Optimization of Tapered Laminates with Ply Drops

Dr. Giuliano Allegri
Content

1) Ply drop-offs: a necessary evil?

2) Damage Initiation at ply drop-offs: a fracture mechanics perspective

3) Optimization of ply drop sequences
Ply drop-offs: a necessary evil?

- Dropping off plies allows changing laminate thickness and composition

- Ply drops represent an abrupt change in the geometric/mechanical properties of the laminate, so they behave as stress raisers and delamination initiators
Damage Initiation @ Ply Drop-offs

- A fracture mechanics perspective

- Delaminations emanate from the resin pocket tip; if the latter is considered as a void, initiation loads can be derived from fracture mechanics considerations when $L_1, L_3 \to 0$

- The strain energy release rates (SERR) expressions are computed employing beam theory and orthotropic rescaling
SERR Formulas: limitations

Geometric idealization – limitations:

1. resin pockets are not exactly right triangles;

2. the curvatures of the fibres surrounding the resin pocket are much smoother than assumed

3. the thickness of the belt and core sub-laminates is not constant

All the assumptions above lead to conservative estimations of the strain energy release rates (SERR) for delaminations emanating from the resin pocket tips
An arbitrary laminate configuration comprising ply drop-offs is idealized as a sequence of asymmetrically tapered units.
Topological Optimization Tool

- **Two stage optimization tool**
 1) Deterministic first stage: find which plies have to be terminated in order to match the thick section laminate with the thin section one
 2) Stochastic second stage: find the optimal ply drop-off sequence via the minimization of the maximum SERR failure index associated with the ply terminations, e.g.

\[FI = \frac{G_I}{G_{Ic}} + \frac{G_{II}}{G_{IIc}} \]

Step 2) is based on simulated annealing with stochastic tunnelling
Guidelines in the literature

- Practical “rules of thumb” for designing tapered laminates:
 1) always try to drop the innermost block in order to match the laminate thick and thin sections;
 2) drop 0° plies close to the thick section, $\pm 45^\circ$ in the middle sections and 90° plies close to the thin end;
 3) in pure bending cases start dropping the innermost plies of the innermost block;
 4) in pure axial force cases start dropping the outermost plies of the innermost block
 5) promote interleaving by avoiding dropping adjacent plies
 6) if interleaving is not possible, try to maximise the distance between the adjacent ply terminations

These rules are embedded in a Fuzzy Logic Optimization/Analysis Tool called “ALTO” (poster)
A Simple Case Study

- Simply symmetrical tapered laminate

Thick Section Stacking Sequence:
\[[0°/0°/+45°/90°/90°/-45°/0°/0°]_{3S} \]

Thin Section Stacking Sequence:
\[[0°/0°/+45°/-45°/ 0°/+45°/-45°/ 0°/+45°/-45°/ 0°]_S \]

Material properties:
- T300/914C
- \(E_1 = 142.4 \text{ GPa} \)
- \(E_2 = E_3 = 8.7 \text{ GPa} \)
- \(G_{12} = G_{13} = 4.6 \text{ GPa} \)
- \(G_{23} = 3.8 \text{ GPa} \)
- \(\nu_{12} = \nu_{13} = \nu_{23} = 0.3 \)
- \(G_{fc} = 0.36 \text{ N/mm} \)
- \(G_{Ilc} = 0.9 \text{ N/mm} \)
Configurations for a Pure Bending Load

- Simple In-Out Terminations (A)
- Literature Guidelines (B)
- Optimization Algorithm (C)
LS-DYNA FE models
Comparisons

<table>
<thead>
<tr>
<th>Configuration</th>
<th>LS-DYNA (N)</th>
<th>Analytical (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>2500</td>
<td>1995 (-20.2%)</td>
</tr>
<tr>
<td>(B)</td>
<td>2560</td>
<td>1995 (-22.1%)</td>
</tr>
<tr>
<td>(C)</td>
<td>3000</td>
<td>3270 (+9%)</td>
</tr>
</tbody>
</table>

Delamination initiation load from the FE model and the analytical solution

- Simple in-out dropping and literature guidelines give similar results
- The optimization tool presented here produces the best results, but resulting laminate is not symmetric
- The analytical solution provides a reasonable estimate of the failure loads when compared to high fidelity FEM tools
Summary & Conclusions

- Analytical expressions for the SERR associated with delaminations emanating from ply drop-offs locations have been worked out and validated against FE analysis.

- Realistic ply drop-off configurations have been considered, with the aim at obtaining conservative estimates for the SERR.

- Since the resin pockets present at the termination location are considered as voids, it is possible to predict the delamination initiation using the SERR values for zero debond lengths.

- A two step optimization algorithm has been developed for matching the thick and thin sections of tapered laminates; this procedure allows identifying which plies to drop and where (in a topological sense)

- The optimization procedure has been validated by means of virtual testing

Acknowledgements to Rolls-Royce Plc for their support of this research