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Understanding of acoustic metamaterials:
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Manufacturing process
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Sound absorption in Hilbert fractal and coiled acoustic
metamaterials

Appl. Phys. Lett. 120, 061902 (2022); https://dol.org/10.1063/5.0079531
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Composite fabrication

K F127 alginate hybrid gel \

biocompatible with sterilized water
used as infill material

* Microporous structure

* Interesting acoustics properties that
have not been fully investigated as
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Testing set ug
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Composite metamaterial preliminary results
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* Absorption coefficient ~0.5 around 200
Hz

Absorption Coefficient

* Allthe measurements made using two
samples with hydrogel and 7

measurements each. '
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Next steps

A poroelastic COMSOL model of the hydrogel inside the
metamaterial

Understanding the physics behind the high energy
dissipation at low frequency ranges

Evaluate how the manufacturing process of the hydrogels
affects the acoustic performances
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® Data
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Questions | wanted to solve

1- How moisture influences general mechanical properties?

2- How moisture Influences the microstructure of the composite and its fracture?

3- How does this material sits among the rest of the literature?

University of The influence of the humidity on the mechanical
AT BRISTOL  properties of 3D printed continuous flax fibre
Bristol Composites Institute reinforced poly(lactic acid) composites.




Specimen print 16
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de Kergariou, Charles, et al. "Measure of porosity in flax fibres -
reinforced polylactic acid biocomposites.” Composites Part A:
Applied Science and Manufacturing 141 (2021): 106183.

u-turn edges
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Stiffness vs moisture content 17
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Longitudinal fracture 18

Fractography Fracture mechanism:
Cook and Gordon
Stage 1: Stage 2: |
Crack propagates Yarn blocks
in the resin crack propagation

|Stage 3! & %

Yarn matrix disbonding Yarn fracture

University of The influence of the humidity on the mechanical
BRISTOL  properties of 3D printed continuous flax fibre
Bristol Composites Institute reinforced poly(lactic acid) composites.




Shear fracture 19

Fractography Fracture mechanism

= Fibre @ Filament @ Matrix G Fracture

U

z
' . | x
; 1
/ ]
1
]
Initiation of fracture:  Yarn fracture Interlaminar Intralaminar

-Interfilament interface delamination fracture
-Yarn matrix interface
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Our material versus literature
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Conclusion

1- Shear, transverse and longitudinal stiffness present an exponential decrease as
the moisture content conditioning Increases.

2- Constant longitudinal strength apart from 98%RH. Decreasing transverse and
shear strength with humidity conditioning.

3- As MC increases: Constant energy dissipated shear and transverse. Increasing
longitudinal energy dissipated

4- Higher humidity:
-longitudinal: greater yarn debonding/ lower yarn fracture
-transverse: no influence on fracture
-shear: lower yarn breakage and high filament disbonding

5- Similar longitudinal stiffnesses to glass and aramid

University of The influence of the humidity on the mechanical
AT BRISTOL  properties of 3D printed continuous flax fibre
Bristol Composites Institute reinforced poly(lactic acid) composites.
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Paper

C. de Kergariou, H. Saidani-Scott, A. Perriman, F. Scarpa, and A.
e Duigou, “The influence of the humidity on the mechanical
properties of 3D printed continuous flax fibre rein-forced
poly(lactic acid) composites,” Composites Part A: Applied Science
and Manufacturing, vol. 155, pp. 106805-106827, 4 2022.
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The challenge

Marine industry has historically
been dominated by

o

(o)}

N

Global Warming Potential (kg COZ2 eq.)
N

Increased uptake in marine industry
of ‘green’ offerings such as flax
reinforcement and bio-epoxy resin
systems
What are the optimised solutions

@\&“‘ 2 e@?@\o‘“ Q& e\&‘ o against technical and
environmental factors?

o
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Life Cycle Engineering ”

1 System Boundary

2 Product requirements

Life Cycle
Design

3 Data source

4 LCE Methodology

5 Results and interpretation

Elic University of
BRISTOL
Bristol Composites Institute 1 2th Aprl | 2022




What data was included? 21

‘ Mechanical Testing Data

TN
o

e ASTM D3039 and ASTM
D3518

* Basalt fibre showed
widest range of failure
modes

* At approximately
equivalent areal weight,
basalt fibre fabric has
superior tensile
performance

W
o

Young's Modulus (GPa)
= S

Q L Q Q W Q Q
%@@%%\\0 %@ ?%@ %\\\) ?Q’ Gg@@
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What data was included? 28

Fibre Resin
— Basalt — BkEpoxy
GWP 100 years (kg CO2 eq.) — Flax GWP 100 years (kg CO2 eq.) —  Epoxy
137 Glass 5 Elium

Life Cycle | 4307363 206 280 ;6.7 82 |
Cost

Eutrophication Potential
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Life Cycle Engineering Optimisation

Minimise f; (x)
PI3 Pl

= +
Bl (El)eq BZ (AG)eq

Minimise f,(x) = El,,

Subject to:
O-f < Oyf

12
3 E3E,"3

O'f < 1
(12(3 —v)* (1 + v)?)3
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" Basalt & Elium,12
Basalt & Elium,16

X Basalt & Elium,18 |
X Basalt & Elium,22
_ Basalt & Elium,24
Glass & Bio Epoxy ,12
3.5 4.5 D

Deflection (mm)
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Conclusions and Future Work

Mechanical performance preference Glass & Bio Epoxy - [(0/90)]12
Balanced Basalt & Elium - [ (0/90)y]12
Environmental performance preference Basalt & Elium - [ (0/90)w]16

Demonstrated an integrated Life Cycle Engineering framework incorporating LCA,
LCC and Functional performance analysis and applied to marine industry

Lack of applicable Life Cycle Inventory (LCI) data on basalt, flax and glass
reinforcements

Need for clearer targets for LCA data — relative vs absolute

% University of University of
§ ngineering an Akl BRISTOL
m BRISTOL 3 !EPSRC Centre for Doctoral Training
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Viscoelasticity

» Materials with viscous liquid and elastic solid properties
* Polymer chains rearrange as strain is applied
* Time dependence key for fast droplet impacts

&
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High Strain Rate Viscoelasticity

« Wind turbine droplet impact strain rate 10° — 108 Hz

 DMA unable to directly measure target range
 MD exceeds target range — can work backwards

DMA TARGET MD
10" 10° 10° 10° 10'¢ 10'°

Strain Rate / Hz
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Molecular Dynamics

* Modelling chemistry using classical mechanics
* Model large repeating structures like polymers
* Enable rapid exploration of material design space
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MD Predictable Properties

* Glass Transition Temperature (T,)

« Storage & Loss Modulus
« Density and Free Volume

« Degree of Crosslinking

.
O .;"0 §

.
.
3 LV Bk
o \g..

o ¥
-

e

« Coefficient of Thermal Expansion (CTE)

,.
T e N aine

O .
o Lagriisn

* Young's Modulus

e Shear Modulus

« Poisson’s Ratio
* Yield Stress
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Machine Learning

* Current MD simulations: 24 — 36 hrs
* Eliminate MD simulation through prediction

» Using small neural network architecture
* Low computational cost to train

500 Features
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Glass Transition Temperature

» 96 characterised polyurethane models
* T, range 320 — 450 K

* Close prediction from simple feature
+ MAE: 10-20 K; RMSE: 20-30 K

Density
=

11111

EAC University of matthew.bone@bristol.ac.uk
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Conclusion

* ML use significantly reduces runtime — 75% reduction
* Rapidly identify the T, of polyurethane coatings

» Use same methodology to explore viscoelastic
properties in polyurethanes
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Why should we care?
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Concept

Composite-based Solution

Nano-porous Nanoporous

Hydrides Material Composite

o0

Cb H, Disassociation

v High volumetric and gravimetric

hydrogen densities. v Fulldischarge.
X Poor cyclability. v Good cyclability.
X Unfavourable pressure and X Requires cryogenic conditions.
temperature. X Low Volumetric hydrogen density.
X Long recharge times
e LK I_ g BRISTOL ////f/WW

Bristol Composites Institute
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Materials

Porous Material
SWCNT-wide

SWCNT-narrow

I o
I A
2 .

48 hr. @ 600 °C 10 hr. @ 300 °C
<1 Pa N, Flow

< > s
< >
K 0-95 nm 1.4 nm

Heteroatom
 Inexpensive waste 16
material. 32.06

 Non-hazardous.
«  Boiling point = 445 °C. S
ulfur

Predicted improved H, k
K sorption in SWCNTs.
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RESULTS
Results
Increase in sp3 hybridisation \
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SUMMARY 47

Summary

* Proven synthesis and determined Future Work
structure by matching similarities - Identify the location of hydrogen
to literature. within the material via neutron

. Determined the BET surface area scattering.

and pore size distribution using N,. « Determine origin of enhancement

. Evaluated the H, sorption through Raman Spectroscopy.

performance of the composite « Conduct low-pressure H, sorption
materials. experiments to determine

- Maintaining the integrity of enhanced monolayer surface

micropores is vital for packing.
hydrogen storage.
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Advanced High-Fidelity Modelling of Woven Composites

Project Objectives

This research aims to investigate the mechanical behaviour from the fibre/matrix constituents up to the
components level to characterise woven composite materials.

Developing a cutting-edge modelling capabilities for meso-scale damage in woven textile composites.

» Enhanced Meso-scale model framework.

* Investigation of premature failure of 3D woven compaosites
due to debonding failures.

(a) crack in weft yarn (b)  binder yarn
weft yarn

P — e

ey (c) crack path (d)
2D Woven Fabric structured mesh Matrix structured mesh Delamination following debonding failure. Zhixing Li et ali. (2018)
& [ University of BCI Sym pOSi um Ei’{’fé?iﬁg’i ‘////////"'W//I//////////'v 1

Engi i d
BRISTOL B W
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Advanced High-Fidelity Modelling of Woven Composites 2

Multi-Scale Framework

Geometric Simulation Algorithm

From the features of the woven fabric, a
representative unite cell is modelled in
order to obtain a real shaped model,

Meso-Scale Modelling

Geometric Simulation Algorithm

TexGen geometry modelling
|

|
— LS-Dyna textile Compaction Simulation
I

simulating the fabric  compaction
process.

Key points of Mechanical Characterisation

« High Fidelity structured mesh for RUC

« Cohesive mesh generator

» Dedicated mechanical damage model
propagation and Cohesive Law

et

Transition region from pure matrix to the yarn

Elic University of BCl Svmbposium
BRISTOL ymp
Bristol Composites Institute 12 Apl’ll 2022

Geometry output .csv
I

Mechanical Characterisation

APl Algorithm
* RUC geometry generator

* Conformal and Cohesive Mesh generation

* FEA Subroutine implementation
v

Finite Element Analysis N

v

Continuum Damage Model and Cohesive

Law implementation
v

Post-Processing: Mechanical Properties

[

Engineering and

Physical Sciences
Research Council

/ > Input of basic fabric parameters D —

Mechanical properties of the
components

Bl University of
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EPSRC Centre for Doctoral
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Advanced High-Fidelity Modelling of Woven Composites

o 1.

Milestones of the project

Normal Stress
| |
Onset of Damage
0 h (@]
T3
g

Interface

&2
o
£
<
&
2,

3Prog 3Lin 3Reg Deformation
-% University of BC| S m OSiU m
g BRISTOL ymp

Bristol Composites Institute 1 2 Apl’l I 2 0 2 2

3D Woven dedicated conformal
meshing methods with cohesive
elements.

Dedicated matrix modelling including
shearing non-linearity.

Implementation of specific damage
progression algorithms and
Cohesive Law

Implementation of damage models
In an implicit Multi-Scale integration
framework.

Verification against CT-scans.

Physical Sciences
Research Council

EPSRC C ntre for Doctor: I
g n Composites Sci
E g ing and Manufar t g

-% University of ‘ W, |
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Advanced High-Fidelity Modelling of Woven Composites

Achievements

 High-Fidelity meso-scale model
framework of woven composites

1. Structured mesh generator of Representative
Unite Cell of Woven Composites.

2. FEA subroutine to run simulation with
cohesive elements.

3. Computational enhancements: Reduced
computational time and detailed stress
gradients.

FEA Analysis
of 2D WC

Elic University of BCl Svmbposium
BRISTOL y | P
Bristol Composites Institute 12 Apl’ll 2022

Working On

Investigation of Yarn/Matrix
debonding damage model, exploiting
the cohesive elements.

Enhancement of Damage
progression algorithm for structured
mesh

Traction

.
.

Chao Zhang et ali. (2015) Mix-mode response

Bl University of
Engineering and BRISTOL

Physical Sciences

Research Council EPSRC Centre for Doctoral
Training in Composites Science,
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Motivation

] Lattice structures:

» Periodic structures characterized by the repetition of
a unit cell.

= Mechanical properties depend on the material and
the topology of the unit cell.

Increasing node connectivity

Fig.2:The lightest metal microlattice [2].

Fig.1: The configuration of quadruple unit cells, increasing the node connectivity by adding face centered, Fig.3: Thin-wall structure and lattice in-fills
diagonal struts to one and two directions [1]. for the deep-space probes of the moon [3].
. ~ W
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Computational approach

A,

Fig.4: Lattice structure of body centered
configuration.
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Representative Volume Element

YRVE

Fig.5: Unit cell of body centered cubic
lattice.

: Lower Upper
Variables bound bound
r 0.3 mm 0.7 mm
YRVE 5.0 mm 9.0 mm

Fig.6: The lower and upper bounds of the continuous
geometric variables in the genetic algorithm.

\ 4
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Ganking genomeD<7
v

RVE generation

A\ 4

FE-based homogenisation process
with PBCs (six static analysis)

Engineering
constants

Penalty >

Constraints
violated

Yes

Genetic operations
(crossover, mutation, etc)
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Convergence

Yes
ig

<Optimized des r>7

COGA-MATLAB [ Python-ABAQUS
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o
o

o
~

O
N

Specific stiffness (10° mm?/s?)

0
D1 D1opt D2 D2opt D3 D3opt D4 D4opt D5 DSopt
Designs

Fig.7: Bar chart of the specific compressive stiffness of the
lattice RVESs (D1-D5) before and (D1opt-D5opt) after the

A

o ' S optimization.
(Dlopt) (D2opt) (D3opt) (D4opt)
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Conclusions & Future work

d Conclusions:
* |ncrease the specific compressive stiffness of lattice

designs.

* |[mpose manufacturing and density constraints. _
. i o Fig._8: BCC I_attice structure
= [nvestigate the effect of struts orientation to the specific fabricated with stereolithography.

stiffness.

L Future work:

= Additive manufacturing and experimental work.

= Investigation of vibration transmissibility properties. o Mol e oo 5
EAKS Universityof ~ BCI Doctoral Research Symposium BAKE Universicy of
BRISTOL 12t April 2022 e, GEBRITOL
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Challenge

Osteoarthritis
» Affecting hundreds of millions worldwide (>10% over 60s worldwide)

 Significantly damaging QOL, independence and mobility
* Current treatment: pain management and complete joint replacement

superficial zone

Genl — Bioinert (Metals)

ﬁ lefied 7

Q cartilage

B

Gen3 — Bioinductive (?)
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Project Aims

Develop soft material scaffold:

* Eliminate the need for complete
joint replacement

* Allow intervention at a much
earlier stage

* Improve quality of life for ageing
population

AL University of
BRISTOL

Briztol Composites Institute

Material Aims:

Biocompatible
Deployable
Mechanically robust
Easily of manufacture
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Materials

1. GelMA - Alginate
DN
- Natural

% Universicy of
BRISTOL

Briztol Composites Institute

2. PEGDA — Alginate
DN
- Synthetic

3. PVA — Alginate DN

- Hydrogen bonding
- Processability
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Methods

Lab-based Simulation

Generate
Material

Physical Characterisation oroperties Parametric studies into:
* LVER Determination e Shear

 Swelling e Compression
Mechanical Characterisation

* Compressive strength Incorporate CT hip scans
* Shear strength

* Fatigue life Informand

supplement
experimental
direction
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Results o8

Run 1 . Run 1
+ Rheological Characterisation | .~ =il e

* LVER Determination .
 Temperature Sweep o
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PVA Stress Strain (Volume Average)

Results

Hyperelastic
Yeoh Model

Rubber oors
Agarose gel |
PVA gel

% brittle polymer

plastic

N/ elastomer

0 - | .
elamlls s?&il;lll'or mclalg/ g -
Hyperelastic AN215E] annnxl B o
Agarose gel stain
Model PVA gel
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Overview

Current Work Future Work

Gel processing and manufacture * Full mechanical characterisation

Physical characterisation and LVER Parametric simulation studies within
determination hip joint

Simulation benchmarking against Functionality and deployability
literature data
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