, structure follows B-C path
 - Load-extension curves during relaxation are in blue
- During recovery, inverse path C-B if extension is fixed
 - Load-extension curves during recovery are in red
- At t = 8.6 s, $P_{min} = 0$, and the structure snaps back

Pseudo-bistability in a continuum structure

- The panel, initially flat, is pre-stressed by axial compression and rotation
- The panel is loaded by an indenter, allowed to relax, and the indenter is released
- The panel then snaps back after a period of time without further actuation

Numerical validation

Experimental validation

The geometrical parameter

Effects of volume fraction

- Increasing the volume fraction:
 - increases the maximum snap-through load (x7 for $V_E = 7\%$)
 - decreases the pseudo-bistable effect
- Pseudo-bistability disappears at $V_E = 7\%$
- This limit can be increased by choosing a material with a higher relaxation

Influence of layup

- Choosing an asymmetric layup causes the neutral axis and the position of the pseudo-bistable interval to shift:
 - Downwards for stiff layer on bottom
 - Upwards for stiff layer on top
- Bending and stretching effects become coupled

Future work

- Continue experimental work on composite panels
- Explore different materials & effect of layup orientation
- Investigate possible applications, e.g. flow control device on transonic airfoil.

Questions

