# Towards virtual validation (certification) of composite structures – rethinking the testing pyramid approach

Ole Thybo Thomsen (with thanks to CerTest team)

Bristol Composites Institute, University of Bristol, Bristol, UK



Engineering and Physical Sciences Research Council



CERTIFICATION
FOR DESIGN:
RESHAPING THE
TESTING PYRAMID









## Outline

- Background and motivation what is the problem?
- CerTest
- Overview of research challenges and methodology
- Steps towards demonstration of new methodology
- CerTest outreach & dissemination

## The prize?







## Outline

- Background and methodology

  ( REDUCED DEVELOPMENT TIME / TIME TO MARKET!
- REMOVING/REDUCING BARRIERS TO INNOVATION POSED BY CURRENT PROCESSES

## The prize?







## Background and motivation – is there a problem?

- Mostly tests on coupon and generic element levels of testing pyramid for certification purposes
- Few test on component/structural detail and full structure levels but full scale tests are required for certification (very costly and time consuming)
- Full scale & component/structure tests wind blade (LM Wind Power) & wing (Airbus)







## Background and motivation – is there a problem?









## Complience with safety regulations — currently using 'building block' / 'testing pyramid'

- 1. Coupon: a small test specimen for evaluation of basic laminate properties or properties of generic structural features
- 2. Element: A generic part of a more complex structural member
- Detail/Component: a non-generic structural element of a more complex structural member
- 4. Component/Full structure: major three-dimensional structure complete structural representation of a section of the full structure (or the full structure)







## Complience with safety regulations — currently using 'building block' / 'testing pyramid'



- 2. Element
- 3. **Detail/C**omember
- 4. Compon represer









## Complience with safety regulations — currently using 'building block' / 'testing pyramid'









## EVIDENCE – limitations to Building Block approach

- Failure models largely based on inputs derived from coupon tests comprising simple, mainly uniaxial, loading modes and unidirectional materials
- Large number of coupon tests to define 'allowables' relatively few tests mid-tier and top-tiers of pyramid (larger length scales)
- Underlying assumption: Material properties from tests at the coupon level can be used to define design allowables at greater length scales
- Coupon properties do not represent the 'in-situ' properties well
- Transfer/upscaling of 'allowables' from coupon level to higher levels leads to large knock-down factors, lack of understanding of MoS and reliability on structure/system level
- Excessively costly (especially top-tier) and time consuming









## Can we do things more efficiently (safer, cheaper, reduced time)?

- Reduce bottom tier of pyramid?
- Coupon tests (probably) still required but at reduced levels/numbers (how many?)
- Reduce/eliminate top tier of pyramid?
- Modelling & testing integrated validation: Mid-tiers of pyramid structural scale
- Models used to inform tests tests used validate/inform models Data Fusion & Design of Experiments
- High-fidelity tests calibration/validation of model predictions
- Models benchmarked/challenged and validated via SUFFICIENTLY COMPLEX TESTS
  (geometry and load complexity) on structural length scales







## Can we do things more efficiently (safer, cheaper, reduced time)?

- Reduce .17
- If successful ... \_\_\_d levels/numbers (how many?) Coupo
- generic methodology/framework would be Reduc  $\mathsf{Mod}\epsilon$
- Models use
- transferable to other emerging materials/ manufacturing technologies (AM, 3D printing, ...) Experiments
- High-fidelity tests calibration/validation or make the contraction or make the contraction of the contract
- Models benchmarked/challenged and validated via SUFFICIENTLY Control of the contr (geometry and load complexity) on structural length scales



14/03/2023





### CerTest

## composites-certest.com

- Programme Grant:
   'Certification for design
   Reshaping the Testing
   Pyramid' (CerTest)
- Grant award: £6.9M over 5 years (2019-2024)



**Engineering and Physical Sciences Research Council** 























The Alan Turing Institute







### CerTest

## composites-certest.com

- Programme Grant:
   'Certification for design
   Reshaping the Testing
   Pyramid' (CerTest)
- Grant award: £6.9M over 5 years (2019-2024)















The Alan Turing Institute







## CerTest

## composites-certest.com

Programme Gr
 'Certification fo
 Reshaping th
 Pyramid' (CerTe

 Grant award: f over 5 years (2 2024)



CERTIFICATION FOR DESIGN: RESHAPING THE TESTING PYRAMID













The Alan Turing Institute







Aim – Development and validation of scientific/engineering tools that will enable VIRTUAL composite structure performance validation - relying on less physical testing and accounting for uncertainty and variability on all levels

**Key enabler** – integration of multi-scale modelling and high-fidelity data-rich testing on structural scale via Bayesian learning and 'Design of Experiments'









Aim – Development and validation of scientific/engineering tools that will enable VIRTUAL composite structure performance validation - relying on less physical testing and accounting for uncertainty and variability on all levels

Key enabl integration of multi-scale modelling and high-fidelity data-rich testing on structura









## Overview of research challenges and methodology



RC1 Multi-scale Performance Modelling



RC2
Features and Damage
Characterisation



RC3
Data-rich High Fidelity
Structural Characterisation



RC4
Integration and
Methodology Validation

- RC1 lead: Richard Butler (Bath)
  - **Focus:** Multi-scale statistical modelling framework incorporating Bayesian statistics load response & damage (HPC & surrogate models/GPEs)
- RC2 lead: Stephen Hallett (Bristol)

**Focus:** NDE toolset for damage & intrinsic meso-scale features, as-designed & deviations from design - knowledge base of structurally important features and in-service damage

- RC3 lead: Janice Barton (Bristol)
  - Focus: Data-rich experimental techniques evolving stress/strain due to features, defects and damage high-fidelity data-rich testing complex loading
- RC4 lead: Ole Thomsen (Bristol)
  - Focus: Integration of data-rich experimental procedures and statistical and multi-scale models - Bayesian Learning and DoE techniques







## Overview of research challenges and methodology



## CerTest hypotheses

- Reliance on physical testing can be reduced by developing the mid-tiers of the testing pyramid
- Mid-tier length scales characterised by complexity wrt. material composition, geometric features and load states - model benchmarking and validation can be conducted via sufficiently realistic/complex complex substructure and component tests
- Merger/fusion of physical test and modelling data is conducted via a Bayesian inference process or looping – leading to model/performance validation (certification)







## CerTest hypotheses

Reliance on physical testing can be reduced by developing the mid-tiers of









## CerTest hypotheses

Reliance on physical testing can be reduced by developing the mid-tiers of









#### CerTest demonstrators

#### Purpose:

- Demonstration and validation of the statistical methods sequential implementation approach
- Implementation of the full Bayesian learning procedure

#### **Initial demonstrators:**

• Sufficiently develop/validate the developed scientific methods (RC1-RC4) to enable delivery off the demonstrator cases (CFRP C-spar, MAF specimen)

#### Composite aero-structure "like" demonstrators:

- Proven difficult to define/select suitable composite aerostructure components/substructures provided by industry partners confidentiality, IP, ownership to data, ...
- Chosen approach: focus on aero-structure "like" demonstrators with seeded defects (wrinkles, delaminations)







### CerTest demonstrators

#### Purpose:

- ation and validation of the statistical methods sequential implementation approach Demo
- Imple

#### Initial d

- RC4 Integration & Methodology Validation • Suffi very off
  - Bayesian learning & Design of Experiments (DoE) the •

## Comp

- Critical CerTest element to enable Virtual Testing/Validation • Proven difficult to dem. rovided by industry partners – confidentiality, IP, owners...
- Chosen approach: focus on aero-structure "like" demonstrators with seeueu us. delaminations)







## Goal: validating new aircraft with minimum effort





Design load envelope



- Which experiments to conduct...
- Which models to run...

...to demonstrate airworthiness (safety)?

...to get the most out of reduced number of tests?







### *Probability = accounting for uncertainty*

#### **Measurement uncertainty**

- Repeated testing
- Is the testing machine/rig well calibrated to measure displacement/load?
- Is the specimen aligned correctly? boundary uncertainty
- Probability distribution for measurements



#### **Model uncertainty**

- How good a Mechanics model represent the true physical testing process?
- Can we model failure of a composite part, including meso-scale defects?
- Can we consider two or more models at once?



#### **Parameter uncertainty**

- Mechanics models have parameters for which we do not know the right value!
- Material properties can also be uncertain
- Probability distribution for parameters that reflects engineering knowledge!









## Manufacturing uncertainty

- Is the manufactured specimen within tolerance? Thickness, etc.
- Are there any relevant defects?
- Probability distribution for defects shape, location, etc.



#### **Computational uncertainty**

- FE models are too expensive so we cannot run them at all parameter values!
- Can we "estimate" quickly what we can compute exactly slowly?







## CerTest – steps towards demonstration of new methodology

• Initial trial/demonstration of Bayesian process and DoE – *ongoing* 

Initial development of Bayesian DoE process:

Modified Arcan Fixture (MAF) testing – open hole multidirectional CFRP laminate coupon tests – Question of interest = damage initiation and failure ("strength")











• C-spar with delamination - combined loading — demonstrator: *Full Bayesian loop and DoE process* 









• C-spar with delamination - combined loading – demonstrator: *Full Bayesian loop and DoE process* 











- C-spar with delamination combined loading demonstrator: *Full Bayesian loop and DoE process*
- Larger scale demonstrator "wing-box" like component seeded with manufacturing defects (NCC)
  - Full Bayesian loop and Doe process will (probably) NOT be conducted (CerTest 2?)
  - Focus on RC1 (multi-scale modelling), RC2 (defect/damage), RC3 (high-fidelity structure test, imaging, hybrid test, data fusion)
  - Large scale component/substructure test LSTL/NIL Southampton













#### Courtesy: Dr Andrew Rhead



#### Competing test pyramids and availability of data - VISION

#### **CLASSIC TEST PYRAMID**

#### **NOVEL REDUCED CERTIFICATION BASIS**









## CerTest outreach & dissemination

Website: <u>www.composites-certest.com</u>

Updates, events, research output/publications, workshops, open positions ...

• ICCM23, 30 July – 4 July 2023, Workshop & panel session on

'Modernising Routes to Compliance with Composites Regulations: A Journey towards Virtual Testing and Digital Twinning'

Speakers and panellists from academia, industry (aerospace, wind, construction) and regulators (EASA, DNV)

• 2023-2024-2025:

Workshops and desimination events – industry, regulators and policy makers







## CerTest outreach & dissemination

Website: <u>www.composites-certest.com</u>

Updates, events, research output/publications, workshops, open positions ...

ICCM23, 30 July – 4 July 2023, Workshop & panel session on

'Modernisi Follow this space!

Follow this space!

Follow this space!

Speakers and panellists from academia, inquestry (aerospace, wind, construction) and regulators (EASA, DNV)

• 2023-2024-2025:

Workshops and desimination events – industry, regulators and policy makers







## Thank you for your attention. Questions?

Contact: o.thomsen@bristol.ac.uk

composites-certest.com

Project partners:

























The
Alan Turing
Institute
o.t.thomsen@bristol.ac.uk