Micro-Scale Analysis of Progressive Static Damage in CMCs

Riccardo Manno, Giuliano Allegri, Antonio Melro and Stephen Hallett

This PhD project investigates the damage behaviour of Ceramic Matrix Composites (CMCs) at the micro-scale. This level of analysis entails representative elementary volumes (RVES) located within single fibrous tows. In SiC-SiC CMCs both the fibres and the matrix have comparable failure strains, hence damage appears in complex “diffuse” patterns of micro-cracks, originating from defects such as voids. An RVE generation algorithm originally developed for organic matrix composites has been adapted to CMC, including compliant fibre coatings that promote toughness. A micro-scale homogenization framework, based on periodic boundary conditions (PBCs), has been implemented. Abaqus FE results are in good agreement with Mori-Tanaka theory for the linear elastic regime.

Random Fibres placement Algorithm:

Pathan, Tagarielli, Patsias and Baiz-Villafranca, Comp Part B 2016

- Generation of random seeds in the plane
- Coordinate optimization: L-BFGS-B Quasi-Newton optimization solver

\[F = \sum_{k=1}^{N_s} a_k \]

\[a_i = \left(b_i - \beta_i \right) \]

\[\sqrt{(x_i - x_j)^2 + (y_i - y_j)^2} \geq R_i + R_j + l_{\text{min}} \quad \forall \ i, j \in N \quad i \neq j \]

\[-R_i - l_{RVE}/2 \leq (x_i, y_j) \leq R_i + l_{RVE}/2 \]

In the algorithm, a condition for enforcing the periodicity of the fibre at the boundary has been applied.

Finite element implementation:

Implementation of a Python code for the generation of the RVE in Abaqus CAE includes:

- Geometry generation
- Mesh periodicity enforcement
- Periodic Boundary Conditions for Abaqus/Standard

bristol.ac.uk/composites

Homogenization Framework:

Denoting any possible composite realization at a given \(\delta \) as:

\[B_\delta = \{ B_\delta(\omega) ; \omega \in \Omega \} \]

Considering a single realisation \(B_\delta(\omega) \):

- in absence of body forces,
- subject to specific boundary conditions,
- stress and strain field that can be averaged over the volume as:

\[\bar{\sigma}_\delta(\omega) = \frac{1}{V_\delta} \int_{V_\delta} \sigma(\omega, x) \, dV \]

\[\bar{\varepsilon}_\delta(\omega) = \frac{1}{V_\delta} \int_{V_\delta} \varepsilon(\omega, x) \, dV = \varepsilon^0 \]

The problem is the definition of \(\delta \) big enough to pass from a random field of stiffness to an effective Hooke’s law:

\[\bar{\sigma}_\delta = C_{\text{eff}} \bar{\varepsilon}_\delta \]

where the dependence on randomness and spatial fluctuation has been removed.

In order to satisfy the energetic macro-homogeneity, Hill-Mandel PBCs have been applied:

\[u(x + L) = u(x) + \varepsilon^0 \cdot x \]

\[L = l_n \]

Homogenization Results:

The results obtained with this homogenization framework have been compared also with Voigt-Reuss upper and lower bound, as well as a three-phases Mori-Tanaka model.

Further works:

- Effect of microstructural imperfection on the mechanical properties of the fibre-tow scale RVE.
- Introduction of a discrete damage to reproduce the failure behaviour (via phase field theory).