Active thermal management via embedded vascular networks

Jim Cole, Ian Bond and Andrew Lawrie

Fibre reinforced polymer (FRP) composites are limited in high temperature applications by the matrix glass transition temperature, T_g. Above this temperature, mechanical strength is degraded as the matrix softens. A novel solution is active thermal management, which aims to reduce local matrix temperature. This can be achieved by circulating liquid or gaseous fluid through a network of internal passages, or vasculae. Potential benefits include increased operating temperature limits, increased mechanical performance at high temperature, reduced thermal creep/stress relaxation, and reduced thermal fatigue/thermo-oxidative ageing.

Initial research focused on investigating the use of air as a coolant. The viability has been proven by IR thermography of samples in 80°C, 3 m/s airflow.

Surface temperature reductions of 5°C to 10°C were observed (Fig. 1).

These results were supported by a finite-difference numerical model in MATLAB, which is under continued development to improve its capability and efficiency.

Ongoing research aims to investigate the performance benefits possible with this technology.

4-point bend flexural testing from ambient to 110°C to study effects of vasculue spacing and coolant flow rate on flexural modulus.

Initial results suggest vasculue presence has negligible effect, with some indication of post-cool down improvement of up to 4% (Fig. 2).

Fig. 1: Comparison of experimental (left) and simulation (right) results for coolant flows of 0.0 l/min (top) and 10.0 l/min (bottom)

Fig. 2: Temperature-Flow-Modulus map for specimen with vasculue spacing = 20 mm