Experimental validation of bend-twist coupling stiffness predictions

Vincent Maes, Terence Macquart, Paul Weaver, Alberto Pirrera

8th Annual Conference of the CDT in Advanced Composites for Innovation and Science

16th April 2019

bristol.ac.uk/composites
Overview

• Introduction

• Numerical Work:
 • Demonstrator Design
 • Model Comparison

• Experimental Work:
 • Build & Testing
 • Results

• Conclusions and Future Work
Introduction

• Literature
 • Bend-Twist Coupling has demonstrated advantages,
 • Modelling techniques disagree on performance [1,2].

• Industry
 • Design remain unchanged, pending validation.
Numerical Work: Demonstrator Design

• 5 demonstrators:

• BECAS, VABS, and 3D FEM shows:
 • 100% agreement between BECAS and VABS
 • Primary stiffness coefficients \(S_{44}, S_{66} \) within 1%
 • Coupling stiffness coefficients \(S_{46} \) within 2.5%
 • Strong dependence on input handling
Numerical Work: Model Comparison

• Numerical Studies:
 • Looking into handling of features as suggested by Saravia et al. [4].

<table>
<thead>
<tr>
<th>Terms</th>
<th>Inner corner</th>
<th>Simplified</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_{44}</td>
<td>326.92E-6</td>
<td>325.30E-6</td>
</tr>
<tr>
<td>S_{66}</td>
<td>433.46E-6</td>
<td>432.07E-6</td>
</tr>
<tr>
<td>S_{46}</td>
<td>-75.32E-6</td>
<td>-78.91E-6</td>
</tr>
</tbody>
</table>

• Tweaking lay-up in corner, differences can be reduced to under 2%
Experimental Work: Build & Testing

• Built at the NCC out of 913 E glass

• Tested at University of Bristol:
 • Using calibrated inclinometers
 • Repeated load cycles
 • Manual displacement loading
Experimental Work: Results

- Initial testing of first two beams:
 - Results repeatable and match well,
 - Material appears less stiff than modelled,
 - Awaiting material characterization for final validation.

![Graph showing experimental results compared to models.](image.png)
Conclusions

• Initial numerical studies show good correlation, but:
 • High sensitivity to model generation/inputs,
 • Some sensitivity to model simplifications,
 • Potentially higher sensitivity to manufacturing tolerances.

• Demonstrators built and being tested.
Future Work

- Complete testing campaign:
 - Confirm material properties
 - Validate model predictions

- Run extended numerical studies:
 - Further calibration of modelling techniques
 - Assessing sensitivity of stiffness coefficients:
 - To modelling simplifications,
 - Manufacturing tolerances.
Acknowledgements

The authors would like to acknowledge Vestas for their support of this research.
Thank you for listening.

Questions?

vincent.maes@bristol.ac.uk

References:

bristol.ac.uk/composites